PottsState#
- class graph_tool.inference.PottsState(g, f, w=None, theta=None, b=None, **kwargs)[source]#
Bases:
MCMCState
,MultiflipMCMCState
,GibbsMCMCState
,DrawBlockState
Sample from a generalized Potts model.
- Parameters:
- g
Graph
Graph to be modelled.
- f
ndarray
\(q\times q\) spin iteraction strengths.
- w
EdgePropertyMap
(optional, default:None
) Edge property map with the edge weights. If not supplied, it will be assummed to be unity.
- theta
VertexPropertyMap
(optional, default:None
) Vertex property map of type
vector<double>
with the node fields. If not supplied, it will be assummed to be zero.- b
VertexPropertyMap
(optional, default:None
) Initial spin labels. If not supplied, a random distribution will be used.
- g
Methods
copy
(**kwargs)Copies the state.
draw
(**kwargs)Convenience wrapper to
graph_draw()
that draws the state of the graph as colors on the vertices and edges.entropy
(**kwargs)Returns the energy of generalized Potts model.
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.gibbs_sweep
([beta, niter, entropy_args, ...])Perform
niter
sweeps of a rejection-free Gibbs MCMC to sample network partitions.mcmc_sweep
([beta, c, d, niter, ...])Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample network partitions.multiflip_mcmc_sweep
([beta, c, psingle, ...])Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC with multiple simultaneous moves (i.e. merges and splits) to sample network partitions.Reset the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.update_entropy_args
(**kwargs)Update the default values for the parameters of the function
entropy()
from the keyword arguments, in a stateful way, together with other operations that depend on them.- copy(**kwargs)[source]#
Copies the state. The parameters override the state properties, and have the same meaning as in the constructor.
- draw(**kwargs)#
Convenience wrapper to
graph_draw()
that draws the state of the graph as colors on the vertices and edges.
- entropy(**kwargs)#
Returns the energy of generalized Potts model.
Warning
The default arguments of this function are overriden by those obtained from
get_entropy_args()
. To update the defaults in a stateful way,update_entropy_args()
should be called.Notes
The energy of the generalized Potts model is given by
\[H = -\sum_{i<j}w_{ij}A_{ij}f_{b_i,b_j} - \sum_i\theta^{(i)}_{b_i}.\]
- get_entropy_args()#
Return the current default values for the parameters of the function
entropy()
, together with other operations that depend on them.
- gibbs_sweep(beta=1.0, niter=1, entropy_args={}, allow_new_group=True, sequential=True, deterministic=False, vertices=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a rejection-free Gibbs MCMC to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- allow_new_group
bool
(optional, default:True
) Allow the number of groups to increase and decrease.
- sequential
bool
(optional, default:True
) If
sequential == True
each vertex move attempt is made sequentially, where vertices are visited in random order. Otherwise the moves are attempted by sampling vertices randomly, so that the same vertex can be moved more than once, before other vertices had the chance to move.- deterministic
bool
(optional, default:False
) If
sequential == True
anddeterministic == True
the vertices will be visited in deterministic order.- vertices
list
of ints (optional, default:None
) If provided, this should be a list of vertices which will be moved. Otherwise, all vertices will.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E\times B)\) complexity, where \(B\) is the number of groups, and \(E\) is the number of edges.
- mcmc_sweep(beta=1.0, c=0.5, d=0.01, niter=1, entropy_args={}, allow_vacate=True, sequential=True, deterministic=False, vertices=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- c
float
(optional, default:.5
) Sampling parameter
c
for move proposals: For \(c\to 0\) the blocks are sampled according to the local neighborhood of a given node and their block connections; for \(c\to\infty\) the blocks are sampled randomly. Note that only for \(c > 0\) the MCMC is guaranteed to be ergodic.- d
float
(optional, default:.01
) Probability of selecting a new (i.e. empty) group for a given move.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- allow_vacate
bool
(optional, default:True
) Allow groups to be vacated.
- sequential
bool
(optional, default:True
) If
sequential == True
each vertex move attempt is made sequentially, where vertices are visited in random order. Otherwise the moves are attempted by sampling vertices randomly, so that the same vertex can be moved more than once, before other vertices had the chance to move.- deterministic
bool
(optional, default:False
) If
sequential == True
anddeterministic == True
the vertices will be visited in deterministic order.- vertices
list
of ints (optional, default:None
) If provided, this should be a list of vertices which will be moved. Otherwise, all vertices will.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E)\) complexity, where \(E\) is the number of edges (independent of the number of groups).
References
[peixoto-efficient-2014]Tiago P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models”, Phys. Rev. E 89, 012804 (2014), DOI: 10.1103/PhysRevE.89.012804 [sci-hub, @tor], arXiv: 1310.4378
- multiflip_mcmc_sweep(beta=1.0, c=0.5, psingle=None, psplit=1, pmerge=1, pmergesplit=1, pmovelabel=0, d=0.01, gibbs_sweeps=10, niter=1, entropy_args={}, accept_stats=None, verbose=False, **kwargs)#
Perform
niter
sweeps of a Metropolis-Hastings acceptance-rejection MCMC with multiple simultaneous moves (i.e. merges and splits) to sample network partitions.- Parameters:
- beta
float
(optional, default:1.
) Inverse temperature.
- c
float
(optional, default:.5
) Sampling parameter
c
for move proposals: For \(c\to 0\) the blocks are sampled according to the local neighborhood of a given node and their block connections; for \(c\to\infty\) the blocks are sampled randomly. Note that only for \(c > 0\) the MCMC is guaranteed to be ergodic.- psingle
float
(optional, default:None
) Relative probability of proposing a single node move. If
None
, it will be selected as the number of nodes in the graph.- psplit
float
(optional, default:1
) Relative probability of proposing a group split.
- pmerge
float
(optional, default:1
) Relative probability of proposing a group merge.
- pmergesplit
float
(optional, default:1
) Relative probability of proposing a marge-split move.
- pmovelabel
float
(optional, default:0
) Relative probability of proposing a group label move.
- d
float
(optional, default:1
) Probability of selecting a new (i.e. empty) group for a given single-node move.
- gibbs_sweeps
int
(optional, default:10
) Number of sweeps of Gibbs sampling to be performed (i.e. each node is attempted once per sweep) to refine a split proposal.
- niter
int
(optional, default:1
) Number of sweeps to perform. During each sweep, a move attempt is made for each node, on average.
- entropy_args
dict
(optional, default:{}
) Entropy arguments, with the same meaning and defaults as in
graph_tool.inference.BlockState.entropy()
.- accept_stats
dict
(optional, default:None
) If provided, this dictionary will be updated with the proposal and acceptance counts for each kind of move.
- verbose
bool
(optional, default:False
) If
verbose == True
, detailed information will be displayed.
- beta
- Returns:
- dS
float
Entropy difference after the sweeps.
- nattempts
int
Number of vertex moves attempted.
- nmoves
int
Number of vertices moved.
- dS
Notes
This algorithm has an \(O(E)\) complexity, where \(E\) is the number of edges (independent of the number of groups).
References
[peixoto-merge-split-2020]Tiago P. Peixoto, “Merge-split Markov chain Monte Carlo for community detection”, Phys. Rev. E 102, 012305 (2020), DOI: 10.1103/PhysRevE.102.012305 [sci-hub, @tor], arXiv: 2003.07070