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NETWORK STRUCTURE AND MINIMUM DEGREE 

Stephen B. SEIDMAN 
George Mason Unmersiry * 

Social network researchers have long sought measures of network cohesion. Density has often 
been used for this purpose, despite its generally admitted deficiencies. An approach to network 
cohesion is proposed that is based on minimum degree and which produces a sequence of 
subgraphs of gradually increasing cohesion. The approach also associates with any network 
measures of local density which promise to be useful both in characterlzing network structures and 
in comparing networks. 

1. Introduction 

Most social network research has devoted serious attention to the 
construction of measures of network structure. Many such measures 
have been defined, addressing a wide variety of network structural 
features. One aspect of network structure that has been treated fre- 
quently is the question of network cohesiveness. Cohesiveness ideas 
have been used (at least in a metaphorical sense) for many years, but 
perhaps their first explicit appearance is in the work of Bott (1957). 
Bott distinguishes between “ tightly-knitted” and “loosely-knitted” net- 
works and uses the degree of “knittedness” of a couple’s network to 
explain the degree to which the couple’s conjugal roles are separate 
(Bott 1957: 59). For Bott, the “knittedness” of a couple’s network is 
measured by the degree to which the couple’s friends know each other. 
This measure was soon formalized and generalized by Barnes, Mitchell 
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and their students, who adopted a graph-theoretic perspective. From 
this perspective, the “knittedness” of a network was replaced by the 
concept of the density of a graph; that is, the ratio of the number of 
links in a graph to the maximum number of possible links (Barnes 
1968: 117). 

Density, like most other network structural measures, has been used 
in several distinct ways. First, networks can be compared on the basis 
of their densities. Alternatively, network density can be used as a 
structural attribute of a single network. Both of these perspectives were 
used by Bott; they can be regarded as global applications of the density 
concept. Density has also been used to address local network structure. 
For example, in Kapferer’s analysis of a conflict in a Zambian factory 
(Kapferer 1969), individuals are compared on the basis of the density of 
their first-order zones. 

It was soon realized, however, that density is less than satisfactory as 
a cohesiveness measure. One serious problem with density arises from 
the fact that it can be obtained from an average of the degrees of the 
points in a network. Thus a particular density value may arise either 
from a rather “uniform” network or from a network consisting of a 
very cohesive region (with points of high degree) and a very sparse 
region (with points of low degree). Density is incapable of distinguish- 
ing between these situations. 

The work described above had the goal of determining the cohesive- 
ness of an entire network or of an ego-centered subnetwork. Alterna- 
tively, one can try to identify maximally cohesive subnetworks of a 
network. This perspective has been used for several decades in sociome- 
try, and the term “clique” has long been used for such a maximally 
cohesive subnetwork. Although many heuristic and statistical defini- 
tions of cliques have been given, the first formal definition is due to 
Lute and Perry ( 1949). For Lute and Perry, a clique is a maximal 
complete subgraph of a network. Such a subgraph is certainly maxim- 
ally cohesive. Unfortunately, two serious difficulties arose with the use 
of cliques in empirical analysis. Most empirical networks contain few 
nontrivial cliques, and in any case the cliques of a network overlap in a 
complex pattern. These shortcomings have been addressed by many 
scholars. On the one hand, generalized cliques were defined that 
retained strongly cohesive properties but which would tend to be larger 
in practice (see Lute 1950; Alba 1973; Seidman and Foster 1978a; 
Mokken 1979). On the other hand, algorithmic procedures have been 



S.B. Seidman / Network structure and minimum degree 271 

devised to merge overlapping cliques into larger cohesive subsets (Alba 
n.d.; Kappelhoff 1974). All of these methods have been reasonably 
successful in locating cohesive regions of networks. 

