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A fundamental problem associated with the task of network reconstruction from dynamical or behavioral
data consists in determining the most appropriate model complexity in a manner that prevents overfitting
and produces an inferred network with a statistically justifiable number of edges and their weight
distribution. The status quo in this context is based on L1 regularization combined with cross-validation.
However, besides its high computational cost, this commonplace approach unnecessarily ties the
promotion of sparsity, i.e., abundance of zero weights, with weight “shrinkage.” This combination forces
a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in
substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric
regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not
rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length
principle, and uncovers the weight distribution that allows for the most compression of the data, thus
avoiding overfitting without requiring cross-validation. The latter property renders our approach
substantially faster and simpler to employ, as it requires a single fit to the complete data, instead of
many fits for multiple data splits and choice of regularization parameter. As a result, we have a principled
and efficient inference scheme that can be used with a large variety of generative models, without requiring
the number of reconstructed edges and their weight distribution to be known in advance. In a series of
examples, we also demonstrate that our scheme yields systematically increased accuracy in the
reconstruction of both artificial and empirical networks. We highlight the use of our method with the
reconstruction of interaction networks between microbial communities from large-scale abundance
samples involving on the order of 104–105 species and demonstrate how the inferred model can be
used to predict the outcome of potential interventions and tipping points in the system.
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I. INTRODUCTION

Network reconstruction is the task of determining the
unseen interactions between elements of a complex system
when only data on their behavior are available—usually
consisting of time-series or independent samples of their
states. This task is required when it is either too difficult,
costly, or simply impossible to determine the individual
pairwise interactions via direct measurements. This is a
common situation when we want to determine the associ-
ations between species only from their co-occurrence in
population samples [1], the financial market dependencies

from the fluctuation of stock prices [2], protein structures
from observed amino-acid contact maps [3,4], gene regu-
latory networks from expression data [5–7], neural con-
nectivity from functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), micro electrode
array (MEA), or calcium fluorescence imaging data [8–10],
and epidemic contact tracing from infections [11], among
many other scenarios.
In this work we frame network reconstruction as a

statistical inference problem [12], where we assume that
the observed data have been sampled from a generative
statistical model that has a weighted network as part of its set
of parameters. In this case, the reconstruction task consists of
estimating these parameters from data. This generative
framing contrasts with other inferential approaches based
on, e.g., Granger causality [13] and transfer entropy [14] in
important ways: (1) It allows for a principled framework that
does not rely on ad hoc and often arbitrary confidence
thresholds, (2) can reliably distinguish between direct and
indirect interactions, to the extent that this information is
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obtainable from the data, (3) enables uncertainty quantifi-
cation and comparison between alternative generative
hypotheses, and (4) produces a generative model as a final
result, which can be used not only for interpretation, but also
to predict the outcomes of interventions and alternative
conditions previously unseen in the data. These same
features make this type of approach preferable also to
noninferential heuristics such as correlation thresholding
[15,16], known to suffer from substantial biases [12,17].
A central obstacle to the effective implementation of

inferential network reconstruction is the need for statistical
regularization: A network with N nodes can in principle
have up to OðN2Þ edges, and elementary maximum like-
lihood approaches do not allow us to distinguish between
the nonexistence of an edge and the existence of an edgewith
a low weight magnitude, resulting in the inference of
maximally dense networks, even when the true underlying
network is sparse, i.e., its number of edges is far smaller than
the number of possible edges. In this case, unregularized
maximum likelihood would massively overfit, incorporating
a substantial amount of statistical noise in its description, and
thus would not meaningfully represent the true underlying
system.Because of this, a robust inferential framework needs
to include the ability to determine themost appropriatemodel
complexity from data, which in this context means the right
number of edges and their weight distribution, in a manner
that does not overfit.
Perhaps the most common strategy to avoid overfitting is

L1 regularization [18], where a penalty proportional to the
sum of the weight magnitudes is subtracted from the
likelihood, multiplied by a regularization parameter. This
approach is a standard technique in statistics and machine
learning, perhaps most well known as the central ingredient
of LASSO regression [19], and has been used extensively
as well for network reconstruction using multivariate
Gaussian models [20–23], most famously as part of the
GLASSO algorithm [24], but also for the inverse Ising model
[25–31], among other problem instances.
The L1 regularization scheme has certain attractive

properties: (1) It is easy to implement, (2) it results in
the existence of exact zeros for the reconstructed weights,
and (3) the L1 penalty function is convex. When combined
with a likelihood function that is also convex (such as the
one for the multivariate Gaussian [24] or the Ising model
[29]), the latter property means that this scheme yields an
overall convex objective function, thus enabling the use of
very efficient algorithms available only for this simpler
class of optimization problems. On the other hand, this
scheme also has well-known significant limitations [18]:
(1) The regularization parameter, which determines the
final sparsity of the reconstruction, needs to be provided
prior to inference, requiring the desired level of sparsity to
be known beforehand, and (2) it causes “shrinkage” of the
weights, i.e., the weights of the nonzero edges also decrease
in magnitude, introducing a bias. The first disadvantage
undermines this regularization approach in a central way,

since it requires as an inputwhat it should in fact provide as
an output: the network sparsity. Because of this, the scheme
is often used together with cross-validation [24,32,33] to
determine the optimal value of the regularization parameter.
But not only does this significantly increase the computa-
tional cost of the approach, but in the end also typically
results in substantial overfitting, as we demonstrate in
this work.
Other regularization approaches also have been proposed

for network reconstruction, such as δ thresholding [34],
decimation [35,36], EBIC [37], adaptive LASSO [38–40],
MCP [41], SCAD [42], weight integration [43], alternative
priors [44–46] with fixed number of edges [47], as well as
spike-and-slab [48,49] and horseshoe [50–52] shapes.
These alternatives address some limitations of L1, in
particular its detrimental shrinkage properties, but they
all either still require cross-validation, rely on heuristics to
determine the resulting sparsity, and/or make strong
assumptions on the shape of the weight distribution.
To the best of our knowledge, there is currently no

regularization scheme that is simultaneously (1) principled,
(2) effective at preventing overfitting, (3) algorithmically
efficient, and (4) nonparametric, in particular without
requiring the network sparsity to be known in advance.
In this work we fill this gap by developing a Bayesian

regularization scheme that follows the minimum descrip-
tion length (MDL) principle [53,54] and seeks to find the
optimal sparsity and weight distribution of the edges in a
manner that most compresses the observed data. Instead of
weight shrinkage, our approach relies on weight quantiza-
tion as a means of quantifying the information necessary to
encode the inferred weights to a sufficient numerical
precision, and also makes no strong assumption on the
shape of the weight distribution, unlike L1 and most
Bayesian approaches previously proposed for this problem
[43–45,47–52]. The resulting approach does not require
cross-validation and is also algorithmically efficient, espe-
cially when combined with a recent algorithm that can find
the best potential edge candidates to be updated in sub-
quadratic time and in parallel [55], making it applicable for
the reconstruction of networkswith hundreds of thousands of
nodes, or even more depending on available computing
resources. Combinedwith the fact that it does not rely on any
property of the generative model other than it being con-
ditionedon real-valued edgeweights, our approach gives us a
regularization scheme that can be readily employed on a
broad class of inferential reconstruction problems.
This paper is divided as follows. In Sec. II we describe

our inferential framework, and in Sec. III we discuss the
problems with L1 regularization. In Sec. IV we present our
alternative MDL framework, and in Sec. V the inference
algorithm we propose to implement it, which we then
evaluate with synthetic and empirical data. In Sec. VI we
conduct an empirical case study where we reconstruct the
large-scale network of interactions of microbial species
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from empirical data and showcase how the inferred models
can be used to predict the outcomes of interventions, as
well as to identify “keystone” species and tipping points.
We finalize in Sec. VII with a conclusion.

