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Abstract

We determine the exact freezing threshold, rf , for a
family of models of random boolean constraint satis-
faction problems, including NAE-SAT and hypergraph
2-colouring, when the constraint size is sufficiently large.
If the constraint-density of a random CSP, F , in our
family is greater than rf then for almost every solution
of F , a linear number of variables are frozen, meaning
that their colours cannot be changed by a sequence of
alterations in which we change o(n) variables at a time,
always switching to another solution. If the constraint-
density is less than rf , then almost every solution has
o(n) frozen variables.

Freezing is a key part of the clustering phenomenon
that is hypothesized by non-rigorous techniques from
statistical physics. The understanding of clustering has
led to the development of advanced heuristics such as
Survey Propogation. It has been suggested that the
freezing threshold is a precise algorithmic barrier: that
for densities below rf the random CSPs can be solved
using very simple algorithms, while for densities above
rf one requires more sophisticated techniques in order
to deal with frozen clusters.

1 Introduction

The clustering phemonenon is arguably the most im-
portant development in the study of random constraint
satisfaction problems (CSP’s) over the past decade or
so. Statistical physicists have discovered that for typi-
cal models of random constraint satisfaction problems,
the structure of the solution space appears to undergo
remarkable changes as the constraint density increases.

A common geometric interpretation of the cluster-
ing analysis paints the following picture. Most of it is
not proven rigorously; in fact many details are not speci-
fied precisely. Nevertheless, there is evidence that some-
thing close to this takes place for many natural random
CSP’s: At first, all solutions are very similar in that we
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can change any one solution into any other solution via
a sequence of small local changes; i.e. by changing only
o(n) variables-at-a-time, always having a satisfying solu-
tion. This remains true for almost all solutions until the
clustering threshold [42, 43], at which point they shatter
into an exponential number of clusters. Roughly speak-
ing: one can move from any solution to any other in the
same cluster making small local changes, but moving
from one cluster to another requires changing a linear
number of variables in at least one step. As we increase
the density further, we reach the freezing threshold [51].
Above that point, almost all clusters1 contain frozen
variables; that is, variables whose values do not change
for any solutions in the cluster. At higher densities, we
find other thresholds, such as the condensation threshold
[36] above which the largest cluster contains a positive
proportion of the solutions. Eventually we reach the
satisfiability threshold, the point at which there are no
solutions.

The methods that are used to describe these phe-
nomena and determine the values of the thresholds are
mathematically sophisticated, but are typically not rig-
orous. Nevertheless, they have transformed the rigorous
study of random CSP’s.

For one thing, this picture explained things that
mathematicians had already discovered. For some
problems (eg. k-NAE-SAT [10], k-SAT [12] and k-
COL [11]) the second moment method had been used
to prove the existence of solutions at densities that are
close to, but not quite, the hypothesized satisfiability
threshold. We now understand that this is because
the way that the second moment method was applied
cannot work past the condensation threshold. As
another example, it had long been observed that at a
point where the density is still far below the satisfiability
threshold, no algorithms are proven to find solutions
for many of the standard random CSP models. We now
understand [43] that this observed “algorithmic barrier”
is asymptotically equal to the clustering threshold as k
grows ([3] provides rigorous grounding for this), and

1By this we mean: all but a vanishing proportion of the
clusters, when weighted by their size.
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so the difficulties appear to arise from the onset of
clusters. It has been suggested that this algorithmic
barrier may occur precisely at the freezing threshold;
i.e. the formation of clusters does not cause substantial
algorithmic difficulties until most of the clusters have
frozen variables (see section 1.1 below).

Although the picture described above is, for the
most part, not established rigorously, understanding it
has led to substantial new theorems [20, 39, 52, 29, 48,
23, 21, 22, 28, 1, 33, 5, 6]. For example, [23] used our
understanding of how condensation has foiled previous
second moment arguments to modify those arguments
and obtain a remarkably tight bound on the satisfiabil-
ity threshold for k-NAE-SAT. [21] used our understand-
ing of clustering to design an algorithm that provably
solves random k-SAT up to densities of O(2k ln k/k),
which is the asymptotic value of the clustering thresh-
old. A particularly impressive heuristic result is the
Survey Propogation algorithm [43, 16], which experi-
mentally has solved random 3-SAT on 107 variables at
densities far closer to the satisfiability threshold than
anyone had previously been able to handle, even on
fewer than 1000 variables. This algorithm was designed
specifically to take advantage of the clustering picture.

Of course, another thrust has been to try to rigor-
ously establish pieces of the clustering picture [3, 4, 48,
8, 30, 24, 54, 46]. We have been most successful with
k-XOR-SAT; i.e. a random system of boolean linear
equations. The satisfiability threshold was established
in [27] for k = 3 and in [26] for k ≥ 4. More recently,
[8, 30] each established a very precise description of the
clustering picture. It should be noted that the solutions
of a system of linear equations are very well-understood,
and that was of tremendous help in the study of the clus-
tering of the solutions. Other CSP’s, for which we do
not have nearly as much control over the solutions, have
been much more resistant to rigorous analysis; never-
theless, there have been substantial results - see Section
1.2.

The contribution of this paper is to rigorously
determine the precise freezing threshold for a family
of CSP models including k-NAE-SAT and hypergraph
2-colouring. The freezing threshold for k-COL was
determined by the first author in [46]; prior to this
work, k-COL and k-XOR-SAT are the only two common
models for which the freezing threshold was determined
rigorously.

We follow the approach of [46], but we differ mainly
in: (i) Where [46] analyzed the Kempe-core, we need to
analyze the *-core, which was introduced in [13] to prove
the existence of frozen variables in random k-SAT. (ii)
Rather than carrying out the analysis for a single model,
we carry it out simultaneously for a family of models.

Our informal description of freezing described it in
terms of the clusters. At this point, not enough informa-
tion about clustering has been established rigorously to
permit us to define freezing in those terms. (Eg. we do
not know the exact clustering threshold for any interest-
ing model except k-XOR-SAT.) So our formal definition
of a frozen variable avoids the notion of clustering.

Definition 1.1. An �-path of solutions of a CSP F
is a sequence σ0, σ1, ..., σt of solutions, where for each
0 ≤ i ≤ t− 1, σi and σi+1 differ on at most � variables.

Definition 1.2. Given a solution σ of a CSP F , we
say that a variable x is �-frozen with respect to σ if for
every �-path σ = σ0, σ1, ..., σt of solutions of F , we have
σt(x) = σ(x).

In other words, it is not possible to change the value
of v by changing at most � vertices at a time. Roughly
speaking, the solutions in the same cluster as σ are the
solutions that can be reached by a o(n)-path. So x is
o(n)-frozen with respect to σ if x has the same value
in every solution in the same cluster as σ. Thus, this
definition is essentially equivalent to the informal one if
the clustering picture is accurate.

