
Physica A 391 (2012) 4165–4180

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Social structure of Facebook networks
Amanda L. Traud a,b,c,∗, Peter J. Mucha a,d, Mason A. Porter e,f
a Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
b Carolina Population Center, University of North Carolina, Chapel Hill, NC 27516-2524, USA
c Biomathematics, North Carolina State University, Raleigh, NC 27695, USA
d Institute for Advanced Materials, Nanoscience & Technology, University of North Carolina, Chapel Hill, NC 27599-3216, USA
e Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OX1 3LB, UK
f CABDyN Complexity Centre, University of Oxford, OX1 1HB, UK

a r t i c l e i n f o

Article history:
Received 7 October 2011
Received in revised form 3 December 2011
Available online 19 December 2011

Keywords:
Community detection
Clustering
Online social networks

a b s t r a c t

We study the social structure of Facebook ‘‘friendship’’ networks at one hundred American
colleges and universities at a single point in time, and we examine the roles of user
attributes – gender, class year, major, high school, and residence – at these institutions.We
investigate the influence of common attributes at the dyad level in terms of assortativity
coefficients and regression models. We then examine larger-scale groupings by detecting
communities algorithmically and comparing them to network partitions based on user
characteristics. We thereby examine the relative importance of different characteristics
at different institutions, finding for example that common high school is more important
to the social organization of large institutions and that the importance of common major
varies significantly between institutions. Our calculations illustrate how microscopic and
macroscopic perspectives give complementary insights on the social organization at
universities and suggest future studies to investigate such phenomena further.

Published by Elsevier B.V.

1. Introduction

Since their introduction, social networking sites (SNSs) such as Friendster, MySpace, Facebook, Orkut, LinkedIn, and
myriad others have attracted hundreds of millions of users, many of whom have integrated SNSs into their daily lives to
communicate with friends, send e-mails, solicit opinions or votes, organize events, spread ideas, find jobs, and more [1].
Facebook, an SNS launched in February 2004, now overwhelms numerous aspects of everyday life, and it has become an
immensely popular societal obsession [1–4]. Facebookmembers can create self-descriptive profiles that include links to the
profiles of their ‘‘friends’’, whomay or may not be offline friends. Facebook requires that anybody whowants to be added as
a friend have the relationship confirmed, so Facebook friendships define a network (graph) of reciprocated ties (undirected
edges) that connect individual users. (In this article, we use the words ‘‘edge’’ and ‘‘link’’ interchangeably.)

The emergence of SNSs such as Facebook andMySpace has revolutionized the availability of social and demographic data,
which has in turn had a significant impact on the study of social networks [1,5,6]. It is possible to acquire very large data
sets from SNSs, though of course the population online and actively using SNSs is a biased sample of the broader population.
Services like Facebook also contain large quantities of demographic data, as many users now voluntarily reveal voluminous
amounts of detailed personal information. An especially exciting aspect of studying SNSs is that they provide an opportunity
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to examine social organization at unprecedented levels of size and detail, and they also provide new venues to test sampling
effects [7]. One can investigate the structure of an SNS like Facebook to examine it as a network in its own right, and ideally
one can also try to take one step further and infer interesting insights regarding the offline social networks that an SNS
imperfectly parallels. Most people tend to draw their Facebook friends from their real-life social networks [1], so it is not
entirely unreasonable to use a Facebook network as a proxy for an offline social network. (Of course, as noted by Hogan [8],
one does need to be aware of significant limitations when taking such a leap of faith.)

Social scientists, information scientists, and physical scientists have all jumped on the SNS data bandwagon [9]. It would
be impossible to exhaustively cite all of the research in this area, so we only highlight a few results; additional references
can be found in the review by Boyd and Ellison [1]. Boyd [10,11] also conducted an empirical study of Facebook and
MySpace, concluding that Facebook tends to appeal to a more elite and educated cross section than MySpace. The company
RapLeaf [12] has compiled global demographics on the age and gender usage of numerous SNSs. Other recent studies have
investigated the manifestation on SNSs of race and ethnicity [13], religion [14], gender [15,16], and national identity [17].
Other research has illustrated that online friendship networks can be exploited to improve shopper recommendation
systems on websites such as Amazon [18]. (Presumably, this is becoming increasingly prominent in practice.)