II. INFERENTIAL FRAMEWORK

The general scenario for inferential network reconstruc-
tion consists of some data X that are assumed to originate
from a generative model with a likelihood

PðXjWÞ; ð1Þ
whereW ∈RN×N is a symmetricmatrix corresponding to the
weights of an undirected graph ofN nodes. In general, we are
not interested in any particular a priori constraint on W,
although we usually expect it to be sparse, i.e., its number of
nonzero entries scales as OðNÞ. In many cases, the data are
represented by aN ×Mmatrix ofM samples,withXim being
a value associated with node i for sample m, such that

PðXjWÞ ¼
YM
m¼1

PðxmjWÞ; ð2Þ

with xm being the mth column of X. Alternatively, we may
have that the network generates aMarkovian time series with
likelihood

PðXjWÞ ¼
YM
m¼1

Pðxmjxm−1;WÞ; ð3Þ

given some initial state x0. Other variations are possible, but
for our purposes we need only to refer to a generic posterior
distribution,

PðWjXÞ ¼ PðXjWÞPðWÞ
PðXÞ ; ð4Þ

that we need to be able to compute up to a normalization
constant. Our overall approach is designed to work inde-
pendently of what kind of generative model is used, static or
dynamic, with any type of likelihood, as long as it is
conditioned on edgeweights according to the above equation.
In Appendix A we list some generative models that we will
use as examples in this work, but for now it is simpler if we
consider the generative model more abstractly.
Given Eq. (4) we can proceed in a variety of ways, for

example, by sampling from it or computing expectations. In
this work, we are interested in the maximum a posteriori
(MAP) point estimate,

Ŵ ¼ argmax
W

PðWjXÞ ð5Þ

¼ argmax
W

log PðXjWÞ þ log PðWÞ; ð6Þ

corresponding to the most likely weighted network that
generated the data. In this setting, regularization is imple-
mented by choosing a suitable prior PðWÞ, which should,
ideally, properly penalize overly complex models.
In the following we will discuss L1 regularization, and

then present our alternative approach based on the MDL
principle.

III. L1 REGULARIZATION, SHRINKAGE,
AND OVERFITTING

The most common choice to regularize Eq. (6) is
independent Laplace distributions,

PðWjλÞ ¼
Y
i<j

λe−λjWijj=2; ð7Þ

which result in a L1 penalty to the log-likelihood:

log PðWjλÞ ¼ −λ
X
i<j

jWijj þ
�
N

2

�
logðλ=2Þ: ð8Þ

This choice offers some attractive properties. First, the
function log PðWjλÞ is convex, and therefore if
log PðXjWÞ is also convex with respect to W (which is
true for key problem instances such as the multivariate
Gaussian or the Ising model), then Eq. (6) amounts to a
convex optimization problem, which has a unique global
solution with no other local maxima, and can be solved
efficiently [55]. Second, this type of penalization promotes
sparsity, i.e., as λ is increased, this will cause the values of
Wij to converge in succession exactly to zero at specific
values of λ. This is in contrast to, e.g., L2 regularization
[56], where an increase in the penalty tends to merely
reduce the magnitude of the weights continuously, without
making them exactly zero. In this way, the value of λ
amounts to a proxy for the density of the inferred network.
However, this choice also suffers from important short-

comings. From a modeling perspective, the prior of Eq. (7)
corresponds to a maximum entropy distribution condi-
tioned on the expected mean weight magnitude, including
the zeros. This amounts to a prior that is conditioned on
previous knowledge about the density of the network,
encoded via the parameter λ. However, this information is
rarely known in advance, and is almost always one of the
primary objectives of inference in the first place. The
likelihood of Eq. (7) is not helpful in this regard, since it is
unbounded, and diverges toward log PðWjλÞ → ∞ for
Wij ¼ 0 and λ → ∞; therefore we cannot infer λ via
MAP estimation.
The most common solution employed in practice is to

select λ via K-fold cross-validation [24,32,33], i.e., by
dividing the data matrix in K disjoint subsets X ¼
fX1;…;XKg, and reconstructing the network with one
subset k removed, i.e.,
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ŴkðλÞ ¼ argmax
W

log PðXnXkjWÞ þ log PðWjλÞ; ð9Þ

and using the held-out data to compute the log-likelihood
LkðλÞ ¼ log P(XkjŴkðλÞ). Finally, λ is chosen tomaximize
the mean held-out log-likelihood:

λ̂ ¼ argmax
λ

X
k

LkðλÞ: ð10Þ

This standard technique is designed to prevent overfitting,
since it relies on the predictive performance of the inferred
model ŴkðλÞ with respect to the held-out data Xk, which
should deteriorate as soon as it incorporates more statistical
noise. Although widespread, this solution still suffers from
some key limitations. First, it increases the computational
cost by at least 1 or 2 orders of magnitude, since we need to
perform the optimization of Eq. (9)K times (a typical choice
is K ¼ 5) and for many values of λ—usually via a combi-
nation of grid and bisection search. Furthermore, and even
more importantly, this whole procedure does not sufficiently
reconcile the prevention of overfitting with the promotion of
sparsity, as we now demonstrate.
For our analysis it will be useful to evaluate the accuracy

of a reconstruction Ŵ via the Jaccard similarity
sðW; ŴÞ∈ ½0; 1�,

sðW; ŴÞ ¼ 1 −
P

i<jjWij − ŴijjP
i<jjWijj þ jŴijj

; ð11Þ

and likewise for the binarized adjacency matrix,
AijðWÞ ¼ f1 if jWijj > 0; else 0g, with s(AðWÞ;AðŴÞ).
In Fig. 1 we consider the reconstruction of Zachary’s

karate club network [57], with N ¼ 34 nodes and E ¼ 78
edges serving as the nonzero couplings of a kinetic Ising
model (see Appendix A), with each corresponding value of
W sampled from a normal distribution with mean N=2E ¼
0.22 and standard deviation 0.01. After sampling a single
time series of M ¼ 1000 transitions given a random initial
state, we performed the reconstruction for a range of values
of λ, including also a fivefold cross-validation procedure
for each value. As seen in Fig. 1(a), the increase in λ
simultaneously sparsifies and shrinks the magnitude of the
inferred edge weights. The maximum of the mean held-out
log-likelihood obtained from cross-validation is achieved
for a value λ ≈ 30.8, for a network with E ¼ 278 nonzero
weights, shown in Fig. 1(b). The weighted and unweighted
similarities with the true network are 0.83 and 0.44,
respectively, affected primarily by the abundance of spu-
rious edges incorporated into the reconstruction. If we
increase instead to λ ≈ 246.6, the similarities become 0.67
and 0.99, respectively, with E ¼ 79—much closer to the
true value—illustrating the inherent trade-off between
weight magnitude preservation and sparsity. Although
for this value of λ the binarized network is much more