We make critical use of the planted model (sec-
tion 3); [3] permits us to do so. We prove that one
can use the planted model up to a certain density, and
so we want the freezing threshold to be below that den-
sity. It will be if the constraint size k is sufficiently large;
k ≥ 30 will do.

We analyze CSP-models satisfying certain prop-
erties: non-trivial, feasible, symmetric, balance-
dominated, and 1-essential (defined in section 2). The
first four are needed to permit the planted model; the
fifth allows us to focus on the *-core. Given such a CSP
model Υ, we define constants rf (Υ), rp(Υ) and func-
tion λ(Υ, r) below. Our main theorem is that rf (Υ)
is the freezing threshold for Υ and that λ(Υ, r) is the
proportion of frozen vertices. We require the density
to be below rp(Υ) in order to apply the planted model.
This is not just a technicality - if the density is signifi-
cantly above rp(Υ), then it will be above the condensa-
tion threshold and the expressions that we provide will
fail to yield the correct constants.

Given a CSP-model Υ, C(Υ, n,M) is a random
instance of Υ on n variables and withM constraints (see
Section 2). We say that a property holds w.h.p. (with
high probability) if it holds with probability tending to
1 as n→∞.

Theorem 1.1. Consider any non-trivial, feasible, sym-
metric, balance-dominated, and 1-essential CSP-model
Υ with rf (Υ) < rp(Υ). Let σ be a uniformly random
solution of C(Υ, n,M = rn).
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(a) For any rf (Υ) < r < rp(Υ), there exists a constant
0 < β < 1 for which:

(i) w.h.p. there are λ(Υ, r)n+ o(n) variables that
are βn-frozen with respect to σ.

(ii) w.h.p. there are (1−λ(Υ, r))n+o(n) variables
that are not 1-frozen with respect to σ.

(b) For any r < rf (Υ), w.h.p. at most o(n) variables
are 1-frozen with respect to σ.

In other words, in a typical solution: for r > rf ,
a linear number of variables are αn-frozen, while for
r < rf , all but at most o(n) variables are not even 1-
frozen. Furthermore, for r > rf we specify the number
of αn-frozen vertices, up to an additive o(n) term. All
but at most o(n) of the other vertices are not even 1-
frozen.

We remark that for k-COL and k-XOR-SAT, we
have “ω(n)-frozen” rather than “1-frozen”, for some
ω(n) → ∞. Part (b) probably remains true upon
replacing “o(n)” with “zero”. The o(n) terms arises
from a limitation of using the planted model.

For k ≥ 30 we always have rf (Υ) < rp(Υ) (see
Proposition 9.1) and so our theorem applies.

For densities below the freezing threshold, our proof
yields that, in fact, almost all variables can be changed
via a o(n)-path of length 1:

Theorem 1.2. Consider any non-trivial, feasible, sym-
metric, balance-dominated, and 1-essential CSP-model
Υ with with rf (Υ) < rp(Υ) Let σ be a uniformly random
solution of C(Υ, n,M = rn) with r < rf (Υ).

For any ω(n) → ∞, w.h.p. for all but at most
o(n) variables x, there is a solution σ′ such that (i)
σ′(x) �= s(x) and (ii) σ′(x), σ(x) differ on at most ω(n)
variables.

As mentioned above, our theorems apply to k-NAE-
SAT and hypergraph 2-colouring, two of the standard
benchmark models. k-NAE-SAT is a k-CNF boolean
formula which is satisfied if every clause contains at
least one true literal and at least one false literal. For
hypergraph 2-colouring, we are presented with a k-
uniform hypergraph and we need to find a boolean
assignment to the vertices so that no hyperedge contains
only vertices of one sign. Thus, it is equivalent to an
instance of k-NAE-SAT where every literal is signed
positively. See Appendix 8 for a discussion of other
models to which our theorems apply.

Physicists tell us that there is a second freezing
threshold, above which every solution has frozen vari-
ables [51, 53] (as opposed to almost every solution as
in Theorem 1.1). [13] proves that this occurs in k-SAT

for large enough densities (albeit for a weaker notion of
freezing); see Section 1.2. We do not see how to deter-
mine the exact value of that threshold.

We should emphasize that the clustering picture de-
scribed above is very rough. The mathematical analysis
used by statistical physicists to determine the various
thresholds actually studies properties of certain Gibbs
distributions on infinite trees rather than solutions of
random CSP’s. The clustering picture is a common ge-
ometric interpretation and it is not exact. Nevertheless,
there is very strong evidence that something close to
this picture should hold.

1.1 The algorithmic barrier A great deal of
the interest in random CSP’s arises from the long-
established observation that as the densities approach
the satisfiability threshold, the problems appear to be
extremely difficult to solve [18, 44]. Much work has
gone into trying to understand what exactly causes
dense problems to be so algorithmically challenging (eg.
[19, 2, 21, 43, 47]).

It has been suggested (eg. [55, 53, 34, 35, 25, 51])
that, for typical CSP’s, the freezing threshold forms an
algorithmic barrier. For r < rf very simple algorithms
(eg. greedy algorithms with minor backtracking steps)
will w.h.p. find a satisfying solution, but for r > rf
one requires much more sophisticated algorithms (eg.
Survey Propagation). It has been proposed that the
following simple algorithm should succeed for r < rf :

Suppose that Theorem 1.2 were to hold for every
solution σ. We build our CSP one random constraint at
a time, letting Fi denote the CSP with i constraints.
We begin with a solution σ0 for F0 (σ0 can be any
assignment). Then we obtain σi+1 from σi as follows: If
σi does not violate the (i+1)st constaint added, then we
keep σi+1 = σi. Otherwise, we modify σi into another
solution σ′ of Fi in which the values of the variables
in the (i + 1)st constraint are changed so that it is
satisfied; then we set σi+1 = σ′. If Theorem 1.2 holds
for σi, then we can change each of the k variables in
that constraint by changing only o(n) other variables.
Expansion properties of a random CSP imply that these
small changes will (usually) not interfere with each other
and so we can change each of the k variables to whatever
we want. Thus we will eventually end up with a solution
σM to our random CSP FM .

However, Theorem 1.2 does not hold for every
solution, only most of them. This is not just a limit
of our proof techniques - it is believed that it does not
hold for an exponentially small, but positive, proportion
of the solutions. So proving that this algorithm works
would require showing that we never encounter one of
those solutions.
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To see, intuitively, why the onset of freezing may
create algorithmic difficulties, consider near-solutions
- assignments which violate only a small number of
constraints, say o(n) of them. The near-solutions will
also form clusters (because of high energy barriers; see
[3]). Furthermore, almost all clusters of near-solutions
will not contain any solutions. This is because, above
the freezing threshold, almost all solution clusters have
a linear number of frozen variables and so after adding
only o(n) constraints, we will pick a constraint that
violates the frozen variables. This will violate all
solutions in that cluster, thus forming a near-solution
cluster that contains no actual solutions. Of course,
this description is non-rigorous but it provides a good
intuition.