But once the highly cohesive regions of a network have been located, 
we are still left with two problems. First, it is clear that all of the 
interesting network structure does not lie in the cohesive regions of the 
network. In cohesive network regions, individuals are likely to be linked 
by multiple, redundant paths, while individuals outside cohesive regions 
(or in different cohesive regions) are likely to be linked (if at all) by 
single paths. Granovetter (1973) has argued that it is just such weak 
links that may be crucial in the transmission of information. An 
analytical strategy that is limited to the identification of cohesive 
network regions will be unable to deal with the structure of the portion 
of the network lying outside (and between) the cohesive regions. 

But if the cohesive subset strategy is unable to address the structure 
of the noncohesive portion of a network, it is certainly unable to 
determine parameters that summarize the global structure of a network. 
Such summary parameters can be used as part of a network description 
or as the basis of a comparison of two or more networks. We have seen 
that density has been used as such a parameter, but that it has not been 
satisfactory. The purpose of this paper is to propose a way in which the 
advantages of the cohesive subset and density approaches can be 
combined. Using the approach outlined here, network regions will be 
identified that will contain all highly cohesive regions, even though the 
larger regions may not themselves be highly cohesive. Despite their 
possible lack of extreme cohesion, these regions will have interesting 
and clearly specifiable structural properties. In addition, this approach 
will produce global measures of network structure that are sensitive 
both to the cohesive regions of a network and to the portions of the 
network outside the cohesive regions. 

The approach proposed in this paper is in some sense orthogonal to 
the standard cohesive subset approaches. While cohesive subsets are 
usually built up from small but highly cohesive cliques by gradually 
weakening some aspect of cohesion (see Seidman and Foster 1978b), 
the subsets obtained by the proposed approach will first be large, 
gradually diminishing in size. They can be seen as seedbeds, within 
which cohesive subsets can precipitate out. 
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2. Definition and properties of k-cores 

Let G be a graph. If H is a subgraph of G, 6(H) will denote the 
minimum degree of H;each point of H is thus adjacent to at least 6(H) 
other points of H. If H is a maximal connected (induced) subgraph of 
G with 6(H) > k, we say that H is a k-core of G. 

It is easy to see that the l-cores of a graph are its nontrivial 
connected components. Figure 1 shows a graph and its k-cores for 
several values of k. It is clear that, in general, k-cores need not be 
highly cohesive, but that all cohesive subsets are contained in k-cores. 
Note that a connected graph can have at most one 2-core, and that 
trees have no 2-cores. Also, it is clear that a k-core must have at least 
k + 1 points, and that points in different k-cores cannot be adjacent. 

Although k-cores may not in practice be maximally cohesive, it is 
possible to say something explicit about their cohesiveness. Cohesive- 
ness in social networks can be characterized in several distinct but 
related ways. Suppose that we are looking at some subset of the 
population making up the members of the network. If the subset is 
cohesive, it should be possible to remove some of its members without 
fragmenting the subset. To make this idea formal, we regard the social 
network as a graph, so that the cohesive subset corresponds to an 
induced subgraph. The connectedness of a graph is defined to be the 
minimum number of points whose removal will produce a disconnected 
graph (or the trivial graph on one point) (Harary 1969: 43). Cohesive 
subsets of social networks should correspond to. subgraphs of high 
connectedness. From this perspective, cliques are seen to be maximally 
cohesive, since a clique on p points has connectedness equal to p - 1. It 
is easy to see that the connectedness of a k-core must be between 1 and 
k. The following result shows that, for k-cores with relatively few 
points, we can say something more about the connectedness of k-cores. 
Proofs of all results will be found in an appendix. 

Proposition 1. If I < k and p < 2k - I + 2, then a k-core with p points 
has connectedness at least 1. (Note that this bound is best possible.) 

To see how the bound works in particular cases, let I= 2. We see that a 
k-core with at most 2k points must have connectedness at least 2 (i.e. it 
has no cut points). Thus while a 3-core with 6 points must have 
connectedness at least 2, a 3-core with 7 points may have a cut point. 
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Figure I. A graph and its k-cores. Figure la represents a graph G with two connected components. 
Since G has no isolates, each connected component of G is a l-core of G. Figure lb shows the 
2-cores of G, while Figure Ic shows the 3-cores of G. G has no k-cores for k > 3. 