Several papers have attempted to increase understanding of how SNS friendships form. For example, Kumar et al. [19]
examined preferential attachment models of SNS growth, concluding that it is important to consider different classes
of users. Lampe et al. [20] explored the relationship between profile elements and number of Facebook friends, and
other scholars have examined the importance of geography [21] and online message activity [22] to online friendship
formation. Other papers have established the existence of strong correlations between network participation and website
activity, including the motivation of people to join particular groups [23], the recommendations of online groups [24],
online messages and friendship formation [22], interaction activity versus sense of belonging [25], and the role of explicit
ideological relationship designations in affecting voting behavior [26,27]. Lewis et al. [3] used Facebook data for an entire
class of freshmen at an unnamed, private American university to conduct a quantitative study of social networks and cultural
preferences. The same data set was also used to examine user privacy settings on Facebook [28].

In the present paper, we study the complete Facebook networks of 100 American colleges and universities from a single-
day snapshot in September 2005. This paper is a sequel to our previous research on 5 of these institutions [29], in which we
developed some of themethodology that we employ here. In September 2005, one needed a .edu e-mail address to become
a member of Facebook. We thus ignore links between nodes at different institutions and study the Facebook networks
of the 100 institutions as 100 separate networks. For each network, we have categorical data encompassing the gender,
major, class year, high school, and residence (e.g., dormitory, House, fraternity, etc.) of the users. We examine homophily
and community structure (network partitions that are obtained algorithmically) for each of the networks and compare the
community structure to partitions based on the given categorical data.We thereby compare and contrast the organizations of
the 100 different Facebook networks, which arguably allows us to compare and contrast the organizations of the underlying
university social networks to which they provide an imperfect counterpart. In addition to the inherent interest of these
Facebook networks, our investigation is important for subsequent use of these networks –whichwere formed via ostensibly
the same generative mechanism – as benchmark examples for numerous types of computations, such as new community
detection methods.

The remainder of this paper is organized as follows. We first discuss the Facebook data and present the methods that
we used for testing homophily at the dyad level and demographic organization at the community level. We then present
and discuss results on the largest connected components of the networks, student-only subnetworks, and single-gender
subnetworks. Finally, we summarize and discuss our findings.

2. Data

The data, sent directly to us by Adam D’Angelo of Facebook, consists of the complete set of users (nodes) from the
Facebook networks at each of 100 American institutions (which we enumerate in Table A.1) and all of the ‘‘friendship’’
links between those users’ pages as they existed on one particular day in September 2005. Each institution in the data is
additionally identified by a number appearing as part of its name that appears to correspond to the order in which each
institution ‘‘joined’’ Facebook. Apart from preparing the network representation of friendships, we employed only the first
two digits of the user ID numbers. This enabled us to identify the institutional affiliation of each user in the provided list of
institutions; we otherwise ignored the additional digits in each ID number. Most of the institutions on the provided list are
clearly identified, and there are only a small number of disambiguation problems. For instance, 4 different ‘‘UC’’ institutions
plus ‘‘Cal’’ are in the data, and there are 2 ‘‘Texas’’ listings. One could presumably identify these institutions using the
complete ID numbers of affiliated users and their corresponding Facebook pages, butwehave not used the ID numbers in this
way.

Similar snapshots of Facebook data from 10 Texas institutions were analyzed recently by Mayer and Puller [4], and a
snapshot from ‘‘a diverse private college in the Northeast US’’ was studied by Lewis et al. [3]. Other studies of Facebook have
typically obtained data either through surveys [1] or through various forms of automated sampling [30], thereby missing
nodes and links that can impact the resulting graph structures and analyses. We only consider ties between people at the
same institution, yielding 100 separate realizations of university social networks and allowing us to compare the structures
at different institutions.
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Fig. 1. (Color online) Largest connected component of the student-only subset of the Reed College Facebook network. (We used a Fruchterman–Reingold
visualization [31].) Different node shapes and colors indicate different class years (gray circles denote users who did not identify an affiliation), and the
edges are randomly shaded for easy viewing. Clusters of nodes with the same color/shape suggest that common class year has an important effect on the
aggregate structure.