Now consider a greedy algorithm with backtracking.
As it sets its variables, it will approach a near-solution
ρ. At that point, it cannot move to a near-solution in
a different cluster than ρ, without employing a back-
tracking step that changes a linear number of variables.
So the algorithm will need to be sophisticated enough
to approach one of the rare near-solution clusters that
contains solutions.

As described above, there is a second freezing
threshold, above which every cluster has frozen vari-
ables. [55] suggests that this is another algorithmic bar-
rier above which even the sophisticated algorithms fail
to find solutions. One indication is that, empirically, ev-
ery solution σ found by Survey Propogation is such that
no variables are frozen with respect to σ. So somehow,
the algorithm is drawn to those rare unfrozen clusters,
and hence may fail when there are no such clusters.

1.2 Related work The clustering picture for k-
NAE-SAT and hypergraph 2-colouring was analyzed
non-rigorously in [25]. There are hundreds of other pa-
pers from the statistical physics community analyzing
clustering and related matters. Some are listed above;
rather than listing more, we refer the reader to the book
[41].

Achlioptas and Ricci-Tersenghi [13] were the first to
rigorously prove that freezing occurs in a random CSP.
They studied random k-SAT and showed that for k ≥ 8,
for a wide range of edge-densities below the satisfiability
threshold and for every satisfying assignment σ, the vast
majority of variables are 1-frozen w.r.t σ. They did so
by stripping down to the *-core, which inspired us to do
the same here. One difference between their approach
and ours is that the variables of the *-core are 1-frozen
by definition, whereas much of the work in this paper
is devoted to proving that, for our models, they are in
fact Θ(n)-frozen. We expect that our techniques should
be able to prove that the 1-frozen variables established

in [13] are, indeed, Θ(n)-frozen.
[3] proves the asymptotic (in k) density for the

appearance of what they call rigid variables in k-COL,
k-NAE-SAT and hypergraph 2-colouring (and proves
that this is an upper bound for k-SAT). The definition
of rigid is somewhat weaker than frozen, but a simple
modification extends their proof to show the same for
frozen vertices. So [3] provided the asymptotic, in k,
location of the freezing threhold for those models. [46]
provided the exact location of the threshold for k-COL,
when k is sufficiently large.

[4, 3, 48] establish the existence of what they call
cluster-regions for k-SAT, k-COL, k-NAE-SAT and hy-
pergraph 2-colouring. [3] proves that by the time
the density exceeds (1 + ok(1)) times the hypothesized
clustering threshold the solution space w.h.p. shatters
into an exponential number of Θ(n)-separated cluster-
regions, each containing an exponential number of so-
lutions. While these cluster-regions are not shown to
be well-connected, the well-connected property does not
seem to be crucial to the difficulties that clusters pose
for algorithms. So this was a very big step towards
explaining why an algorithmic barrier seems to arise
asymptotically (in k) close to the clustering threshold.

[10, 9] provided the first asymptotically tight lower
bounds on the satisfiability threshold of k-NAE-SAT
and hypergraph 2-colouring, achieving a bound that
is roughly equal to the condensation threshold. [24]
provides an even stronger bound for hypergraph 2-
colouring, extending above the condensation threshold.
[23] provides a remarkably strong bound for k-NAE-
SAT - the difference between their upper and lower
bounds decreases exponentially with k.

2 CSP models

A boolean constraint of arity k consists of k ordered
variables (x1, . . . , xk) together with a boolean function
ϕ : {−1, 1}k → {0, 1}. This function constrains the set
of variables to take values σ = (σ1, . . . , σk) ∈ {−1, 1}k
such that ϕ(σ1, . . . , σk) = 1. We say that the constraint
is satisfied by a boolean assignment σ if it evaluates to
1 on σ.

A constraint satisfaction problem (CSP) is a set of
constraints, where the ath constraint is formed by a
boolean function ϕa over the variables (xi1,a , . . . , xik,a

),
with ij,a ∈ [n]. A CSP, H, defines a boolean function
F (H) : {−1, 1}n → {0, 1} given by

F (H)(σ1, . . . , σn) :=
∏
a

ϕa(σi1,a , . . . , σik,a
).

Given σ ∈ {−1, 1}n, we say that σ is a satisfying
assignment, or solution, of the CSPH if σ satisfies every
constraint of H; i.e. if F (H)(σ) = 1.
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A CSP model is a set Φ of boolean functions,
together with a probability distribution p : Φ → [0, 1]
defined on it (we assume implicitly that the support of
p is Φ). Our random CSPs are:

Definition 2.1. Given a CSP model Υ = (Φ, p),
a random CSP, C(Υ, n,M), is a CSP over the
variables {x1, . . . , xn} consisting of M constraints
{ϕa(xi1,a , . . . , xik,a

) : a = 1, . . . ,M} where the boolean
constraints {ϕa : a = 1, . . . ,M} are drawn indepen-
dently from Φ according to the distribution p, and the
k-tuples {(xi1,a , ..., xik,a

) : a = 1, . . . ,m} are drawn uni-
formly and independently from the set of k-tuples of
{x1, . . . , xn}.

We consider random CSP-models Υ = (Φ, p) with
the following properties.

Definition 2.2.
Non-trivial: There is at least one ϕ ∈ Φ that is not
satisfied by x1 = ... = xk = 1 and at least one ϕ ∈ Φ
that is not satisfied by x1 = ... = xk = −1.
Feasible: For any ϕ ∈ Φ, and every assignment to any
k − 1 of the variables, at least one of the two possible
assignments to the remaining variable will result in ϕ
being satisfied.
Symmetric: For every ϕ ∈ Φ, and for every assign-
ment x, we have ϕ(x) = ϕ(−x), where −x is the as-
signment obtained from x by reversing the assignment
to each variable.
Balance-dominated Consider a random assignment
σ where each variable is independently set to be 1 with
probability q and -1 with probability 1 − q, and let ϕ be
a random constraint from Φ with distribution p. The
probability that σ satisfies ϕ is maximized at q = 1

2 .

Those four properties will allow us to apply the
planted model. ‘Non-trivial’ is a standard property
to require. ‘Feasible’ is also quite natural, although
some common models do not satisfy it. The other two
properties help us to bound the second moment of the
number of solutions, which in turn enables us to use the
planted model.

Our final property allows us to analyze frozen
variables using the *-core.