FIG. 1. L1 regularization overfits when combined with cross-
validation. This example considers the reconstruction of the
weighted karate club network [57] (N ¼ 34 nodes and E ¼ 78
edges, weight values sampled i.i.d. from a normal distribution with
mean 0.22 and standard deviation 0.01), based on M ¼ 1000
transitions from the kinetic Ising model with a random initial state,
using Eqs. (6) and (7), for a range of values of the regularization
strength λ. (a) Top to bottom: the Jaccard similarity between
inferred and true weights and binarized edges, the mean held-out
likelihood for a fivefold cross-validation, the number of inferred
nonzero edges, and the individual values of inferred weights (with
true nonzero edges shown in blue, and true zero-valued entries
shown in red). The gray horizontal lines at the right-handmargin of
the bottom of the panel show the true weight values. The vertical
dashed lines mark the values of λ that maximize (b) the mean held-
out likelihood and (c) the binarized Jaccard similarity. The inferred
network for these two values of λ are shown in (b) and (c),
respectively, with edge weights represented as thickness and the
color representing whether it is a true (blue) or spurious (red) edge.
In (a), all dashed horizontal lines, as well as the red line at the right-
handmargin of the bottompanel, mark the results obtainedwith the
MDL regularization of Sec. IV.
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accurate, the averageweight value is only 0.11—around half
of the true value—which significantly degrades the model’s
predictive performance. (We observe that without knowing
the true network, it would not have been possible to
determine the value of λ that yields the largest unweighted
similarity, since neither the model likelihood nor the cross-
validation procedure offer any indication in this regard.)
It is clear from this example that the L1 regularization

obtained with the Laplace prior forces an unnecessary
dichotomy between sparsity and low weight magnitudes.
The detrimental bias of L1 to obtain regression coefficients
is well known [42] and alternatives such as adaptive
LASSO [38–40], MCP [41], and SCAD [42] exist which
mitigate this problem, but they all involve ad hoc param-
eters that need to be determined via cross-validation,
without the algorithmic attractiveness of L1, since these
alternatives are no longer convex. As a result, these
alternatives are substantially more cumbersome to use.
Ideally, we should be able to determine which edges are

better modeled by setting them to zero, without inherently
reducing the magnitude of the nonzero ones. This is an
inference problem on its own, and instead of committing
beforehand to which kind of weight distribution is more
appropriate, a more robust approach consists in formulating
an open-ended class of distributions, and learning its
precise shape a posteriori from the data, following the
principle of maximum parsimony. This is precisely what
we achieve in the next section.

IV. WEIGHT QUANTIZATION AND THE
MINIMUM DESCRIPTION LENGTH PRINCIPLE

Our purpose is to implement a principled regularization
scheme that does not rely on weight shrinkage, promotes
sparsity, and obviates the need for cross-validation. Ideally,
we would like a choice of prior PðWÞ that achieves this
directly via the MAP estimation:

Ŵ ¼ argmax
W

log PðXjWÞ þ log PðWÞ: ð12Þ

More precisely, we want to evoke the inherent connection
between Bayesian inference and data compression by
interpreting the joint likelihood PðX;WÞ in terms of the
description length [53,54],

ΣðX;WÞ ¼ − log PðX;WÞ ð13Þ

¼ − log PðXjWÞ − log PðWÞ; ð14Þ

where the first term in the right-hand side of the last
equation corresponds to the amount of information required
(e.g., in bits if base 2 is used for the logarithm) to encode
the data X when the parameters W are known, and the
second term corresponds to the amount of information

required to encode the parameters W. In this setting, the
prior for W should act as a penalty counteracting the
likelihood term that prevents overly complex models from
being inferred. The result of the optimization of Eq. (12)
would then amount to the most compressive model—i.e.,
with the shortest description length—striking the ideal
balance between quality of fit and model complexity,
extirpating as much as possible statistical noise from the
model description.
However, the above equivalence with compression is not

valid when the weightsW are modeled as continuous values
with infinite precision. In this case, their prior PðWÞ is
necessarily a probability density function, and hence
− log PðWÞ cannot be interpreted as information content
[58]. This is exactly the reason whywe cannot determine the
value of λ of the Laplace prior of Eq. (7) viaMAP estimation:
Themost likely value isnot necessarily themost compressive
one. In order to properly quantify the model complexity, we
need be to be explicit about the precision with which we
describe the parameters W, which means that they must be
discretely distributed according to a probability mass
function.
With the objective of precisely quantifying the model

complexity, we proceed in several steps. First, we account
for the sparsity of the model by introducing an auxiliary
variable A corresponding to the binary adjacency matrix
that determines the values of W that are going to be
nonzero. At first, we assume A is sampled from a uniform
distribution conditioned on the total number of edges E,

ð15Þ

and the value of E is itself sampled from a uniform prior
PðEÞ ¼ 1=½ðN

2
Þ þ 1�—ultimately an unimportant constant

added simply for completeness. This choice will allow us to
benefit from sparsity, as it will lead to shorter description
lengths for graphs with fewer edges. Given A, we then
sample the weights W as

PðWjAÞ ¼
Y
i<j

PðWijÞAijδ
1−Aij

Wij;0
; ð16Þ

where PðWijÞ is the probability of a nonzero weight Wij,
which is the same for all ði; jÞ. Importantly, in order to
account for precision, PðWijÞ must be a probability mass
function with a support over a discrete set of values. In
particular, we may, for example, consider the weights to be
the outcome of a quantization procedure,

Wij ¼ Δ⌈Yij

Δ

�
; ð17Þ
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where Yij is some continuous auxiliary value, ⌈·c is the
round operation, andΔ represents the precision considered,
such that we have a conditional probability mass
PðWijjYij;ΔÞ ¼ δWij;Δ⌈Yij=Δc. Note that we do not assume
that the true values ofWij are actually sampled in this way;
instead this prior simply articulates the exact precision Δ
with which we are performing the inference.
We can then proceed by choosing a continuous distribu-

tion for the auxiliary values Y, e.g., a Laplace distribution,

PðYijjλÞ ¼ λe−λjYijj=2; ð18Þ

in which case we obtain a probability mass,

PðWijjλ;ΔÞ ¼
R
PðWijjYij;ΔÞPðYijjλÞdYij

1−
R
Pð0jYij;ΔÞPðYijjλÞdYij

¼
(
e−λjWijjðeλΔ − 1Þ=2 if

Wij¼Δ⌈Wij=Δc
Wij≠0

0 otherwise;

ð19Þ

where we have excluded the valueWij ¼ 0 to be consistent
with our parametrization based on A. Stopping at this point
we would have solved two issues: (1) Via quantization we
can now properly evaluate the description length of the
weights and (2) we can benefit from sparsity in amanner that
is independent from the weight magnitudes. However, by
choosing the Laplace prior, we remain subject to weight
shrinkage, since the reduction of the description length is still
conditioned on their overall magnitudes—besides the dis-
cretization, Eq. (19) still amounts to L1 regularization.
Therefore, our final step is to add one more level to our
Bayesian hierarchy, and try to learn the weight distribution
from the data, instead of assuming that the probability decays
according to the Laplace distribution. For that, we assume
that the discretized weights are sampled directly from an
arbitrary discrete distribution,

PðWijjp; zÞ ¼
XK
k¼1

δWij;zkpk; ð20Þ

where z ¼ fzkg is a set ofK real values representing discrete
weight categories, and p ¼ fpkg are their corresponding
probabilities, with

P
k pk ¼ 1. From this we obtain

PðWjp; z;AÞ ¼
Y
k

pmk
k ×

Y
i<j

δ
1−Aij

Wij;0
; ð21Þ

with mk ¼
P

i<j AijδWij;zk being the counts of weight
category k, and with a marginal distribution

PðWjz;AÞ ¼
Z

PðWjp; z;AÞPðpÞdp ð22Þ

¼
Q

kmk!