We consider four networks for each of the 100 Facebook data sets: the largest connected component of the full network
(which we hereafter identify as ‘‘Full’’), the largest connected component of the student-only network (‘‘Student’’), the
largest connected component of the female-only network (‘‘Female’’), and the largest connected component of themale-only
network (‘‘Male’’). The Male and Female networks are each subsets of the Full network rather than of the Student network.
Each network has a single type of unweighted, undirected connection between nodes and can thus be represented as an
adjacency matrix A with elements Aij = Aji indicating the presence (Aij = 1) or absence (Aij = 0) of a tie between nodes i
and j. The resulting tangle of nodes and links, which we illustrate for the Reed College Student Facebook network in Fig. 1,
can obfuscate any organizational structure that might be present.

The data also includes limited demographic (categorical) information that is volunteered by users on their individual
pages: gender, class year, and (using numerical identifiers) high school, major, and residence. We use a ‘‘Missing’’ label for
situations in which individuals did not volunteer a particular characteristic. The different characteristics allow us to make
comparisons between institutions, under the assumption (see the discussion by Boyd and Ellison [1]) that the communities
and other elements of structural organization in Facebook networks reflect (even if imperfectly) the social communities
and organization of the offline networks on which they are based. It is an important research issue to determine just how
imperfect this might be [8], but this is far beyond the scope of the present paper (though we hope that others will take on
this particular challenge). The conclusions that we draw in this paper apply directly to the university Facebook networks
from a single-day snapshot in September 2005, and we expect that they can provide insight about the real-world social
networks at the institutions as well.

3. Methods

We study each network at both the dyad level and the community level. We first consider homophily [32–34], which we
quantify by assortativity coefficients using the available categorical data. For some of the smaller networks, we additionally
perform independent logistic regression on node pairs to obtain the log odds contributions to edge presence between two
nodes that have the same categorical-data value. We similarly fit exponential random graph models (ERGMs) [35–40] with
triangle terms to these smaller networks. Finally, we partition the networks by algorithmically detecting communities [41,
42],whichwe compare to the given categorical data using the technique in this paper’s prequel [29]. Calculating assortativity
values and log odds contributions allows us to examine ‘‘microscopic’’ features of the networks, and comparing algorithmic
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partitions of the networks to the categorical data allows us to examine their ‘‘macroscopic’’ features. As we illustrate below,
both perspectives are important because they provide complementary insights.

3.1. Assortativity

A general measure of scalar assortativity r relative to a categorical variable is given by Newman [34,43]:

r =
tr(e) − ∥e2∥
1 − ∥e2∥

∈ [−1, 1], (1)

where e = E/∥E∥ is the normalizedmixingmatrix, the elements Eij indicate the number of edges in the network that connect
a node of type i (e.g., a person with a given major) to a node of type j, and the entry-wise matrix 1-norm ∥E∥ is equal to the
sum of all entries of E. By construction, this formula yields r = 0 when the amount of assortative mixing is the same as that
expected independently at random (i.e., eij is simply the product of the fraction of nodes of type i and the fraction of nodes
of type j), and it yields r = 1 when the mixing is perfectly assortative.

3.2. Logistic regression and exponential random graphs

We further measure the influence of the available user characteristics on the likelihood of a ‘‘friendship’’ tie via a fit
by logistic regression (under an assumption of independent dyads) and by an ERGM specification that includes triangle
terms. Our focus is on trying to calculate the propensity for two nodes with the same categorical value to form a tie.
We consider each of the four categorical variables (major, residence, year, and high school) and use the ERGM package
in R [35] for both models (treating each network as undirected). We used R 2.11.1 and the statnet package version
2.1–1, and we note that different versions of R and statnet caused different degrees of convergence with the structural
elements in themodel. We obtained results for the 16 smallest institutions. (We did these calculations on a 32-bit operating
system, which restricts the network sizes that can be processed.) Both models that we consider are based on a standard
ERGM parametrization Pθ {Y = A} = exp{θ · g(A)}/κ(θ) describing the distribution of graphs with model coefficients θ
corresponding to statistics calculated from the adjacency matrix A (with a normalizing factor κ to ensure that the formula
yields a probability distribution) [35–39]. The vector-valued function g is associated with the corresponding ERGM.