Definition 2.3. 1-essential: Given a boolean con-
straint ϕ and an assignment σ that satisfies ϕ, we say
that the variable x is essential for (ϕ, σ) if changing the
value of x results in ϕ being unsatisfied. We say that
a set Φ of constraints is 1-essential if for every ϕ ∈ Φ,
and every σ satisfying ϕ, at most one variable is essen-
tial for (ϕ, σ). A CSP-model (Φ, p) is 1-essential if Φ is
1-essential. A CSP is 1-essential if all of its constraints
are 1-essential.

For example: in hypergraph 2-colouring, x is es-
sential iff its value is different from that of every other
variable in φ; in k-XOR-SAT, every variable is essential.
It is easily confirmed that for k ≥ 3: k-SAT, hyper-
graph 2-colouring and k-NAE-SAT are 1-essential, but
k-XOR-SAT is not.

3 The planted model

Consider any CSP-model Υ = (Φ, p). Theorem 1.1
concerns a uniformly random satisfying assignment of
C(Υ, n,M); i.e. a pair (F, σ) drawn from:

Definition 3.1. The uniform model U(Υ, n,M) is
a random pair (F, σ) where F is taken from the
C(Υ, n,M) model and σ is a uniformly random satisfy-
ing solution of F .

The uniform model is very difficult to analyze
directly. So instead we turn to the much more amenable
planted model:

Definition 3.2. The planted model P (Υ, n,M) is a
random pair (F, σ) chosen as follows: Take a uniformly
random assignment σ ∈ {−1,+1}n. Next select a
random F drawn from C(Υ, n,M) conditional on σ
satisfying F .

Remark: Note that we can select F by choosing
M independent constraints. Each time, we choose a
uniformly random k-tuple of k variables, then choose
for those variables a constraint ϕ ∈ Φ with probability
distribution p. If σ does not satisfy the constraint then
reject and choose a new one. Equivalently, we can
choose the k-tuples non-uniformly where the probability
that a particular k-tuple is chosen is proportional to
the probability that, upon choosing ϕ for that set, the
constraint will be satisfied by σ. Then we choose ϕ ∈ Φ
with probability p conditional on σ satisfying ϕ.

It is not hard to see that the uniform and planted
models are not equivalent. In the planted model, a
CSP is selected with probability roughly proportional
to the number of satisfying assignments. Nevertheless,
Achlioptas and Coja-Oghlan [3] proved that, under
certain conditions, one can transfer results about the
planted model to the uniform model when Υ is k-COL,
k-NAE-SAT or hypergraph 2-colouring (also k-SAT,
but under stronger conditions). Montanari, Restrepo
and Tetali [48] extended this to all Υ in a class of
CSP-models, including all models that are non-trivial,
feasible, symmetric, and balance-dominated.

For each non-trivial, feasible, symmetric and
balance-dominated CSP-model Υ we define (in Ap-
pendix 8) a constant rp(Υ), which is the highest density
for which we can use the planted model. The following
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key tool essentially follows from Theorem B.3 of [48],
except that they do not explicitly mention rp(Υ), in-
stead giving an implicit lower bound under appropriate
conditions. It was first proven in [3] for NAE-SAT, hy-
pergraph 2-COL and a few other models.

Lemma 3.1. Consider any non-trivial, feasible, sym-
metric, and balance-dominated CSP-model Υ. For ev-
ery r < rp(Υ), there is a function g(n) = o(n) such
that: Let E be any property of pairs (F, σ) where σ is a
satisfying solution of F . If

Pr(P (Υ, n,M = rn) has E) > 1− e−g(n),

then

Pr(U(Υ, n,M = rn) has E) > 1− o(1).

In Appendix 8, we prove that if Υ is also 1-essential,
then for k ≥ 30, we have rp(Υ) > rf (Υ) and so Theo-
rem 1.1 is non-trivial. In fact, rp(Υ) = Θ( k

ln k )rf (Υ).
The bound k ≥ 30 can be lowered, and for some specific
models Υ it can be lowered significantly. For example,
for k-NAE-SAT and hypergraph 2-colouring, one can
probably prove that k ≥ 6 will do.

4 The *-core

The *-core was introduced in [13] to study frozen
variables in random k-SAT.

Fix a satisfying assignment σ, and consider a vari-
able x. Suppose that there are no constraints ϕ such
that x is essential for (ϕ, σ). Then, by the definition
of essential, we can change x and still have a satisfy-
ing assignment. So x is not frozen. This inspires the
following:

Definition 4.1. Consider a CSP F with a satisfying
assignment σ. The *-core of (F, σ) is the sub-CSP
formed as follows:
Iteratively remove every variable x such that for every
constraint ϕ: x is not essential for (ϕ, σ). When
we remove a variable, we also remove all constraints
containing that variable.

Note that the order in which variables are deleted will
not affect the outcome of the iterative procedure. So
the *-core is well-defined, albeit possibly empty.

As described above, it is clear that the first variable
removed is not frozen. Expansion properties of a
random CSP - in particular the fact that it is locally
tree-like - imply that almost every variable removed is
not frozen. Furthermore, we will prove that if the model
is 1-essential then almost all variables that remain in
the *-core are frozen. Having proven those two key

results, Theorem 1.1 follows from an analysis of the *-
core process.

Now suppose that our CSP-model is 1-essential. A
key observation is that the *-core depends only on the
constraints that have essential variables. I.e., if we first
remove all constraints with no essential variables from
the CSP and then apply the *-core process, the set of
variables in the resultant *-core will not change.

Definition 4.2. Given a 1-essential CSP, F , and a
satisfying solution σ, we define the hypergraph Γ(F, σ)
as follows: The vertices are the variables of F and the
variables of each constraint of F form a hyperedge, if
that constraint has an essential variable. That essential
variable is called the essential vertex of the hyperedge.

Note that we can find the *-core of (F, σ) by repeat-
edly deleting from Γ(F, σ) vertices that are not essential
in any hyperedges, along with all hyperedges containing
the deleted vertices. The resulting hypergraph is called
the *-core of Γ(F, σ).

The precise model for the random hypergraph
Γ(F, σ) varies with Υ (see Appendix 10). However, the
size of the *-core as a function of the number of hyper-
edges is the same for all such models.

We define:

αk := inf
x>0

x

(1− e−x)k−1
.

Also, for α > αk, let xk(α) be the maximum value
of x ≥ 0 such that x

(1−e−x)k−1 = α and set

ρk(α) = 1− e−xk(α).

In the full version of this paper, we prove

Lemma 4.1. Consider any 1-essential CSP-model Υ =
(Φ, p) of arity k, and a random CSP, F , drawn from
P (Υ, n,M = rn). Suppose Γ(F, σ) has αn + o(n)
hyperedges. For any g(n) = o(n), with probability at
least 1− e−g(n):

(a) If α > αk then the *-core of Γ(F, σ) has
ρk(α)n+ o(n) vertices.