An alternative way of interpreting the connectedness of a subgraph 
in a sociologically interesting way is provided by Menger’s theorem. 
This result, originally proved by Menger (1927) has appeared in the 



274 S.B. Seidman / Network structure and minimum degree 

literature in many variant forms (Harary 1969: 47-52). For our pur- 
poses, the most interesting variant is due to Whitney (1932); it states 
that the connectedness of a graph is at least I if and only if every pair of 
points is joined by at least I point-disjoint paths. Thus a cohesive subset 
whose corresponding subgraph has high connectedness will also have 
high redundancy; messages can reach their destinations by many alter- 
nate (and independent) paths. 

This approach to connectedness has ignored the length of the paths. 
It is often important that paths between individuals be short, for 
example to guarantee that messages be communicated with little de- 
gradation of content. A geodesic path between points s and t of a graph 
is a path from s to t with the fewest possible links, and the diameter of a 
connected graph is the length of the longest geodesic path between any 
pair of points of the graph. Thus if the diameter of a connected graph is 
d, any two points of the graph can be linked by a path with no more 
than d links. Just as we should expect cohesive subsets of a network to 
correspond to subgraphs of high connectedness, we should also expect 
them to correspond to subgraphs of small diameter. Once again, cliques 
are seen to be maximally cohesive; all cliques have diameter equal to 1. 
Just as we were able to show that small k-cores had high connectedness, 
we are able to show that small k-cores have small diameter. Note that 
[x] denotes the largest integer less than or equal to x, and that 
mod( p, q) is the remainder obtained when the integer p is divided by 
the integer q. 

Proposition 2. (a) If K is a k-core withp points and if k + 1 < p c 2k + 2, 
then diam( K) = 2. 

(b) If K is a k-core with p points and if p >, 2k + 2, then 
diam(K)<3[p/(k+ l)]+a(p, k)-3, 

ifmod(p,k+ l)=O 

wherea(p, k)= ifmod(p,k+ l)= 1 

ifmod(p,k+ 1)=2. 

This bound is best possible. A weaker version of this result (with 
a( pi k) replaced by 2) was obtained by Kramer (1972). We can 
conclude from part (a) that a 3-core with 5, 6 or 7 points must have 
diameter 2. A 3-core with 8 points must have diameter at most 3; if it 
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has 9 points, its diameter is at most 4, while if it has 10 or 11 points, its 
diameter is at most 5. In general, for a given value of k, smaller k-cores 
are more cohesive, whether cohesiveness is measured by connectedness 
or by diameter. 

The examples that demonstrate that Proposition 2b gives a best 
possible bound all have cut points. It is natural to expect that better 
diameter bounds can be obtained for k-cores whose connectedness is 
known to be greater than 1. Such a bound is given in the next result, 
which can be seen as a generalization of Proposition 2b. 

Proposition 3. If K is a k-core with p points and connectedness 1, and 
p > 2k + 2, then diam( K) < 3[( p - 2k - 2)/P] + b( p, k, Z) + 3, where 
p = max( k + 1, 31) and 

if mod(p - 2k - 2, p) < 1 

ifl<mod(p-2k-2,P)<21 

2 if21<mod(p-2k-2,P). 

Note that the hypotheses of Proposition 3 require that 1 G 1 G k <p. If 
I = 1 is used in Proposition 3, we obtain Proposition -2b. The bounds 
given in Proposition 3 are also best possible. To see how much the 
bounds in Proposition 3 are improvements over those given in Proposi- 
tion 2, we will look at 3-cores with connectedness 1, 2, or 3 and at most 
12 points. Table 1 shows the relationship between the number of points, 

Table I 
Maximum diameter for 3-cores with p points and connectedness I 

P 1 2 3 

4 
5 
6 
7 
8 
9 

10 
II 
12 
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the connectedness, and the maximum diameter for 3-cores. Note that 
the diameter bounds given in Table 1 for connectedness equal to 1 are 
precisely those given by Proposition 2. It is clear that higher connected- 
ness yields sharper diameter bounds. Once again, we see that smaller 
k-cores can be expected to be more cohesive. 

