Source code for graph_tool.inference.potts

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2006-2025 Tiago de Paula Peixoto <tiago@skewed.de>
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

from .. import Graph, _get_rng, _prop
from . base_states import *
from . util import *

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_inference as libinference")

import numpy as np

[docs] @entropy_state_signature class PottsState(MCMCState, MultiflipMCMCState, GibbsMCMCState, DrawBlockState): r"""Sample from a generalized Potts model. Parameters ---------- g : :class:`~graph_tool.Graph` Graph to be modelled. f : :class:`~numpy.ndarray` :math:`q\times q` spin iteraction strengths. w : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``) Edge property map with the edge weights. If not supplied, it will be assummed to be unity. theta : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Vertex property map of type ``vector<double>`` with the node fields. If not supplied, it will be assummed to be zero. b : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``) Initial spin labels. If not supplied, a random distribution will be used. """ def __init__(self, g, f, w=None, theta=None, b=None, **kwargs): EntropyState.__init__(self, entropy_args={}) self.g = g self.f = np.asarray(f, dtype="double") self.q = f.shape[0] if b is None: b = g.new_vp("int64_t", vals=np.random.randint(0, self.q, g.num_vertices())) elif b.value_type() != "int64_t": b = b.copy("int64_t") self.b = b if theta is None: theta = g.new_vp("vector<double>") elif theta.value_type() != "vector<double>": theta = theta.copy("vector<double>") self.theta = theta if w is None: w = g.new_ep("double", val=1) elif w.value_type() != "double": w = w.copy("double") self.w = w self._state = libinference.make_potts_state(self) def __copy__(self): return self.copy()
[docs] def copy(self, **kwargs): r"""Copies the state. The parameters override the state properties, and have the same meaning as in the constructor.""" args = self.__getstate__() args.update(**kwargs) return PottsState(**args)
def __getstate__(self): state = EntropyState.__getstate__(self) return dict(state, g=self.g, f=self.f, b=self.b, w=self.w, theta=self.theta) def __setstate__(self, state): self.__init__(**state) def __repr__(self): return "<PottsState object with %d spins, for graph %s, at 0x%x>" % \ (self.q, str(self.g), id(self)) @copy_state_wrap def _entropy(self, **kwargs): r"""Returns the energy of generalized Potts model. Notes ----- The energy of the generalized Potts model is given by .. math:: H = -\sum_{i<j}w_{ij}A_{ij}f_{b_i,b_j} - \sum_i\theta^{(i)}_{b_i}. """ eargs = self._get_entropy_args(locals()) S = self._state.entropy(eargs) if len(kwargs) > 0: raise ValueError("unrecognized keyword arguments: " + str(list(kwargs.keys()))) return S def _gen_eargs(self, args): return libinference.potts_eargs() def _mcmc_sweep_dispatch(self, mcmc_state): return libinference.potts_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _multiflip_mcmc_sweep_dispatch(self, mcmc_state): return libinference.potts_multiflip_mcmc_sweep(mcmc_state, self._state, _get_rng()) def _gibbs_sweep_dispatch(self, gibbs_state): return libinference.potts_gibbs_sweep(gibbs_state, self._state, _get_rng())