(b) If α < αk then the *-core of Γ(F, σ) has o(n)
vertices.

This allows us to analyze our family of models
simultaneously by working directly with the *-core of
Γ(F, σ). We prove that almost all vertices of the *-core
are Θ(n)-frozen variables in F and almost all vertices
outside of the *-core are not even 1-frozen in F .

In Appendix 9, we define for any 1-essential CSP-
model Υ = (Φ, p), a constant ξ(Υ) > 0 and prove:
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Lemma 4.2. For any g(n) = o(n) and r > 0, with
probability at least 1− e−g(n), the number of constraints
in P (Υ, n,M = rn) that have an essential variable is
ξ(Υ)rn+ o(n).

Lemmas 4.1, 4.2 yield Theorem 1.1 with:

rf (Υ) = αk/ξ(Υ); λ(Υ, r) = ρk(ξ(Υ)r).

In Appendix 10, we describe the models that we use
to analyze Γ(F, σ) and the *-core of Γ(F, σ).

5 Unfrozen variables outside of the *-core

Let x be a vertex of Γ(F, σ) which is not in the *-core of
Γ(F, σ). We will consider how x can be removed during
the peeling process used to find the *-core of Γ(F, σ).
More specifically, we consider a sequence of vertices,
culminating in x, which could be removed in sequence
by the peeling process.

Definition 5.1. A peeling chain for a vertex x ∈
Γ(F, σ) is a sequence of vertices x1, ..., x� = x such
that each xi is not essential for any hyperedges in the
hypergraph remaining after removing x1, ..., xi−1 from
Γ(F, σ). The depth of the chain is the maximum
distance from one of the vertices to x. The *-depth
of x is the minimum depth over all peeling chains for x.

In the full version of this paper, we prove:

Lemma 5.1. Consider any non-trivial, feasible, sym-
metric, balance-dominated, and 1-essential CSP-model
Υ. Let (F, σ) be drawn from the planted model
P (Υ, n,M = rn) where r �= rf (Υ). For any ε > 0,
there exists constant L such that: For all g(n) = o(n),
the probability that at least εn vertices of Γ(F, σ) that are
not in the *-core of Γ(F, σ) have *-depth greater than L
is less than e−g(n).

This is enough to prove that all but o(n) variables
outside the *-core are 1-frozen as follows:

Proof outline of Theorem 1.1(a.ii,b):. Consider any ε >
0. If (F, σ) is drawn from the planted model then, by
Lemma 5.1, Γ(F, σ) has fewer than εn vertices of *-
depth greater than L with probability at least 1−e−g(n).
So for r < rp(Υ), Lemma 3.1 yields that the same is true
w.h.p. when (F, σ) is drawn from the uniform model.

Consider any vertex x of *-depth at most L. Con-
sider a peeling chain for x of depth at most L and let
W be the set of all hyperedges that contain at least one
vertex of the peeling chain. If no hyperedges of W form
a cycle, then it is easy to see that we can change all of
the variables in the peeling chain, one-at-a-time and still

have a satisfying assignment for F . Indeed, this follows
from a straightforward induction on L. Therefore, the
variable x is not 1-frozen. The case where W contains
a cycle is rare enough to be negligible. So for all ε > 0
there are fewer than εn variables outside of the *-core
that are not 1-frozen, as required. �

This argument also leads to:

Proof outline of Theorem 1.1:. This theorem follows as
above, by adding the observation that with sufficiently
high probability, almost all vertices outside the *-core
have a peeling chain of size O(1). We can change
the corresponding variable by changing a subset of the
entire peeling chain.

For full proofs, see the full version of this paper.

6 Frozen variables in the *-core

Most of the work in this paper is in proving that almost
all vertices in the *-core of Γ(F, σ) are Θ(n)-frozen. To
do so, we first study the structure of sets of variables
that can be changed to obtain a new solution. Note
that if changing the value of every variable of S yields a
solution, then every constraint whose essential variable
is in S must contain at least one other variable in S.
This leads us to define:

Definition 6.1. A flippable set of the *-core of Γ(F, σ)
is a set of vertices S such that for every x ∈ S and every
*-core hyperedge f in which x is essential, S contains
another vertex of f .

For every vertex x ∈ S, since x is in the *-core,
there will be at least one such hyperedge f .

Note: if S is a flippable set in Γ(F, σ), then changing
the variables of F corresponding to S will not necessarily
yield another solution; this will depend on the actual
constraints of F . But it is easily seen that the converse
holds:

Proposition 6.1. If σ, σ′ are two solutions to a 1-
essential CSP, F , then the set of *-core variables on
which they differ form a flippable set in Γ(F, σ).

Proof. Let S be the set of variables in the *-core of
(F, σ) on which σ, σ′ differ. Suppose that S does not
form a flippable set in Γ(F, σ). Then there is a variable
x ∈ S and a *-core hyperedge e in which x is essential,
such that e contains no other members of S. The
hyperedge e corresponds to a constraint in F . In that
constraint, the solutions σ, σ′ agree on all variables but
x, which contradicts the fact that x is essential for e.

We prove that for some φ′(n) = o(n) and constant
ζ > 0, with sufficiently high probabilty, there are no
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flippable sets of size φ′(n) < a < ζn. This will
be enough to prove that at most o(n) vertices lie in
flippable sets, which in turn will be enough to show
that almost all of the *-core is frozen.

We apply the first moment method. Unfortunately,
we cannot apply it directly to the number of flippable
sets because the existence of one flippable set S typically
leads to the existence of an exponential number of
flippable sets formed by adding to S vertices x such
that (i) x is essential in exactly one hyperedge, and
(ii) that hyperedge contains a non-essential vertex in S.
So instead we focus on something that we call weakly
flippable sets, which do not contain such vertices x.
Roughly speaking: every flippable set can be formed
from a weakly flippable set by repeatedly adding vertices
x in that manner. We prove that with sufficently high
probability:

(a) There are no weakly flippable sets of size
φ(n) < a < ζn.

(b) There are no weakly flippable sets of size at most
φ(n) which extend to a flippable set of size greater
than φ′(n).

This establishes our bound on the sizes of flippable sets.
(This is not quite true - we also need to consider cyclic
sets - but it provides a good intuition.)

Let H1 denote the vertices that are essential in
exactly one hyperedge. Define a one-path to be a
sequence of vertices x1, ..., xt+1 such that for each
1 ≤ i ≤ t: xi ∈ H1 and xi+1 is in the hyperedge in which
xi is essential. Note that if xt+1 is in a flippable set S,
then we can add the entire one-path to S and it will
still be flippable. This ends up implying that if we have
a proliferation of long one-paths, then we would not be
able to prove (b). It turns out that a proliferation of
long one-paths would also prevent us from proving (a).