Both of the measures of cohesiveness that we have discussed so far 
share the property that they assign a number to any graph; extreme 
values for that number indicate a high degree of cohesiveness. Another 
way of looking at cohesiveness is to ask whether a network contains a 
maximally cohesive nucleus. For example, a subset of a network may 
not itself be a clique, but if it contains a clique with 4 points, say, it is 
evidently more cohesive than a subset that contains only trivial cliques. 
Such a large clique could serve as a focus of activities that could tie the 
non-clique members more tightly into the subset. If we represent 
networks as graphs, we can then ask the question “When must a graph 
of a certain size contain a clique of a certain size?“. Questions of this 
sort are treated in the branch of graph theory called extremal graph 
theory, and indeed the first results in extremal graph theory dealt with 
the question of when graphs must contain cliques of various sizes. In 
particular, a result of Turan (1941) states that any graph with p points 
and more than t ._,(p) edges must contain an induced subgraph with Y 
points that is complete, where 

t,-,(P)= c 
O<r<j<r- 1 

[fq[f+]. 

In this form, Turan’s theorem is not useful for our purposes, but the 
following result (Bollobas 1978: 295) is more directly applicable. A 
thorough survey of related results can be found in Bollobas (1978). 

Proposition 4. A k-core with p points must contain a clique with r 
points if p < {(r - l)/( r - 2)}k. 

Thus if p -c 2k, a k-core on p points must contain a clique with 3 
points, and if p < 3k/2, a k-core on p points must contain a clique with 
4 points. It is easy to find examples showing that these results are best 
possible. The dependence on p is perhaps easier to see if we rewrite the 
bound in Proposition 4 as r < k/( p - k) + 2. If p = k + 1, this implies 
the existence of a clique with k + 1 points inside the k-core, which is 
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thus complete. If p = k + 2, complete subgraphs of the k-core with r 
points can be found for r < (k/2) + 2, while if p = k + 3, complete 
subgraphs of the k-core with r points can only be assured if r < (k/3) 
+ 2. Thus all three measures of cohesiveness indicate that smaller 
k-cores tend to be more cohesive. 

3. Remainders and core collapse sequences 

Although the cohesive regions of a social network are contained in the 
k-cores of the corresponding graph, we have argued above that interest- 
ing and important structure will be found outside the cohesive regions. 
In this section, we will investigate the structure of the complements of 
the k-cores, and we will use that structure to define global structural 
parameters for social networks. 

Suppose that G is a graph. Let G, = G, and let G, be the union of the 
k-cores of G for k = 1, 2, . . . . Define R, = G, - Gk+,. R, is the set of 
points that are in k-cores but that are in no (k + 1)-cores. R, will be 
called the k-remainder of G. Note that R, is the set of isolates of G. If 
H is a set of points of G, the frontier F(H) of H is defined to be the set 
of points of G-H that are adjacent to points of H. Clearly, F( G,, ,) & 
R,. Finally, a graph G is said to be k-degenerate (Bollobas 1978: 222) if 
for every induced subgraph H of G, we have S(H) < k. 

Proposition 5. The subgraph induced by F( Gk) is (k - 2)-degenerate 
(k=2, 3, . ..). 