In the first model (logistic regression), we include five statistics (with five corresponding θ coefficients): the total density
of ties (edges) and the common classifications (nodematch) from each of four node/user characteristics: residence, class
year, major, and high school. For example, the θhighschool contribution describes the additional log-odds predisposition for a
‘‘friendship’’ tie when two users are from the same high school. In all cases, we ignore possible contributions from missing
characteristic data: twonodeswith the samemissing data field are not treated as having the samevalue for the characteristic.
Rather than include gender explicitly in the model, we instead additionally fit the model to the single-gender subnetworks
in order to be consistent with the treatment of gender in the community-level comparisons below. In the second model
(an ERGM), we add a triangle statistic to account for the observed amount of transitivity in the network data. This gives
a total of six θ coefficients: edges, common residence, common class year, common major, common high school, and the
triangle coefficient.

3.3. Community detection

The global organization of social networks often includes coexisting modular (horizontal) and hierarchical (vertical)
organizational structures, and myriad papers have attempted to interpret such organization through the computational
identification of ‘‘community structure’’. Communities are defined in terms of cohesive groups of nodes with more internal
connections (between nodes in the same group) than external connections (between nodes in the group and nodes in other
groups). As discussed at length in two recent review articles [41,42] and in references therein, the ensemble of techniques
available to detect communities is both numerous and diverse. Existing techniques include hierarchical clustering methods
such as single linkage clustering, centrality-based methods, local methods, optimization of quality functions such as
modularity and similar quantities, spectral partitioning, likelihood-based methods, and more. Communities are considered
to not be merely structural modules but are also expected to have functional importance because of the large number
of common ties among nodes in a community. For example, communities in social networks might correspond to circles
of friends or business associates, and communities in the World Wide Web might encompass pages on closely-related
topics. In addition to remarkable successes on benchmark problems, investigations of community structure have observed
correspondence between communities and ‘‘ground truth’’ groups in diverse application areas—including the reconstruction
of college football conferences [44] and the investigation of such structures in algorithmic rankings [45]; the investigation
of committee assignments [46], legislation cosponsorship [47], and voting blocs [48,49] in the United States Congress;
the examination of functional groups in metabolic networks [50]; the study of ethnic preferences in school friendship
networks [51]; and the study of social structures in mobile-phone conversation networks [52].

In the present paper, we investigate the community structures of the Facebook networks from each of the 100 colleges
and universities. (See the visualization of the community structure for Reed College in Fig. 2.) For each institution, we
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Fig. 2. (Color online) (Left) Visualization of community structure of the Reed College Student Facebook network shown in Fig. 1. Node shapes and
colors indicate class year (gray dots denote users who did not identify an affiliation), and the edges are randomly shaded for easy viewing. We place
the communities using a Fruchterman–Reingold [31] layout, and we use a Kamada–Kawaii [53] layout to position the nodes within communities [54].
(Right) The same network layout but with each community depicted as a pie. Larger pies represent communities with larger numbers of nodes. Darker
edges indicate the presence of more connections between the associated communities.

consider the Full, Student, Female, and Male networks. We seek to determine how well the demographic labels included
in the data correspond to algorithmically computed communities. Assortativity provides a local measure of homophily, but
that does not provide sufficient information to draw conclusions about the global organization of the Facebook networks. For
example, two students who attended the same high school are typically more likely to be friends with each other than are
two students who attended different high schools, but this will not necessarily have a meaningful community-level effect
unless enough of the students went to common high schools. As we will see below, high school tends to be a much more
dominant organizing characteristic of the social structure at the large institutions than at small institutions, presumably
because of a significant frequency of common high-school pairs at the large institutions.