Consider a vertex x ∈ H1 and the edge f in which
x is essential. Intutively, the expected number of other
members of H1 that are in f is (k − 1)|H1| divided by
the size of the *-core. We prove that this ratio is less
than 1. This implies that one-paths do not “branch”
and so we do not tend to get many long one-paths. So
our bound on this ratio plays a key role in establishing
both (a) and (b).

This is just an intuition. In fact, one-paths are not
explicitly mentioned anywhere in the proofs. For all the
details, see the full version of this paper.

7 Further Challenges

Of course, one ongoing challenge is to continue to
rigorously establish parts of the clustering picture. By
now, it is clear that in order to establish satisfiability

thresholds or understand the algorithmic challenges for
problems with densities approaching that threshold, we
will probably need a strong understanding of clustering.

Another challenge is to try to establish whether the
freezing threshold is, indeed, an algorithmic barrier.
For several CSP-models, we now know the precise
location of that threshold, and we have a very good
understanding of how it arises and which variables are
frozen. Perhaps we can use that understanding to prove
that a simple algorithm works for all densities up to
that threshold and/or establish that frozen clusters will
indeed neccesitate more sophistication.

Another challenge is to determine the freezing
threshold for a wider variety of CSP-models. These
techniques rely crucially on using the planted model;
at this point there is no known way to get to the exact
threshold without it. This prevents us from extend-
ing our results to k-SAT and many other models as the
planted model does not work nearly well enough, mainly
because the number of solutions is not sufficiently con-
centrated. A more important challenge would be to
devise a better means to analyze random solutions to
CSP’s drawn from those models.
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Appendix

8 The transfer theorem

Let us consider a CSP-model Υ = (Φ, p). Let us re-
call the properties from Definition 2.2. Given a boolean
function ϕ ∈ Φ, we denote by Sϕ the set of satisfying as-
signments of ϕ and also we define Iϕ := {−1, 1}k \ Sϕ.

Now, let ϕ(x) =
∑

Q⊆{−1,1}k

(
ϕQ

∏
i∈Q xi

)
be its

Fourier expansion. Such expansion is unique with

ϕQ :=
∑

x∈{−1,1}k

(
ϕ(x)

∏
i∈Q xi

)
. In particular, it is the

case that ϕ∅ =
|Sϕ|
2k

=
∑

Q⊆{−1,1}k

ϕ2
Q. Moreover, if ϕ

is symmetric, we have that ϕ{i} = 0 (In fact, ϕQ = 0
whenever |Q| is odd). Now, we define the polynomial
pϕ(θ) as follows,

pϕ(θ) :=
∑

Q⊆{−1,1}k

(ϕQ/ϕ∅)2θ|Q|

Also, we define the binary entropy function H(θ) as

H(θ) := −1 + θ

2
ln(1 + θ)− 1− θ

2
ln(1− θ)

Finally, we define

rp(Υ) := inf
θ∈(0,1)

−H(θ)∑
ϕ∈Φ pϕ ln(pϕ(θ))

.

We will now prove Lemma 3.1, which we restate:
Lemma 3.1 Consider any non-trivial, feasible, sym-
metric, and balance-dominated CSP-model Υ. For ev-
ery r < rp(Υ), there is a function g(n) = o(n) such
that: Let E be any property of pairs (F, σ) where σ is a
satisfying solution of F . If

Pr(P (Υ, n,M = rn) has E) > 1− e−g(n),

then

Pr(U(Υ, n,M = rn) has E) > 1− o(1).

The proof follows the argument employed in [48] to
prove Theorem B.3, which followed the same spirit of
similar results in [3].

Proof. In what follows, we will take expectations over a
random ϕ chosen from Φ with distribution p. Thus, for
a variable X(ϕ), we have Exp(X) =

∑
ϕ∈Φ p(ϕ)X(ϕ).

Let ξϕ be the number of clauses with constraint ϕ in
the random CSP H drawn from Υ. Let γ be a fixed
constant in (0, 1/2) and let F be the event ‘For all
ϕ ∈ Φ, |ξϕ − αpϕn| < n1/2+γ ’. So, F holds w.h.p.

We say that a solution σ is balanced if the number
of variables assigned +1 is either �n2 	 or 
n2 �. Let Zb

be the number of balanced solutions of H, let Z be the
number of solutions of H and let Zb(θ) be the number
of pairs of balanced solutions x(1),x(2) with discrepancy

θ, that is, such that 1
n

∑n
i=1 x

(1)
i x

(2)
i = θ. Now,

Exp[Z2
b I(F)]

(Exp[ZbI(F)])2 =
∑
θ∈Un

Exp[Zb(θ)I(F)]
(Exp[ZbI(F)])2

where Un := {i/n : i = −n, . . . , n}. From
lemma A.2 in [48], then it is the case that, if
Φ(θ) = H(θ) + αExp[ln(pϕ(θ))]

Exp[Zb(θ)I(F)]
(Exp[ZbI(F)])2 ≤ Cn−1/2 exp (n(Φ(θ) + o(1)))

where C does not depends on θ (neither the o(1) term).
Now, if α < rp(Υ), it is the case that

(8.1) H(θ) + αExp[ln(pϕ(θ))] < 0 for all θ ∈ (0, 1).

On the other hand, since Υ is symmetric,

Φ(θ) =

⎛
⎝−1

2
+ αExp

⎡
⎣ ∑
|Q|=2

(ϕQ/ϕ∅)2

⎤
⎦
⎞
⎠ θ2 +O(θ4).

Now, since

lim
θ→0

−H(θ)

Exp[ln(pϕ(θ))]
=

1/2

Exp
[∑

|Q|=2(ϕQ/ϕ∅)2
] > α,

then it is the case H(θ) + αExp[ln(pϕ(θ))] < −cθ2 for
some c > 0 and θ close enough to 0. Combining this
fact with eq. (8.1), we have that for some c′ > 0,
(8.2)

H(θ) + αExp[ln(pϕ(θ))] < −c′θ2 for all θ ∈ (0, 1).

1315 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Now,

Exp[Z2
b I(F)]

(Exp[ZbI(F)])2 ≤ C

n1/2

∑
θ∈Un

exp(−c′n(θ2 + o(1)))

≤ Cn1/2

∫ ∞

−∞
exp(−c′n(θ2 + o(1)))

And the last quantity is bounded by a constant C0 (not
depending on n). This implies, by the Paley-Zygmund
inequality, that for every ε > 0 and all n ≥ n0 it is the
case that Pr(Zb > e−nεExp[Zb]) ≥ C0/2.