A particularly interesting example of the way this result can be 
applied is obtained when we examine the structure of F(G,). In this 
case, F( G,) is l-degenerate, so that it can have no induced subgraph of 
minimum degree 2 or more. Thus F( G3) is acyclic, so that its connected 
components are trees. For example, in Figure lb, the 3-cores are 
(a, 6, c, d) and {j, k, I, m}. It is easy to see that F((a, b, c, d)) = 
(e, f, g), and F(( j, k, I, m}) = (f, g, i). Each of these frontiers is a 
forest (its connected components are trees). Suppose that the object of 
study is the network arising from the relation “talks with” on the set of 
participants in a scientific conference. A 3-core in this network is a 
maximal set of people, each of whom talks to at least three other 
members of the set. It is reasonable to believe that such sets correspond 
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to strong interest subgroups. But members of such interest subgroups 
also talk with nonmembers; the frontier of a 3-core is the set of 
nonmembers who talk with members. We have seen that the frontier 
breaks up into components which are trees. These components could 
correspond to distinct facets of the interests that together make up the 
defining interests that correspond to the 3-core. Even more interest- 
ingly, the tree structure of the components of the frontier can be used 
to construct a hierarchy within each component that may correspond to 
relationships among the various interests. 

Frontiers of k-cores for k > 3 have more complex structure that is 
not so easily interpreted. On the other hand, most naturally occurring 
networks will not contain significant k-cores for large values of k. 
Although the frontiers are very useful in analyzing the interface be- 
tween the k-cores and their complements, it is also interesting to look at 
the entire remainder R,. Arguments similar to those used in the proof 
of Proposition 5 show that the subgraph induced by R, is k-degenerate. 
In order to obtain a structural argument similar to the one presented 
above for frontiers we would need to know that a remainder was 
l-degenerate. This only happens for R,, but since it is clear that the 
complement of G, in G, can only consist of disjoint tree-like appen- 
dages, we obtain no additional insight. 

It is intuitively reasonable that k-cores should be more dense 
than k-remainders. Suppose that the k-remainder R, has rk points. 
Then a result of Lick and White (1970) implies that R, has at most 
kr, - k( k - 1)/2 edges, from which an upper bound on the density of 
R, can easily be obtained. Similarly, a lower bound for the density of 
G, can be obtained from the fact that (if G, has nk points) G, has at 
least kn,/2 edges. Unfortunately, these bounds are not very useful in 
practice, since the lower bound for G, is derived on the assumption that 
all points of G, have degree k, while the upper bound for R, is derived 
on the assumption that R, is a k-degenerate graph on rk points with as 
many edges as possible. Neither assumption is likely to be realistic. 

Despite the failure of a direct approach to the density of the cores 
and remainders, it still seems reasonable that interesting structural 
information is contained in the sequence of cores and remainders. One 
way to get at this information is to consider the sequence {rk}( k = 
09-1, 2, . . . ) of remainder sizes. r0 is the number of isolates in the 
network, r, is the number of points in tree-like subnetworks, and 
r2,r3, . . . count the numbers of points in successively more cohesive 
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network regions. This sequence certainly carries structural information, 
but how can it be used? Whether it is used as a global parameter to aid 
in the analysis of a particular network or to aid in network compari- 
sons, it should be made independent of network size. This can be done 
by replacing rk by rJV(G)l which represents the proportion of points 
of G that are in G, - Gk+ ,. If we regard the sequence of core unions G, 
as having been produced by a process starting with G = G, and gradu- 
ally stripping off less cohesive regions, TJV( G)l is the proportion of 
points that are removed by the (k + 1)st removal operation. We will 
call { r,Jl V( G)/) the core collapse sequence (CCS) of a network. For the 
network that appears in Figure 1, the core collapse sequence is 
(0, 5,‘21, 8,‘21, 8/21). 

Before proceeding further with interpretation of the core collapse 
sequence, we should ask how long such a sequence can be. It is clear 
that if A is the maximum degree of a graph, then the core collapse 
sequence for that graph can have no more than A + 1 terms, and that 
that upper bound can be attained. The CCS is a way of replacing 
density by a sequence of measures of local density. Figure 2 shows how 
the CCS can be used to distinguish between two graphs that have the 
same density but quite different structure. It is of course possible for 
graphs to have the same CCS but different density, but the emphasis of 
the CCS on the existence of induced subgraphs of specified minimum 

Figure 2. Graphs having the same density but different core collapse sequences. The graphs shown 
in Figures 2a and 2b have density equal to S/15, but the core collapse sequence for the graph of 
Figure 2a is (0, l/3, 0, 2/3), while that for the graph of Figure 2b is (0, 0, 1.0). It is clear from the 
core collapse sequences that the graph of Figure 2a consists of a dense core with some peripheral 
hangers-on, while that of Figure 2b is more uniform in mesh but lacks a highly cohesive core. 
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degree tends to ensure the structural similarity of graphs with similar 
CCS. The CCS should be very useful in the comparison of networks on 
the same or different populations. 