E!
×

�
KþE−1

E

�−1
×
Y
i<j

δ
1−Aij

Wij;0
; ð23Þ

assuming a uniform prior density PðpÞ ¼ ðK − 1Þ!
over the K simplex. The latter distribution allows for a
combinatorial interpretation: It corresponds to a uniform
distribution among the E edges of the weights with
fixed counts m ¼ fmkg, with probability PðWjmÞ ¼
ðQk mk!=E!Þ

Q
i<j δ

1−Aij

Wij;0
, and the uniform distribution of

the counts m themselves, with probability PðmjEÞ ¼
ðKþE−1

E Þ−1. This interpretation allows us to fix a minor
inconvenience of this model, namely that it allows for a
weight category zk to end up empty with mk ¼ 0, which
would require us to consider category labels that never occur.
Instead, we can forbid this explicitly by using a uniform prior
PðmjEÞ ¼ ðE−1K−1Þ−1 over strictly nonzero countsm, leading to
a slightly modified model:

PðWjz;AÞ ¼
Q

kmk!

E!
×

�
E − 1

K − 1

�−1
×
Y
i<j

δ
1−Aij

Wij;0
: ð24Þ

Finally, we need a probabilitymass for theweight categories z
themselves. At this point, however, the importance of this
choice isminor, sincewe expectK ≪ E. A simple choice is to
evoke the quantized Laplace once more, with

Pðzkjλ;ΔÞ ¼
�
e−λjzkjðeλΔ − 1Þ=2 if zk¼Δ⌈zk=Δc

zk≠0

0 otherwise;
ð25Þ

with Pðzjλ;Δ; KÞ ¼ Q
K
k¼1 Pðzkjλ;ΔÞ. Although this choice

implies that there will be a residual amount of shrinkagewith
respect to the weight categories, it will not dominate the
regularization, unless the weight categories would otherwise
diverge—something that can happen with certain kinds of
graphical models such as the multivariate Gaussian when
pairs of nodes have exactly the same values in X. Because of
this, we found this residual shrinkage to be beneficial in such
corner cases, and otherwise we do not observe it to have a
noticeable effect [59].
Lastly, we need a prior over the number of weight

categories K, which we assume to be uniform in the
allowed range, with PðKjAÞ ¼ ð1 − δE;0Þ=Eþ δE;0δK;0.
Putting it all together we have

PðWjλ;ΔÞ ¼
X

z;K;A;E

PðWjz;AÞPðzjλ;Δ; KÞ

× PðKjAÞPðAjEÞPðEÞ ð26Þ
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ð27Þ

where the remaining quantitiesm, z,K, A, and E in Eq. (27)
should be interpreted as being functions of W. Note that
this model recovers the one using Eq. (19) when K ¼ E,
i.e., every weight belongs to its own category, up to an
unimportant factor 1=ðEþ 1Þ—although we expect to
obtain significantly smaller description length values with
Eq. (27), since it can exploit regularities in the weight
distribution and determine the most appropriate precision
of the weights. We emphasize that, differently from
Eq. (19), in Eq. (27) the parameter Δ controls the precision
of the weight categories z, not directly of the weights
themselves. The precision of the weights W is primarily
represented by the actual finite categories z.
The model above is conditioned on two hyperpara-

meters, λ and Δ, which in principle can both be optimized,
assuming a sufficiently uniform prior over them (therefore,
contributing to a negligible constant to the description
length). In practice, the effect of such an optimization is
marginal, and it is more convenient to select a small value
forΔ, such asΔ ¼ 10−8, which allows us to treat the weight
categories as continuous for algorithmic purposes. For λ we
use an initial value of λ ¼ 1, and optimize if necessary.
We observe that we have − log Pðzjλ;ΔÞ ¼ OðKΔÞ and

− log PðWjz;AÞ ¼ OðE logE − E logKÞ, and therefore
we will typically have K ≪ E when the description length
is minimized, in which case the prior for z will have only a
minor contribution to the overall description length.
Therefore, our approach is not very sensitive to alternative
choices for the weight category distribution Pðzjλ;ΔÞ. We
observe also that the dominating term − log PðWjz;AÞ
from Eq. (24) is completely invariant to bijective trans-
formations of the weights, provided the categories z are
transformed in the same manner. Therefore, any scale or
shape dependence is driven solely by the relatively minor
contribution of log Pðzjλ;ΔÞ, proportional only to the
number of weight categories. Since the scale parameter λ
can be optimized, this means that our approach does not
impose any constraints on the scale and only very weak
constraints on the shape of the weights (see also Ref. [59]).
Differently from the Laplace prior of Eq. (7),

Eq. (27) implements a nonparametric regularization of
the weights—not because it lacks parameters, but because
the shape of the distribution and number of parameters
adapt to what can be statistically justified from the data. In
particular, the number and position of the weight catego-
ries, as well as the number of edges, will grow or shrink
depending on whether they can be used to compress the
data, and provide a sufficiently parsimonious network
reconstruction, without overfitting.
The prior of Eq. (27) incorporates the properties we

initially desired; i.e., (1) it penalizes model complexity
according to the description length, (2) it exploits and

promotes sparsity, and (3) it does not rely on weight
shrinkage. However, these improvements come at a cost:
The prior is no longer a convex function on W. Because of
this, this approach requires special algorithmic consider-
ations, which we address in the following.

V. INFERENCE ALGORITHM

Whenever Eq. (12) corresponds to a convex optimization
objective, it can be performed with relatively straighfor-
ward algorithms. The simplest one is coordinate descent
[61], in which every entry in the W matrix is optimized in
sequence, while keeping the others fixed. This yields an
algorithm with a complexity of OðτN2Þ, provided the
optimization of each entry can be done in time Oð1Þ
(e.g., via bisection search), and τ is the number of iterations
necessary for sufficient convergence. A recent significant
improvement over this baseline was proposed in Ref. [55],
where an algorithm was presented that solves the same
optimization problem in subquadratic time, typically with a
OðN log2NÞ complexity, although the precise scaling will
depend on the details of the data in general. This algorithm
works as a greedy version of coordinate descent, where a
subset of the entries are repeatedly proposed to be updated
according to the NNDescent algorithm [62]. The latter
implements a stochastic search that involves keeping a list
of candidate edges incident on each node in the network as
an endpoint, and updating this list by investigating the list
of second neighbors in the candidate network. This
algorithm typically converges in log-linear time, allowing
the overall reconstruction algorithm also to converge in
subquadratic time, in this way converging orders of
magnitude faster than the quadratic baseline of the coor-
dinate descent algorithm.
Although these algorithms cannot be used unmodified to

our problem at hand, due to its nonconvexity and the
presence of additional latent variables, we can use them as
building blocks. We will consider different types of
updates, according to the different types of latent variable
we are considering, given our initial W (initially empty
with Wij ¼ 0) and our set of weight categories z (also
empty initially), which are applied in arbitrary order, until
the description length no longer improves.
Edge updates. We use the algorithm of Ref. [55] to find

the κN best zero-valued entries of W as update candidates,
usually with κ ¼ 1, according to the pairwise ranking score,