We identify communities by optimizing the ‘‘modularity’’ quality function Q =


i(eii − b2i ), where eij denotes the
fraction of ends of edges in group i for which the other end of the edge lies in group j and bi =


j eij is the fraction of all

ends of edges that lie in group i. High values of modularity correspond to community assignments with greater numbers of
intra-community links than expected at random (with respect to a particular null model [41,42,55]). Although numerous
other community detection methods are also available, modularity optimization is perhaps the most popular way to detect
communities and it has been successfully applied to many applications [41,42]. One might also consider using a method
that includes a resolution parameter [56] to avoid issues with resolution limits [57]. However, our primary focus is on global
organization of the networks, sowe limit our attention to the default resolution ofmodularity. This focus arguably biases our
study of communities to large structures, such as those influenced by common class year, making the observed correlations
with other demographic characteristics even more striking.

To try to ensure that the communities we detect are properties of the data rather than of the algorithms that we used, we
optimize modularity (with default resolution) using 6 different combinations of spectral optimization, greedy optimization,
and Kernighan–Lin (KL) node-swapping steps [58] (in the manner discussed by Newman [59]). Specifically, we use (1)
recursive partitioning by the leading eigenvector of a modularity matrix [55], (2) recursive partitioning by the leading pair
of eigenvectors (including an extension [60] of the method in Ref. [55]), (3) the Louvain greedy method [61], and each of
these three choices supplemented with small increases in the quality Q that can be obtained using KL node swaps. Each of
these 6 methods yields a partition into disjoint communities, and we obtain our comparisons (described in Section 3.4) by
considering each of these 6 partitions.

Modularity optimization is NP-hard [62], so one must be cautious about the large number of near-degenerate partitions
in the modularity landscape [63]. However, by detecting coarse observables – in particular, the global organization of a
Facebook network based on the given categorical data – and considering results that are averaged overmultiple optimization
methods, one can obtain interesting insights. The specific ‘‘best’’ partition will vary from one method to another, but some
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of the predicted coarse organizational structure of the networks (see below) is robust to the choice of community detection
algorithm.

3.4. Comparing communities to node data

Once we have detected communities for each institution, we will compare the algorithmically-obtained community
structure to the available categorical data for the nodes. We recently developed a methodology to accomplish this goal
in Ref. [29] (where we considered only 5 institutions among the 100 in order to illustrate the techniques). This method of
comparison can be applied to the output of any ‘‘hard partitioning’’ algorithm, in which each node is assigned to precisely
one community (cf. ‘‘soft partitioning’’ methods, in which communities can overlap). We briefly review that methodology
here.

To compare a network partition to the categorical demographic data,we standardize (using a z-score) the Rand coefficient
of the communities in that partition compared to partitioning based purely on each of the four categorical variables (one at
a time). For each comparison, we calculate the Rand z-score z in terms of the total number of pairs of nodes in the network
M , the number of pairs that are in the same community M1, the number of pairs that have the same categorical value M2,
and the number of pairs of nodes that are both in the same community and have the same categorical value w [29]. The
Rand coefficient is given in term of these quantities by S = [w+ (M −M1 −M2 +w)]/M [64]. We then calculate the z-score
for the Rand coefficient [29,65]:

z =
1
σw


w −

M1M2

M


, (2)

where

σ 2
w =

M
16

−
(4M1 − 2M)2(4M2 − 2M)2

256M2
+

C1C2

16n(n − 1)(n − 2)

+
[(4M1 − 2M)2 − 4C1 − 4M][(4M2 − 2M)2 − 4C2 − 4M]