If we look more closely at the way in which Gk+ , is obtained from 
G,, we see that an iterative process is involved. This process starts out 
with G,, and each iteration removes all points of degree k from the 
previously obtained graph. Let i, be the number of iterations that are 
needed to produce Gk+ , from G,. If G, has nk points, it is clear that 
0 < i, < nk - k - 2 (these values -will be increased by 1 if the final 
iteration, producing no changes, is included). The value of i, carries 
structural information about R,. In particular, it can be used to 
investigate the existence of long paths in R,. 

Proposition 6. (a) There is a path in R, of length i, - 1. 
(b) If there is a path in F( G,) of length t, then i, a t/2. 

The converse of Proposition 6a is false. It would be interesting to 
generalize Proposition 6b to apply to G, for k > 3. In general, if i, is 
small, R, will be relatively “thin”, while if i, is large, R, will be 
relatively “thick”. Examples of graphs with large and small values of i, 
(illustrating th is distinction) are given in Figure 3. The structural 

Figure 3. Graphs having the same density and core collapse sequences, but different values of i,. 
The graphs shown in Figures 3a and 3b have density equal to l/2 and their core collapse 
sequences are (0, 0, l/2, l/2). The value of i, for the graph of Figure 3a is 1. while that for the 
graph of Figure 3b is 4. 
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significance of i, seems relatively independent of the size of the original 
network, and thus provides another structural parameter that can be 
used along with the CCS in global descriptions of network structure. 

4. Conclusions 

We have shown that the k-core concept can be used in two distinct but 
related ways. First, k-cores are subsets of a network whose cohesion 
increases as k increases. For small values of k, the k-cores tend to be 
large, diminishing in size as k increases. Furthermore, cohesive subsets 
defined in any reasonable way must occur as subsets of k-cores for 
some nontrivial value of k. Thus k-cores can be regarded as seedbeds, 
within which we can expect highly cohesive subsets to be found. On the 
other hand, k-cores can be used to define the core collapse sequence of 
a network. This sequence takes account both of the k-cores and their 
complements, and thus considers both regions of strong ties and regions 
of weaker ties. It can be used to characterize the “mesh” of a network 
in a far more subtle and interesting way than by using network density 
directly. Core collapse sequences should thus prove very useful in 
global network comparisons. In addition, the k-cores and core collapse 
sequences will be very easy and efficient to compute, since all that is 
really necessary is to access the row marginals of the adjacency matrix 
of the network. 

Mathematical appendix 

Proposition 1 is a restatement of Corollary 1.1.4 in Bollobas (1978). 
Similarly, Proposition 2a is a restatement of Theorem 2 in Seidman and 
Foster (1978a). As noted in the text above, Proposition 2b is a special 
case of Proposition 3, obtained from the latter result by setting I = 1. If 
S is a set, JSI will denote its cardinality. The connectedness of a graph G 
will be denoted by K(G). 

Proof of Proposition 3. Let K be a k-core with p points and connected- 
ness 1. Set ,f3 = max(k + 1, 31), and suppose that diam( K) = t a 3. Note 
that if diam( K) < 3, the desired bound is trivially satisfied. Choose 
points u, v in K at distance t, and define N, = (x E Kld( u, x) = i}, 
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where d( U, x) is the distance from ZJ to x, and i = 0, 1, 2,. . . , t. N, = (u), 
N, * 8 for 0 < i < t, and V(K) = U i+N,. We will now partition the 
points of K by grouping the sets {N,}. 
Define 

P,=N,uN,, 

P, = N3,-, uN3,UN3;+,(i=1,2,...,[(~-4)/3]), 

Q=N,_,uN,, 

and 

[(r-4)/31 
R= V(K)-Q- U. P,. 