Now, because Υ is balance-dominated, we have that
Exp[Z] ≤ nExp[Zb]. Therefore, for n large enough, we
have that

Pr(Z > e−nεExp[Z]) ≥ Pr(Zb > ne−nεExp[Zb])

≥ Pr(Zb ≥ e−n(ε/2)Exp[Zb])

≥ C0/2.

On the other hand, it is easy to see that Exp[Z] is
exponential in n for α < rp(Υ) (Indeed Exp[Z] is
exponential for α < rsat(Υ) := ln 2

Expϕ[ln(1+|Iϕ|/|Sϕ|)] =

−H(1)

Exp[ln(pϕ(1))]
). Now, let us recall from Appendix C in

[48], that the event ‘Z > Bn’, where B > 1, has a sharp
threshold in the clauses to variables ratio. Thus, the
event ‘Z > e−nεExp[Z]’ has a sharp threshold in the
parameter α. Therefore, necessarily, it is the case that
Z > e−nεExp[Z] w.h.p.. This implies therefore, that
for some function g(n) of order o(n), it is the case that
w.h.p.,

(8.3) ln(Z) > ln(Exp(Z))− g(n).

After this equation is established now the lemma fol-
lows. For instance, from Theorem B.3 in [48].

Now, recall our other property:
1-essential: Given a boolean constraint ϕ and an

assignment σ that satisfies ϕ, we say that the variable x
is essential for (ϕ, σ) if changing the value of x results in
ϕ being unsatisfied. We say that a set Φ of constraints
is 1-essential if for every ϕ ∈ Φ, and every σ satisfying
ϕ, at most one variable is essential for (ϕ, σ). A CSP-
model (Φ, p) is 1-essential if Φ is 1-essential.

An easy description of a feasible, 1-essential con-
straint is the following: ϕ is feasible and 1-essential iff
the Hamming distance between any pair of assignments
in Iϕ is greater than 2. This implies in particular that

|Iϕ| ≤ 2k

(k2)+1
and ϕ{i,j} = − 1

2k

∑
x∈Iϕ

xixj . This allows

us to prove a more concrete lower bound on the transfer
threshold rp(Υ) that we will use in the next section to
establish that rp(Υ) is above the freezing threshold for
large enough k.

Theorem 8.1. Consider any non-trivial, feasible,
symmetric, balance-dominated and 1-essential CSP-
model Υ. It is the case that

rp(Υ) ≥ 0.25

Ωp(Υ)
,

where
Ωp(Υ) := Expϕ[|Iϕ|/|Sϕ|].

Proof. Since every constraint ϕ ∈ Φ is feasible and 1-
essential, we have that

∑
{i,j}

(
ϕ{i,j}
ϕ∅

)2

=
∑
{i,j}

(∑
x∈Iϕ

xixj

)2

|Sϕ|2

≤
(
k

2

)( |Iϕ|
|Sϕ|

)2

Therefore, since

∑
|Q|≥4

ϕ2
Qθ

|Q| ≤
∑
|Q|≥4

ϕ2
Qθ

4

≤
⎛
⎝ ∑

Q⊆{−1,1}k

ϕ2
Q − ϕ2

∅

⎞
⎠ θ4

= ϕ∅(1− ϕ∅)θ4,

we have that

pϕ(θ) ≤ 1 +

(
k

2

)( |Iϕ|
|Sϕ|

)2

θ2 +
|Iϕ|
|Sϕ|θ

4

And, since |Iϕ| ≤ 2k

(k2)+1
, and therefore

(
k
2

) ( |Iϕ|
|Sϕ|

)2

≤ |Iϕ|
|Sϕ| , we get that

pϕ(θ) ≤ 1 + 2
|Iϕ|
|Sϕ|θ

2

Thus,
Expϕ[ln(pϕ(θ))] ≤ 2θ2Ωp(Υ)

Now, we finally conclude that

rp(Υ) = inf
θ∈(0,1)

−H(θ)

Expϕ[ln(pϕ(θ))]

≥ 0.5

Ωp(Υ)
inf

θ∈(0,1)

−H(θ)

θ2
=

0.25

Ωp(Υ)
.

We close this section by discussing the CSP-models
that satisfy our five conditions: non-trivial, feasible,
symmetric, balance-dominated, and 1-essential.

Our properties are rich enough to permit a large
class of CSP-models beyond hypergraph 2-coloring and
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k-NAE-SAT. For example, we can construct a model in
the following way:

Represent the assignments in {−1,+1}k as the k-
dimensional hypercube Hk, and so two assignments are
adjacent if they differ on exactly one variable. Let Lε

denote the vertices x ∈ Hk with
∑

xk > εk. Consider
any subset I ⊆ Lε containing no two vertices of distance
at most two. We use −I to denote the subset formed
by switching the sign of every vertex in I, and set
J := I ∪ −I to be the assignments which violate our
constraint ϕJ . I.e., ϕJ(x) := 1 iff x /∈ J .

Now consider any set Φ of constraints of this form
in which at least one is non-trivial (i.e. has (1, 1, ..., 1) ∈
J). Let Υ = (Φ, p) for any p (such that supp(p) = Φ).
For any k large enough in terms of ε, Φ satisfies our
five properties. For instance, hypergraph 2-coloring is
formed in this way with I := (1, ...1).

Given a constraint ϕ and some s ∈ {−1,+1}k,
we define the constraint ϕs as ϕs(x1, ..., xk) =
ϕ(s1x1, ..., skxk). We can allow ε = 0 and drop the
condition that k must be large if (a) no two vertices of
J are within distance 2, and (b) for every ϕ ∈ Φ and ev-
ery s ∈ {−1,+1}k, we have ϕs ∈ Φ and p(ϕs) = p(ϕ).
For instance, k-NAE-SAT is formed in this way with
I := (1, ..., 1).

9 Essential hyperedges

Consider any nontrivial, feasible, symmetric 1-essential
CSP-model Υ = (Φ, p). We will draw (F, σ) from
the planted model P (Υ, n,M). We begin by taking a
random assignment σ for the variables x1, ..., xn and
note that |Λ+|, |Λ−| = 1

2n + o(n) with probability at

least 1− e−g(n), for any g(n) = o(n). So we can assume
that this condition holds.

In what follows, we will take expectations over a
random ϕ chosen from Φ with distribution p. Thus, for
a variable X(ϕ), we have Exp(X) =

∑
ϕ∈Φ p(ϕ)X(ϕ).