64n(n − 1)(n − 2)(n − 3)
, (3)

n is the number of nodes in the network, the coefficients C1 and C2 are given by

C1 = n(n2
− 3n − 2) − 8(n + 1)M1 + 4


i

n3
i·,

C2 = n(n2
− 3n − 2) − 8(n + 1)M2 + 4


j

n3
·j, (4)

nij denotes an element of a contingency table and indicates the number of nodes that are classified into the ith group of the
first partition and the jth group of the second partition, ni· =


j nij is a row sum, and n·j =


i nij is a column sum. Each

z-score indicates the deviation from randomness in comparing the community structure with the partitioning based purely
on that single demographic characteristic. One needs to be cautious when interpreting such deviations from randomness
as strengths of correlation. In particular, given the dependence on system size inherent in this measure, one should not
overinterpret the relative values of z-scores from different institutions. Nevertheless, the z-scores provide a reasonable
proxy quantity both for the statistical significance of correlation and for the relative strengths of correlation in a specified
network.

4. Results

We now use the methods outlined in the previous section to study the Facebook networks. We first follow the order of
presentation above and then make some observations in combinations. Complete results are available in the tables in the
Supplementary Data.

4.1. Assortativity

We tabulate the assortativities based on gender,major, residence, class year, and high school for all networks (and subsets
thereof) in Table A.2.

For almost all of the institutions and each of the 4 network subsets, the class year attribute produces higher assortativity
values than the other available demographic characteristics. However, RiceUniversity (31), California Institute of Technology
(36), University of Georgia (50), Mich (67), Auburn University (71), and University of Oklahoma (97) are each examples in
which residence provides the highest assortativity values (again, for each of the 4 network subsets). We discussed Caltech
(i.e., California Institute of Technology) as a focal example in Ref. [29], in which we introduced the community comparison
methods that we employ below.
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Fig. 3. (Color online) Box plots (indicating median, quartiles, extent, and outliers of the distribution) of the logistic regression nodematch coefficients for
the 16 smallest institutions in the data for the model described in the main text. We plot the −θedges values to present results with greater resolution. We
separately present our results for the Full, Student, Female, and Male networks.

Other institutions have varying orderings of class year and residence assortativity among the 4 network subsets. At
MIT (8), USF (51), Notre Dame (57), University of Maine (59), UC (61), UC (64), and MU (78), residence gives the highest
assortativity in the Male networks. The UCF (52) Female network has its highest assortativity with residence. The Full
network and the Male network for University of California at Santa Cruz (68) have their highest assortativity values with
residence. Both the Male and Female networks at UIllinois (20), Tulane (29), UC (33), Florida State University (53), Cal (65),
University of Mississippi (66), University of Indiana (69), Texas (80), Texas (84), University of Wisconsin (87), Baylor (93),
University of Pennsylvania (94), and University of Tennessee (95) have their highest assortativity values with residence; all
other networks from these institutions have their highest assortativity values with class year.

Some outlying observations can be tied directly to small samples. For example, Simmons (81) is a female-only college. It
has only fourmales in the Full network; none of themales had any connectionswith anothermale, so the gender assortativity
values for both the Full and Student networks are very close to 0. Similar gender numbers are also present in the data from
Wellesley (22) and Smith (60).

4.2. Dyad-level regression and exponential random graphs

We use the two statistical models described in Section 3.2 to study the 16 smallest institutions. The (dyad-independent)
logistic regression model includes contributions from edges (network density) and matched user (node) characteristics for
each of four demographic variables. We present the results for this model in Table A.3. The second model that we consider
is an ERGM, which supplements the first model with a structural triangle contribution. We present the results for this
model in Table A.4. These calculations give views of the networks at the microscopic (dyad-level) scale that supplement the
results that we obtained using the assortativity statistics.
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Fig. 4. (Color online) Box plots (indicating median, quartiles, extent, and outliers of the distribution) of the exponential random graph model coefficients
described in the main text for the 16 smallest institutions in the data. We plot the −θedges values to present results with greater resolution. We separately
present our results for the Full, Student, Female, and Male networks.