πij ¼ max ½lnPðWþjXÞ; lnPðW−jXÞ�; ð28Þ

whereWþ is the new matrix W with entryWij replaced by
the smallest positive weight category in z, and likewise with
the smallest magnitude negative value for W−. If z is
currently empty, we replace the score by the gradient
magnitude:
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πij ¼
���� ∂ lnPðW 0jXÞ

∂W0
ij

����
W 0¼W

: ð29Þ

The algorithm of Ref. [55] can obtain this set in typical time
OðN log2NÞ. We call E the union of this set with the
currently nonzero values of W. We then visit every entry
ði; jÞ in E, and try to perform an update Wij → W0

ij,
accepting only if it improves the objective function, chosen
uniformly at random from the following options.
(1) W0

ij ∈ z chosen according to a random bisection
search [63] maximizing the objective function, with
each midpoint sampled uniformly at a random.

(2) W0
ij ∈R and W0

ij ∉ z chosen according to a random
bisection search in the interval of weights allowed
for the problem. This will introduce a new weight
category with z0 ¼ z ∪ fW0

ijg.
(3) W0

ij ← 0, if Wij > 0.
Edge moves. Given the same set E obtained as described

above, we iterate over the nodes i of the network with
nonzero degree, and for an incident edge ði; jÞ chosen
uniformly at random, and an entry ði; uÞ chosen uniformly
at random from the subset of E withWiu ¼ 0, we swap their
values, i.e., Wiu ← Wij and Wij ← 0, and accept if this
improves the objective function.
Edge swaps.We chose uniformly at random two nonzero

entries inW, ði; jÞ and ðu; vÞ involving four distinct nodes,
and we swap their end points, i.e., ðWiv;WijÞ ← ðWij;WivÞ
and ðWuj;WuvÞ ← ðWuv;WujÞ, and accept only in case of
improvement.
Weight category values. We iterate over each weight

category zk ∈ z and perform an update zk ← z0k, with z0k
being the result of a bisection search over the allowed
values.
Weight category distribution. We consider the distribu-

tion of weight categories across the nonzero entries ofW as
a clustering problem, using the merge-split algorithm
described in Ref. [64], composed of the following moves,
which are accepted if it improves the quality function.
(1) Merge. Two categories zk and zl are removed and

merged as a single new category zm, with a value
chosen with a bisection search optimizing the objec-
tive function. The number of categories reduces by
one.

(2) Split. A single category zm is split in two new
categories zk and zl, chosen initially uniformly
random in the range ½zm−1; zmþ1�. The entries are
repeatedly moved between these categories if it
improves the quality function, and the category
values zk and zl are updated according to bisection
search, until convergence. The number of categories
increases by one.

(3) Merge-split. The two steps above are combined in
succession, so that the entries are redistributed in
two potentially new categories, and while their total
number remains the same.

The workhorse of this overall procedure is the algorithm
of Ref. [55] which reduces the search for candidate updates
to a subquadratic time. The remaining steps of the
algorithm operate on this set with linear complexity, and
therefore a single “sweep” of all latent variables can be
accomplished under the same algorithmic complexity as
Ref. [55], since it dominates. In practice, due to the extra
latent variables and optimization steps, this algorithm
finishes in time around 5–10 times longer than when using
L1 regularization for a single value of λ, but is typically
much faster than doing cross-validation and scanning over
many values of λ. A reference C++ implementation of this
algorithm is freely available as part of the graph-tool
Python library [65].

A. Assessment of the algorithm with synthetic data

In Fig. 2 we demonstrate the use of our algorithm on
synthetic data generated from empirical networks. We
simulate the kinetic and equilibrium Ising models [66]
(see Appendix A) with true weights sampled i.i.d. from a
normal distributionwithmeanμ ¼ 1=hki, with hki ¼ 2E=N,
and standard deviation σ ¼ 0.01. We compare our approach
with a prior corresponding to the true distribution, i.e.,

69 70

FIG. 2. Inference results for the kinetic and equilibrium Ising
model for two empirical networks, as indicated in the legend,
with true weights sampled as described in the text, using both the
true prior, our MDL regularization, as well as L1 regularization
with fivefold cross-validation. The individual panels show the
Jaccard similarity sðW; ŴÞ between the inferred and true net-
works, as well as the number E of inferred nonzero edges (the
dashed horizontal line shows the true value).
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PðWjμ; σ;AÞ ¼
Y
i<j

�
e−ðWij−μÞ2=2σ2ffiffiffiffiffiffi

2π
p

σ

	Aij

δ
1−Aij

Wij;0
: ð30Þ

We observe that our MDL regularization performs very
closely to the true prior, except for very few data, in which
case the MDL tends to produce an empty network, whereas
the true prior in fact overfits and yields a network with a
number of edges larger than the true value. As we already
explained, MAP estimation does not guarantee proper
regularization when the priors correspond to probability
densities—even if it happens to be the correct one. The
overall tendency of the MDL approach is, by design, to err
toward simpler models, instead of more complex ones, when
the data are insufficient to provide a good accuracy.
As already discussed previously in Sec. III, L1 regulari-

zation with cross-validation performs substantially worse
than our MDL approach, overfitting the data with networks
that are orders of magnitude denser than they should be.
Unlike using the true prior or MDL, for the examples of
Fig. 2 the results obtained with L1 show no sign of
converging asymptotically to true network as the data
increase with M → ∞. This behavior further highlights
the general unsuitability of the L1 approach even in
situations where the data are abundant. We should also
mention that the results obtained with L1 took typically 1–2
orders of magnitude longer to be computed, due to the need
to optimize over the parameter λ using a bisection search.

B. Joint reconstruction with community detection

The use of the auxiliary sparse networkA and its uniform
prior PðAjEÞ given by Eq. (15) opens the opportunity for
more structured priors that can take advantage of inferred
structure for further data compression, and in this way
provide improved regularization [71]. One generically
applicable approach is to use the degree-corrected stochas-
tic block model [72], here in its microcanonical formulation
[73], with a likelihood

PðAjb; k; eÞ ¼
Q

r<sers!
Q

rerr!!
Q

iki!Q
i<jAij

Q
iAii!!

Q
rer!

; ð31Þ

where b ¼ fbig is the node partition, with bi ∈ f1;…; Bg
being the group membership of node i, k ¼ fkig is the
degree sequence, with ki being the degree of node i, and
e ¼ fersg is the group affinity matrix, with ers being the
number of edges between groups r and s, or twice that if
r ¼ s. With this model, we can formulate the problem of
reconstruction according to the joint posterior,

PðW;A; bjXÞ ¼ PðXjWÞPðWjAÞPðAjbÞPðbÞ
PðXÞ ð32Þ

where the marginal distribution PðAjbÞ ¼ P
k;e PðAjb; k;

eÞPðkjeÞPðeÞ is computed using the priors described in

Ref. [73], in particular those corresponding to the hierar-
chical (or nested) SBM [74].
As discussed in Ref. [71], the use of this kind of structured

prior can improve regularization, since it provides more
opportunities to reduce the description length, whenever the
underlying network is not completely random. The obtained
community structure is often also useful for downstream
analysis and interpretation.Algorithmically, this extensionof
our method is straightforward, as we need only to include
merge-split partition moves [64], as done to infer the SBM.
We refer the reader to Ref. [73] for more details about the

SBM formulation, and to Ref. [71] for its effect in network
reconstruction.