Note that R may be empty. If R is nonempty, it is equal either to one 
of the {N,) or to the union of two of the (N,). Let s = {P,, P,, . . . , Q}, 
andputISJ=j.Notethatif3~t~5,thenS={P,Q)andj=2.Since 
the degree of each point of K is at least k, we see that for each T E S, 
JTI > k + 1. But since K(G) = 1, IN,1 > 1 for 1 < i < t - 1, so that lP,l> 31 
for i a 1, and thus lP,l a p for i 2 1. Since the members of S are disjoint 
subsets of V(K), we conclude that 

(j-2)P+2(k+ l),<p, 

or that 

Case I. mod (p - 2k - 2, P) < 1, 

If j = [(p - 2k - 2)/p] + 2, at most I - 1 points remain unaccounted 
for by the minimum size calculations for the members of S. Since 
IN;1 2 I for each i, these points cannot be included in R; they must 
therefore be included in various members of 5, so that R = 8. We 
conclude that 

diam(K)=2(j-2)+(j- 1)+2=3j-3, 



S. B. Seidman / Network structure and minimum degree 283 

where the first term comes from the internal links in each P,(i > l), the 
second term comes from the links between the members of S, and the 
third term comes from the internal links in PO and Q. It thus follows 
that 

diam( K) = 3[( p - 2k - 2)/p] + 3 = 3[( p - 2k - 2)/p] 

+b(p, k, 1) + 3, 

since b( p, k, 1) = 0 in this case. 
If j < [(p - 2k - 2)/p] + 2, the points unaccounted for by the 

minimum size calculations may either be included in members of 5 or 
they may constitute one or two ungrouped N,‘s. This may increase the 
diameter by 1 or 2, but since j is being decreased by at least 1, 3; is 
decreased by at least 3. We conclude that 

completing the discussion of Case 1. 

Case 2. I < mod(p - 2k - 2, p) < 21. 

Ifj = [( p - 2k - 2)/p] + 2, then the number of points unaccounted for 
by the minimum size calculations is between I and 21- 1. These points 
may be included in members of S or they may make up one ungrouped 
iV,. If an ungrouped N, appears, the diameter bound for K in Case 1 is 
increased by 1. Since in this case we have b( p, k, I) = 1, we conclude 
easily that 

diam(K)<3[(p-2k-2)/P]+b(p, k, 1)+3, 

as desired. If j < [(p - 2k - 2)/p] + 2, the arguments given above at 
the end of the discussion of Case 1 imply here too that 

diam(K)<3[(p-2k-2)/jl]+b(p,k,1)+3. 

Case 3. mod(p - 2k - 2, P) > 21. 

Ifj = [(p - 2k - 2)/j?] + 2, then the number of points unaccounted for 
by the minimum size calculations is between 21 and j? - 1. Recall that 
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,f? = max(31, k + l}, If p = 31, we see that no more than two ungrouped 
N,'s can appear. If ,8 = k + 1, we can draw the same conclusion. 
Hence the diameter bound for K in Case 1 can be increased by no more 
than 2. Since in this case we have b( p, k, I) = 2, we conclude that 
diam(K) < 3[( p - 2k - 2)/p] + b( p, k, I) + 3. 

If j < [(p - 2k - 2)/p] + 2, the arguments at the end of Case 1 
imply that diam( K) < 3[( p - 2k - 2)/p] + b( p, k, I) + 3. Thus the de- 
sired bound has been verified in all cases, completing the proof of 
Proposition 3. 

We will now show that the bound given in Proposition 3 is best 
possible. Let p, k, and 1 be given with p z 2k + 2 and k > I; we will 
construct a graph G( p, k, I) with p points, minimum degree k, con- 
nectedness I, and whose diameter is given by the expression in Proposi- 
tion 3. We will denote thejoin of graphs G, and G, by G, + G, (Harary 
1969: 21). The complete graph on n points will be denoted by K,. 