We consider the results from the 16 smallest institutions by fitting the models to each of their Full, Student, Female, and
Male networks. Because each of the resulting model coefficients appears to be statistically significant at a p-value of less
than 10−4, we interpret the importance of node matching on the different demographic characteristics directly from the
magnitude of the corresponding model coefficients. We summarize the results for these 16 institutions using the box plots
in Figs. 3 and 4. The box plots identify the outliers by institution number: Caltech (36), Oberlin (44), Smith (60), Simmons
(81), Vassar (85), and Reed (98). (As we have only performed this regression for the 16 smallest institutions in the data, one
should not jump to conclusions from this list of outliers.) For all institutions and all 4 types of networks for each institution,
the highest coefficient in the employed ERGMmodel (with triangle terms) is given formatching the high school category,
and the value of this coefficient is significantly higher than those for the other node-matching coefficients. Only the Caltech
(36) Female network has ERGM coefficients for year, residence, and high school that are very close to each other. For each
network, both of these models reported convergence after three iterations [35].

4.3. Comparison of communities

We now discuss community-level results for each network using z-scores of the Rand coefficient to compare partitions
obtained via algorithmic community detection to partitions based on each characteristic. That is, each community detection
result identifies a group assignment for each node, thereby producing a network partition (called a ‘‘hard’’ partition) inwhich
each node is assigned to exactly one community. One can also obtain a hard partition for each network by selecting a single
characteristic and grouping nodes according to that characteristic. Every network thatwe study (including the subnetworks)
has at least one z-score in the set {zMajor, zYear, zHS, zResidence} with a value greater than 5. Although the distribution of Rand
coefficients is decidedly not Gaussian, particularly in the tails of the distributions [29,66,67], this z = 5 threshold indicates
that at least one characteristic in each network exhibits strong statistical significance. Moreover, the vast majority of our
comparisons (see Table A.5) exceed the z = 2 threshold. (That is, they essentially lie outside 95% confidence intervals.)
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To visualize and compare the varied strengths of organization according to the different demographic characteristics, we
represent the four z-scores obtained for each network (Full, Student, Female, andMale) of an institution using 3-dimensional
barycentric (tetrahedral) coordinates [68,69]. We start by setting all negative z-scores to 0, as all observed negative z-score
values are small enough to be statistically insignificant. We then normalize by the sum of the z-scores to obtain

z1 =
zMajor

zMajor + zYear + zHS + zResidence
,

z2 =
zResidence

zMajor + zYear + zHS + zResidence
,

z3 =
zYear

zMajor + zYear + zHS + zResidence
,

z4 =
zHS

zMajor + zYear + zHS + zResidence
. (5)

From these four z-score values, we calculate coordinates X = (x1, x2, x3) located inside a tetrahedron. For example, one can
obtain a tetrahedron whose vertices are p1 = (1, 0, 0), p2 = (cos(2π/3), sin(2π/3), 0), p3 = (cos(4π/3), sin(4π/3), 0),
and p4 = (0, 0,

√
2) with the transformation

X = (T × Z) + p4,
T =


p1 − p4 p2 − p4 p3 − p4


,

Z =

z1
z2
z3


. (6)

The information from z4 = 1− (z1 + z2 + z3) is implicitly included in (6) because of the normalization. Each of the 4 vertices
of the tetrahedron corresponds to a limit inwhich the corresponding z-score completely dominates the other three z-scores.
That is, at a vertex, the entire z-score sum arises from the corresponding component.

Because of the strong role of class year, we visualize the tetrahedra from a perspective located above the vertex
corresponding to class year and project the result into the opposing face of the tetrahedron.We calculate the point X for each
of the 6 algorithmic partitions of each network (i.e., using the aforementioned 6 different community detection methods).
For each institution, we plot a disk whose center lies at the midpoint of these 6 sets of X coordinates. The width of each disk
is proportional to the maximum difference between a pair of these 6 sets of coordinates (with these distances separated
into bins of width 0.1, as indicated in the legends of Figs. 5–8). For example, in Fig. 5, the Pepperdine (86) results have a
maximum distance of 0.0141 between partitions, so Pepperdine (86) is represented by one of the smallest disks. Harvard
(1) has a maximum distance of 0.1581 between partitions; this lies in [0.1, 0.2), so Harvard (1) is represented by one of the
disks of second smallest size. We emphasize that the computed differences are much larger than what one sees using the
depicted disks, whose sizes allow one to discern the results from different institutions.