C. Node parameters

Besides the weighted adjacency matrix W, many gen-
erative models posses additional parameters, typically
values θ∈RN with θi being a value associated with node
i (e.g., a local field in the Ising model, or the mean and
variance for a multivariate Gaussian). Although we could in
principle include them in the diagonal of W, these values
often have a different interpretation and distribution, or
there are more than one of them per node, and hence they
need to be considered separately.
In principle, since the size of θ is a constant when

performing network reconstruction, regularizing their infer-
ence is a relatively smaller concern. However, it would be
incongruous to simply neglect this aspect in our approach.
Luckily, it is a simple matter to adapt our quantized prior
for W into one for θ, the only difference being that we no
longer need auxiliary variables to handle sparsity, and we
can allow zeros in the discrete categories uk for θ, sampled
in this case as

Pðukjλθ;ΔθÞ ¼

8>><
>>:

e−λθ jukj sinhðλθΔθÞ if uk¼Δθ⌈uk=Δθc
uk≠0

1 − e−λθΔθ if uk ¼ 0

0 otherwise:

ð33Þ

Proceeding as before gives us

Pðθjλθ;ΔθÞ ¼
Y
k

nk! × e−λ
P

k
jukj

×
sinhðλθΔθÞKθ−10∈uð1 − e−λθΔθÞ10∈u

N!

�
N − 1

K θ − 1

�
N

; ð34Þ

where nk ¼
P

i δθi;uk are the category counts and Kθ is the
number of categories.

D. Empirical evaluation, contrast
to L1 regularization, and decimation

Now we perform a comparative evaluation of our MDL
regularization for empirical data where true network is not

NETWORK RECONSTRUCTION VIA THE MINIMUM … PHYS. REV. X 15, 011065 (2025)

011065-9



available.Wewill consider the votes of allN ¼ 623 deputies
in the lower house of the Brazilian congress [71], during the
2007–2011 term, as variables xi ∈ f−1; 0; 1g, corresponding
to “no,” “abstain,” and “yes,” respectively. This period
corresponds toM ¼ 619 voting sessions, where all deputies
cast a vote on a piece of legislation. We use a modified
version of the equilibrium Ising model that allows for zero
values (see Appendix A) to capture the latent coordination
between individual deputies.
In Fig. 3 we show the result of the reconstruction using

both our MDL scheme and L1 regularization together with
fivefold cross-validation. Similarly to the karate club exam-
ple of Fig. 1, the L1 inference incorporates one order of
magnitude more nonzero edges (E ¼ 10911) when com-
pared with the MDL method (E ¼ 1540). The edges
obtained with L1 are mostly of low magnitude [see
Fig. 3(c)], and based on our analysis for synthetic data,
aremuchmore likely to be overfitting.We can find additional
evidence of this by performing cross-validation alsowith the
MDL method, as shown in Fig. 3(d), which yields a
significantly improved predictive performance of the held-
out data. Both the predictive performance and description
length improve when performing MDL regularization
together with community detection, in accordance with
Ref. [71].

The interpretation of the two inferred models is fairly
different. Although they share similar large-scale structures
(as shown by the node colors indicating the inferred
communities), the one inferred by L1 possesses weights
that are often negative, indicating some amount of direct
antagonism between deputies; i.e., conditioning on the
“yes” vote of one deputy will increase the probability of a
“no” vote of another. Instead, the model inferred by MDL
possesses only positive weights, divided in three categories,
indicating an overwhelming tendency toward selective
agreement, instead of direct antagonism. The groups it
finds also align very well with the available metadata: The
largest group corresponds to the governing coalition,
whereas the remaining are opposition parties forming
fragmented blocks [75].
We take the opportunity to compare with another

regularization scheme called “decimation,” proposed in
Ref. [35]. That approach is not based on shrinkage, and
instead proceeds by first performing an unregularized
maximum likelihood, resulting in a full network with no
zero weights, then forcing a small number of the weights
with smallest magnitude to zero, and proceeding recur-
sively on the remaining entries in the same manner, until
sufficiently many entries have been set to zero. Besides the
increased computational cost of inferring the weights
multiple times, and starting with a full network—thus
imposing an overall complexity of at least OðN2Þ—this
approach offers no obvious, principled criterion to deter-
mine when to stop the decimation. In Ref. [35] a heuristic
stopping criterion was proposed by observing a point at
which the likelihood no longer changes significantly in
synthetic examples sampled from the true model. However,

FIG. 3. Reconstructed networks of interactions between N ¼
623 members of the lower house of the Brazilian congress [71],
during the 2007–2011 term, corresponding to M ¼ 619 voting
sessions. (a) Network inferred with MDL regularization, with
edge weights corresponding to their thickness, and the node
colors indicating the division found with the SBM incorporated
into the regularization. (b) Result with L1 together with fivefold
cross-validation, and negative weights shown in red. The colors
indicate the group assignments found by fitting an SBM to the
resulting network. (c) Weight distributions obtained with both
methods and (d) the mean held-out likelihood of a fivefold cross-
validation with each method, including also the MDL version
without the SBM.

FIG. 4. Decimation procedure [35] employed on the same data
as Fig. 3. The bottom panel shows the maximum likelihood
growing monotonically as a function of the number of nonzero
edges considered during decimation, and the top panel shows the
similarity (weighted and binarized) with the network inferred via
MDL. The vertical dashed line corresponds to the value
E ¼ 24 196, obtained using the stopping criterion proposed
in Ref. [35].
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there is no guarantee that such a signal will exist in
empirical data. In Fig. 4 we show for our Brazilian congress
example the model likelihood offers no clear indication of
when to stop the decimation and howmany edges should be
inferred in the end. The Jaccard similarity with the network
inferred via MDL remains low through the whole pro-
cedure, peaking at close to 1=2 for the binarized version
when both networks have similar number of edges. When
employing the heuristic stopping criterion proposed in
Ref. [35], we obtain a network with E ¼ 24196 edges—
far denser that what we obtain with MDL. Because of these
limitations, we see no advantage of using decimation over
our approach based on MDL.