For every ϕ ∈ Φ, recall from the previous section
that Sϕ is the set of assigments in {−1,+1}k that satisfy
ϕ and Iϕ = Sϕ is the set that do not satisfy ϕ. We
define Se

ϕ ⊆ Sϕ to be the set of assignments that satisfy
ϕ and for which ϕ has an essential variable. Noting that
switching the essential variable of an assignment in Se

ϕ

yields an assignment in Iϕ, and using the fact that Υ is
feasible, it is easy to see that |Se

ϕ| = k|Iϕ|.
Since |Λ+|, |Λ−| = 1

2n + o(n), it follows that when
picking a constraint in the planted model, we choose ϕ
with probability proportional to p(ϕ)|Sϕ|+ o(1). Thus,

defining Ωf :=
Exp|Iϕ|
Exp|Sϕ| , the probability that ϕ has an

essential variable is:

ξ(Υ) = kΩf + o(1).

So the number of constraints that have an essen-
tial variable is distributed as the binomial BIN(M =
rn, ξ(Υ)). Concentration of the binomial variable im-
plies Lemma 4.2.

Now recall the type of ϕ, as defined in Section 10.
For a constraint ϕ ∈ Φ, define Iϕ(a, b) := {x ∈
Iϕ : x has a 1′s and b − 1′s} then the clause ϕ has
exactly (b+ 1)|Iϕ(a, b+ 1)| assignments of type (1; a, b)
and (a + 1)|Iϕ(a + 1, b)| assignments of type (−1; a, b).
Therefore, when picking a constraint in the planted
model, if we condition on the event that it has an
essential variable, then the conditional probability that
it has type τ = (1; a, b) is

γτ =
(b+ 1)Exp[|Iϕ(a, b+ 1)|]

kExp[|Iϕ|] + o(1)

and to be of type τ = (−1; a, b) is

γτ =
(a+ 1)Exp[|Iϕ(a+ 1, b)|]

kExp[|Iϕ|] + o(1)

Since Υ is symmetric, ϕ(x) = ϕ(−x) for every assign-
ment x. It follows that |Iϕ(a, b)| = |Iϕ(b, a)| and there-
fore γτ=(1;a,b) = γτ=(−1;b,a) + o(1). So, noting that we
can exchange a, b in the following definition:

γ+ :=
∑

τ=(1,a,b)

γτ , γ− :=
∑

τ=(−1,a,b)

γτ ,

we have γ+ = γ− = 1
2 + o(1). In other words:

Lemma 9.1. When we choose a random clause for the
planted model, and condition on it having an essential
variable: the probability that the essential variable is in
Λ+ is equal to the probability that it is in Λ− plus o(1).

We close this section by showing that rf (Υ) <
rp(Υ) for sufficiently large k.

Proposition 9.1. For any nontrivial, symmetric, fea-
sible, balance-dominated, 1 essential CSP model Υ of
arity k:

(a) For every k ≥ 27, rp(Υ) > rf (Υ).

(b) Asymptotically in k,
rf (Υ)
rp(Υ) � ln k

k .

Proof. Notice first that

Ωp = Exp

[ |Iϕ|
|Sϕ|

]
≤ Exp[|Iϕ|]

2k(1− 1

(k2)+1
)

≤ Exp[|Iϕ|]
(1− 1

(k2)+1
)Exp[|Sϕ|]

=
Ωf

(1− 1

(k2)+1
)
.
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Notice also that αk ≤ 2 ln(k)
(1−1/k2)k−1 . Therefore, since

2 ln(k)

k(1− 1/k2)k−1
≤ (1/4)(1− 1(

k
2

)
+ 1

)

for k ≥ 27, then

rf (Υ) ≤ 2 ln(k)

Ωfk(1− 1/k2)k−1
≤ (1/4)

Ωp
≤ rp(Υ),

by Theorem 8.1. Then, part (a) follows. To prove part
(b) we use the previous inequality, so that

rf (Υ)

rp(Υ)
≤ 8 ln(k)

k(1− 1

(k2)+1
)(1− 1/k2)k−1

∼ 8 ln(k)/k

10 Our hypergraph models

Consider any 1-essential CSP, F , and any solution σ.
The vertices of Γ(F, σ) are partitioned into two sets

Λ+,Λ− containing those variables which are assigned
+1,−1 respectively under σ.

Definition 10.1. For each hyperedge e ∈ Γ(F, σ): Let
a be the number of non-essential vertices of e in Λ+ and
let b be the number of non-essential vertices of e in Λ−.
The type of e is defined to be:

• (1, a, b) if the essential vertex vertex of e is in Λ+;

• (−1, a, b), if the essential vertex vertex of e is in
Λ−.

The type of a constraint of (F, σ) with an essential
vertex, is the type of the corresponding hyperedge in
Γ(F, σ).

Now consider a nontrivial, feasible, symmetric,
balance-dominated, 1-essential CSP-model Υ and
choose a random (F, σ) from the planted model
P (Υ, n,M). Recalling the Remark following Def-
inition 3.2, we can selected the constraints of F
independently. Given the partition Λ+,Λ−, and a type
τ , we let w(τ) = w(τ,Λ+,Λ−) denote the probability
that a selected constraint has type τ , conditional on
it having an essential vertex. (See Appendix 9 for
further discussion.) Note that w(τ) depends only
on Υ, |Λ+|, |Λ−|. Note further that, conditional on a
hyperedge e having type τ , every choice of the vertices
of e which is consistent with τ is equally likely. Thus,
when choosing Γ(F, σ) we can choose the type of a
hyperedge first and then its vertices. This leads us to:

Model A:

1. Partition the vertices into Λ+,Λ− uniformly at
random.

2. For i = 1 to M , choose the ith hyperedge ei as
follows:

(a) Choose the type (s, a, b) of ei (where s ∈
{+1,−1}), where type τ is chosen with prob-
ability w(τ).

(b) Choose the essential vertex for ei uniformly
from the appropriate set, Λ+ or Λ−, according
to s.

(c) Choose a vertices uniformly from Λ+ and b
vertices uniformly from Λ−. These are the
non-essential vertices of ei.

In some cases, it will be useful to fix the essential
vertex of every hyperedge, along with the assignment
σ, and then choose our planted hypergraph. In this
case, for s ∈ {−1,+1}, we use ws(τ) = w(τ,Λ+,Λ−)
denote the probability that a selected constraint has
type τ , conditional on it having an essential vertex in
Λs. We can use the following model.

The Essential Model:

1. We are given a partition of the vertices into Λ+,Λ−.

2. For i = 1 to M , we are given the essential vertex
of ei. We choose the rest of ei as follows:

(a) Choose the type (s, a, b) of ei, where s is
already determined and type τ is chosen with
probability ws(τ).

(b) Choose a vertices uniformly from Λ+ and b
vertices uniformly from Λ−. These are the
non-essential vertices of ei.

The essential model is useful in analyzing the *-core
of Γ(F, σ).
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