Case 1. (31> k + 1). 

Letj = [(p - 2k - 2)/p] = [(p - 2k - 2)/31]. 

DefineN,=K,,N,=K,,N,=N,,=... =N,+,=K,+K,+K,.Suppose 
first that mod( p - 2k - 2, /?) = 0. Then define N,+2 = K, and N,+ 3 = 
K,. The graph G( p, k, I) is formed by adding edges from each point of 
N ,_, to each point of N, for i = 1, 2,. . . ,j + 2. It is easy to see that 
G( p, k, 1) has the desired properties. If 0 < mod( p - 2k - 2, /?) < I, 
we can construct the desired graph by adding the additional 
mod( p - 2k - 2, ,8) points to N,. If I < mod( p - 2k - 2, P) < 21, we 
define Nj+2 = Kmodcp_Zk_Z,Pj, Nj+3 = K, and N,+4 = K,. This increases 
the diameter of G by 1 without affecting the other properties. Finally, if 
a = mod(p - 2k - 2, ,8) > 21, we define N,+2 = K,, N,+3 = K,_,, N,,, 
= K, and N,+s = K,. In this case, the diameter of G is increased by 2 
without affecting the other graph properties. 

Case 2. (31~ k + 1). 

Once again, letj=[(p-2k-2)//3]=[(p-2k-2)/(k+ l)]. In this 
case, the previous construction is modified slightly. The definition of N, 
for i=O, 1 and i>j+2 is unchanged, while N2=N3=... =N,,_,= 
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Kl+ Kl+ K&2/+ I’ It is easy to see that the desired conditions are 
satisfied by the graph G( p, k, I). 

The following useful bound is a simple restatement of Proposition 3. 

Corollary 3.1. If G is a connected graph with p points, minimum degree 
6, and connectedness K, then 

diam(G)<3[(p-26-2)/P]+b(p,6, K)+3, 

wherep=max(6+ 1, 310, 

and 

0 ifmod(p-26-2,P)<K 

1 ifK<mOd(p-2&2,P)<2K 

2 if2K<mod(p-2&2,P). 

By setting 6 = K in Corollary 3.1, we immediately obtain a bound due to 
Watkins (1967). Similarly, by setting K = 1 in Corollary 3.1, we obtain a, 
best possible bound on the diameter of a connected graph as a function 
of its order and its minimum degree, which improves a bound due to 
Kramer ( 1972). 

Proposition 4 is Corollary VI.1.3 in Bollobas (1978). 

Proof of Proposition 5. Suppose that the frontier of G, were not 
(k - 2) - degenerate. Let H be a subgraph of F( Gk) with 6(H) >, k - 1. 
But since H c F( Gk), each point of H is adjacent to some point of G,. 
Hence 6( H u Gk) a k, so that each point of H would be contained in 
some k-core. But since H n G, = QJ, this contradicts the maximality of 
the k-cores. 

Proof of Proposition 6. (a) Let Rk(i) be the result of i iterations of the 
removal operation (with minimum degree k + 1) applied to R,. Note 
that R,(O) = R,, and Rk( ik) = @. Suppose that x E Rk( i) - Rk( i + l), 
where i > 1. Thus x is removed by the (i + 1)st iteration. Hence the 
degree of x in Rk( i) is at most k, while the degree of x in R,( i - 1) is at 
least k + 1. x must therefore be adjacent to at least one point in 
R,(i - l)- Rk(i). Since Rk(i) -R,(i+ 1) is nonempty for i= 0, l,..., 
‘h - 1, it is easy to see that we can construct a path in Rk(0) = R, with 
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i, points, and therefore with length i, - 1. 
(b) Suppose P is a path of length t in F( G,). All interior points of P 

have degree at least 3, so that the only points that can be removed by 
the first removal iteration are the endpoints of the path. It follows by 
induction that i, 2 t/2. 
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