VI. EMPIRICAL CASE STUDY: NETWORK OF
MICROBIAL INTERACTIONS

In this section we employ our regularization method for
the analysis of microbial interactions [1,76–78]. We con-
sider data from the human microbiome project (HMP) [79]
and the earth microbiome project (EMP) [80], which
assemble thousands of samples of microbial species abun-
dances, collected, respectively, in various sites in the human
body and in diverse habitats across the globe.More precisely,
these datasets contain abundances derived from DNA
sequencing, aggregated as operational taxonomic units
(OTUs)—groups of individuals closely related according
to their gene sequence, serving as a pragmatic proxy for
individual species. The HMP dataset contains M ¼ 4788

samples involving N ¼ 45 383 OTUs, and EMP contains
M ¼ 23 323 samples involving N ¼ 126 730 OTUs [we
used the “Silva (CR)” variant containing all samples].
The objective of our analysis is to obtain the underlying

network of interactions between species from their co-
occurrence in samples. To account for issues related with
compositionality, i.e., the fact that the gene sequencing
techniques used in these studies can provide only the
relative abundance between species, instead of their abso-
lute number, we will discard the magnitude of the read
counts, and consider only the presence or absence of
species, i.e., if more than zero counts have been observed
for a given OTU, resulting in binary observations. We will
also not attempt to model the dependence with environ-
mental conditions and focus instead only on the mutual
iterations between species. These are both substantial
omissions, but our purpose is not to fully saturate the
modeling requirements of this problem, but instead to
demonstrate how our regularization approach can be
coupled with a particular generative model to tackle a
network reconstruction problem of this nature and magni-
tude (to the best of our knowledge, with the exception of
Ref. [55], the reconstruction based on the full HMP and
EMP datasets has not been performed so far).

We will model a given sample x∈ f−1; 1gN , where
xi ¼ −1 if the species i is absent in the sample, and xi ¼ 1

if it is present, according to the Ising model, i.e., with
probability

PðxjW; θÞ ¼ e
P

i<j
Wijxixjþ

P
i
θixi

ZðW; θÞ ; ð35Þ

where Wij ∈R is the coupling strength between species i
and j, θi determines the individual propensity of species i to
occur in samples, independently of the other species, and
ZðW; θÞ is a normalization constant. A value of Wij ¼ 0

indicates conditional independence between species, i.e.,
the presence or absence of species i does not affect the
occurrence probability of species j, and vice versa, when all
other species take the same value. A value Wij > 0

indicates cooperation, since conditioning on the presence
of species i increases the probability of observing j (and
vice versa), and a value Wij < 0 indicates antagonism,
since it has the opposite effect.
We are interested in the MAP estimation,

Ŵ; θ̂ ¼ argmax
W;θ

PðW; θjXÞ ð36Þ

¼ argmax
W;θ

log PðXjW; θÞ

þ log PðWÞ þ log PðθÞ; ð37Þ

using the MDL regularization for both W and θ discussed
previously, including also the SBM prior. (We will not
include a comparison with L1, since the cross-validation
procedure it requires becomes computationally prohibitive
for problems of this magnitude.)
In Fig. 5 we show the results of the reconstruction for

both datasets. The inferred networks are strongly modular,
composed of large node groups, connected between them-
selves largely by negative interactions, and a hierarchical
subdivision into smaller groups (see also Fig. 6), connected
between themselves by predominately positive weights. As
the middle panel of Fig. 5 shows, the large-scale modular
structure is strongly associated with the different body sites
for the HMP network and the different habitats for EMP.
This association makes it easier to interpret the negative
edges between the larger groups: The different regions
represent distinct microbiota, composed of specialized
organisms that occupy specific ecological niches. Since
we have not included dependence on environmental con-
ditions into our model, this mutual exclusion gets encoded
by negative couplings. We also observe that nodes with low
degree tend to occur more seldomly (negative θi values)
whereas nodes with larger degrees tend to occur more
frequently (positive θi values).
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FIG. 5. Reconstructed networks for the (a) human microbiome project (HMP) with N ¼ 45 383, M ¼ 4788, and E ¼ 122 804, and
(b) earth microbiome project (EMP) with N ¼ 126 730,M ¼ 23 323, and E ¼ 735 868, using the MDL regularization method, together
with an SBM prior. The top panels show the networks obtained, with edge weights indicated as colors. The middle panel shows the OTU
counts in (a) different body sites and (b) earth habitats (the color code is the same as the “total count” panels in Fig. 9.). The bottom panel
shows the edge weight distributions (with the same colors as the top panel), the node field distributions, the degree distributions (where
node i has total degree ki ¼

P
j Aij, as well as positive and negative degrees, kþ ¼ P

j Aij1Wij>0 and k− ¼ P
j Aij1Wij<0, respectively),

the node strength distributions (where node i has total strength di ¼
P

j Wij, as well as positive and negative strength, dþi ¼P
j Wij1Wij>0 and d−i ¼ P

j Wij1Wij<0, respectively), and the average node fields as a function of the degrees (with the expected
“magnetization” in the inset).
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Strikingly, as we show in Appendix B, the groups found
with the SBMthat is part of ourMDL regularization correlate
significantly with the known taxonomic divisions of the
microbial species considered, where most of the groups
found contain predominately a single genus, although the
same genus can be split into many inferred groups. This
indicates different scales of similarity and dissimilarity
between taxonomically proximal species when it comes to
their interaction patterns with other species.

A. Predicting stability and outcome of interventions

In this section we explore the fact that our reconstructed
networks equip us with more than just a structural repre-
sentation of the interactions between species, but it also
provides a generative model that can be used to answer
questions that cannot be obtained directly from the data.
One particular question that is of biological significance is
the extent to which an ecological system is stable to
perturbations, and what are the outcomes of particular
interventions. One important concept for ecology is that of
“keystone” species, defined as those that have a dispropor-
tionally strong impact in its environment relative to its
abundance [81,82]. In the context of microbial systems,
keystone species are often associated with the impact they
have once they are forcibly removed from the system,
measured by the number of species that disappear as a
consequence [82].
The removal of individual species can be investigated

with the Ising model in the following way. First we observe
that since the network structure is modular, and the weights
W are heterogeneous, the probability landscape for the
configurations x in such cases is typically multimodal,
composed of many “islands” of high probability configu-
rations separated by “valleys” of low probability

configurations—a property known as broken replica sym-
metry. If we consider this model to correspond to the
equilibrium configuration of a dynamical system, then these
islands amount to metastable configurations from which the
system would eventually escape, but only after a very long
time that grows exponentiallywith the total number of nodes.
In this situation we can decompose the overall probably of a
configuration x as an average of all these discrete metastable
states, which we will henceforth call macrostates, i.e.,

PðxjW; θÞ ¼
X
α

PðxjαÞPðαÞ; ð38Þ

with PðxjαÞ ¼ 1x∈ αPðxjW; θÞ=PðαÞ being the configura-
tion distribution when trapped in macrostate α, and PðαÞ ¼P

x 1x∈ αPðxjW; θÞ is the asymptotic probability that this
macrostate is eventually visited, if we run the underlying
dynamics for an infinitely long time.
The individual macrostates α have an important biologi-

cal meaning, since they would correspond to the actual
configurations that we would encounter in practice, as the
time it would take to transition from one macrostate to
another would not be experimentally observable.
We can then characterize the stability of the system

precisely as its tendency to escape from one such macro-
state after a small portion of the species is perturbed [see
Fig. 8(a)]. In the case of a single species, we can quantify
this by comparing the marginal expectation of the presence
of a species i in the unperturbed system, i.e.,

x̄iðαÞ ¼
X
x

xiPðxjαÞ; ð39Þ

with the expectations obtained when another species j ≠ i
is forced to take value xj ¼ −1, i.e.,

x̄0iðα; jÞ ¼
X
xnfxjg

xiPðxnfxjgjxj ¼ −1;W; θ; αÞ; ð40Þ

where in the last equation the distribution should be
interpreted as the outcome of the dynamics if we initialize
it with a configuration from macrostate α, allowing it to
potentially escape from it.
We can then quantify the magnitude of the perturbation

of node j in macrostate α via the expected number of
additional species that disappear after it is removed:

zðj; αÞ ¼ 1

2

X
i≠j

x̄iðαÞ − x̄0iðα; jÞ: ð41Þ

If the perturbation is insufficient to dislodge the system to
another macrostate, we will typically have zðj; αÞ ≈ 0,
otherwise the magnitude of the zðj; αÞ will indicate the

(a) (b)

FIG. 6. Hierarchical community structure obtained with the
nested SBM [73,74] integrated into the MDL regularization, for
(a) the human microbiome project and (b) the earth microbiome
project, corresponding to the same networks shown in Fig. 5.
Each filled polygon represents the convex hull of the nodes that
belong to the same group. Nested polygons represent nested
hierarchical levels.
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difference between the macrostates. We could then say that
when the macrostate α is encountered, j is a keystone
species if zðj; αÞ is large.
In Fig. 7 we show the distribution of zðj; αÞ for macro-

states simulated with the Ising model inferred from the
HMP data, using the belief-propagation method [83],
initialized with random messages. Although most pertur-
bations are inconsequential, we observe that sometimes
hundreds of species can disappear (or even appear) after a
single species is removed.
In Fig. 8 we highlight two perturbations with large

zðj; αÞ values, where in one case all existing species vanish,
and another where only a smaller subset remains.
Importantly, the keystone species in these cases do not
directly influence all species lost, instead they are affected
only indirectly. In the corresponding dynamics, the move
between macrostates would occur through a cascade of
extinctions, where the most immediate neighbors of j
would first disappear, and then the neighbors’ neighbors,
an so on. Notably, this kind of transition is typically
irreversible; i.e., forcibly reinstating the removed species
will not result in a transition in the reverse direction to the
original macrostate. This kind of irreversible large-scale
change that results from a small perturbation characterizes a
“tipping point,” whose systematic prediction is a major
challenge in ecology and climate science [84].
These predicted outcomes for the HMP data have only a

tentative character, since, as we mentioned before, we are
omitting important aspects from the model—such as the
abundance magnitudes and environmental factors [85]—
and making a strong modeling assumption with the Ising
model. Nevertheless, this example already illustrates how

even an elementary modeling assumption is sufficient to
give us access to functional properties of a latent system,
inferred from empirical data, which comes as a result of
nonlinear emergent behavior mediated by the interactions
between the species. When complemented with more
realistic generative models, this kind of approach could
be used to predict empirical outcomes, and be validated
with experiments or additional observational data. Toward
this goal, appropriate regularization is crucial, since a

FIG. 7. Probability distribution for the number of species lost
zðj; αÞ when a species j chosen uniformly at random is removed
from the system in macrostate α, averaged over many macro-
states, for the Ising model inferred from the HMP data.

FIG. 8. Examples of single-species perturbations that cause the
system to move from a macrostate α to another α0, as illustrated in
(a), for the model inferred from the HMP data. Panels (b) and
(d) show the macrostate before the perturbation, and (c) and
(d) after. The node colors indicate the marginal expectations
(white is absent and red is present), and the blue edges are the
ones incident on the perturbed node.
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model that overfits will deliver neither meaningful inter-
pretations nor accurate predictions.

VII. CONCLUSION

We have presented a principled nonparametric regulari-
zation scheme based on weight quantization and the MDL
principle that can be used to perform network reconstruction
via statistical inference in a manner that adapts to the
statistical evidence available in the data. Our approach
inherently produces the simplest (i.e., sparsest) network
whenever the data cannot justify a denser one, and hence
does not require the most appropriate number of edges to be
known beforehand, and instead produces this central infor-
mation as an output, as is often desired. Our approach does
not rely on any specific property of the generative model
being used, other than it being conditioned on a weighted
adjacency matrix, and therefore it is applicable for a broad
range of reconstruction problems.
Unlike L1 regularization, our method does not rely on

weight shrinkage, and therefore introduces less bias in the
reconstruction, including a much reduced tendency to infer
spurious edges. Since it does not rely on cross-validation, it
requires only a single fit to the data, instead of repeated
inferences as in the case of L1.
When combined with the subquadratic algorithm of

Ref. [55], based on a stochastic second-neighbor search,
our regularization scheme can be used to reconstruct
networks with a large number of nodes, unlike most
methods in current use, which have an algorithmic com-
plexity that is at best quadratic on the number of nodes,
typically even higher.
Our structured priors are extensible, and when coupled

with inferential community detection [86] can also use
latent modular network structure to improve the regulari-
zation, and as a consequence also the final reconstruction
accuracy [71].
As we have demonstrated with an empirical case study

on microbial interactions, our method is effective at
uncovering functional latent large-scale complex systems
from empirical data, which can then be used to make
predictions about future behavior, the effect of interven-
tions, and the presence of tipping points.
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APPENDIX A: GENERATIVE MODELS

In our examples we use two generative models: the
equilibrium Ising model [29] and the kinetic Ising model.
The equilibrium Ising model is a distribution on N binary
variables x∈ f−1; 1gN given by

PðxjW; θÞ ¼ e
P

i<j
Wijxixjþ

P
i
θixi

ZðW; θÞ ; ðA1Þ

with θi being a local field on node i, and ZðW; θÞ ¼P
x e
P

i<j
Wijxixjþ

P
i
θixi a normalization constant. Since

this normalization cannot be computed analytically in
closed form, we make use of the pseudolikelihood approxi-
mation [87],

PðxjW; θÞ ¼
Y
i

Pðxijxnxi;W; θÞ ðA2Þ

¼
Y
i

exið
P

j
WijxjþθiÞ

2 coshðPjWijxj þ θiÞ
; ðA3Þ

as it gives asymptotically correct results and has excellent
performance in practice [29,88].
The kinetic Ising model is a Markov chain with transition

probabilities conditioned on the same parameters as before,
given by

P½xðtþ 1ÞjxðtÞ;W; θ� ¼
Y
i

exiðtþ1Þ(
P

j
WijxjðtÞþθi)

2 cosh (
P

jWijxjðtÞ þ θi)
:

ðA4Þ

In the case of the zero-valued Ising model with
x∈ f−1; 0; 1gN , but following the same Eq. (A1), the
normalization of Eqs. (A2) and (A4) changes from
2 coshð·Þ to 1þ 2 coshð·Þ.

APPENDIX B: SPECIES TAXONOMIES

In Fig. 9 we show the taxonomic classification of the
species for the reconstructed networks of Fig. 5. The
taxonomy consists of the phylum, class, order, family,
and genus of each OTU. Each taxonomic category is shown
as node colors, as indicated in the legend. In both cases we
observe that most groups inferred with the SBM incorpo-
rated in our regularization scheme are compatible with the
taxonomic division, since they tend to contain one domi-
nating taxonomic category, at all levels—although a single
category is often split into many groups, indicating struc-
tures that are not captured solely by taxonomy.
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Human microbiome project (HMP)
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Earth microbiome project (EMP)
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FIG. 9. Taxonomic classification of species for the human microbiome project and the earth microbiome project, overlaid on the
inferred networks of Fig. 5, together with the total species count over all samples.
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