In Figs. 5–8, we show each of the 100 institutions, identified by number (see Table A.1), using a disk that we have
color-coded according to the Cartesian distance of its center from the Year vertex. Class year is the predominant organizing
category among the ones present in the data, so most of the institutions are located very close to the Year vertex. We zoom
in on the Year vertex for each figure in order to better discern the relative importance of class year at the institutions.
Importantly, the social organizations of a few institutions differ considerably from those of the majority. Each of these
institutions lies close to the Residence vertex, so their community structures are organized predominantly according to
dormitory residence. Foremost among these institutions are Rice (31) and California Institute of Technology (36). As we
discussed in Ref. [29], California Institute of Technology (Caltech) iswell known to be organized almost exclusively according
to its undergraduate ‘‘House’’ system [70].

Because we repeatedly observe a strong correlation of class year with community structure, it is relevant to recall that
the community detection method that we have employed optimizes modularity at the default resolution. Because of the
resolution limit of modularity [57], it might be interesting to explore individual networks at different scales using resolution
parameters [41,42,56]. We reiterate, however, that our focus in the present paper is on large-scale features of network
partitions rather than on the precise community affiliations of nodes in such partitions.

In Fig. 5, we show the social organization tetrahedron for the Full networks (i.e., for the largest connected components
of the complete networks) for all institutions. Although the community structures of nearly all of the Full networks are
organized overwhelmingly by class year, a few of them are also heavily influenced by dormitory residence. (We already
mentioned above that Rice (31) and Caltech (36) are organized predominantly by residence.) For example, dormitory
residence also dominates the community structure at UC Santa Cruz [UCSC] (68), though to a lesser extent than at Rice and
Caltech. We also observe relatively high residence z-scores at Smith (60), Auburn (71), and University of Oklahoma (97).
Major seems to be most important relative to the other available characteristics at Oberlin (44) and Maine (59), though in
both cases its relative importance pales in comparison to that of class year. High School seems to have its largest importance
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Fig. 5. (Color online) (Upper Left) Social organization tetrahedron for the community structures of the Full component (i.e., largest connected component)
of the networks for each of the 100 institutions. Lighter disks indicate an organization that is based more predominantly on class year. See the main text
for a description of this figure. (Lower Right) Magnification near the Year vertex. The legend illustrates the disk size as a function of the maximum distance
d between a pair of the 6 different partitions of the network. Most cases (88 out of 100 institutions) have d < 0.2.

at USF (51) and Tennessee (95), though class year is again evenmore important. Most of the institutions are clustered tightly
near the Year vertex, but Residence can often be rather important (and is sometimes even the most important category, as
we have seen in three cases).

In Fig. 6,we show the social organization tetrahedron for the Student networks (i.e., for the largest connected components
of the student-only subnetworks) for all institutions. As we saw with the Full networks, most of the institutions have
community structures that are organized overwhelmingly according to class year. Rice, Caltech, Smith, UCSC, Auburn,
and Oklahoma are again exceptions, as dormitory residence also exerts considerable (or even primary) influence at these
institutions. Additionally, considering the Student networks reduces the relative dominance of the Year vertex, although it
clearly still dominates the social organization. This feature is illustrated by institutions such as UC (64), UF (21), and Rutgers
(89).

In Fig. 7, we show the social organization tetrahedron for the Female networks (i.e., for the largest connected components
of the female-only subnetworks) for all institutions. Class year is once again the overwhelmingly dominant organizing
characteristic, and dormitory residence is again important at institutions such as Rice, Caltech, Smith, UCSC, Auburn, and
Oklahoma. However, we now observe an increased importance of the High School vertex. USF (51), Tennessee (95), UF (21),
FSU (53), and GWU (54) all lie closer to the High School vertex than was the case in the Full and Student networks.
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Fig. 6. (Color online) (Upper Left) Social organization tetrahedron for the community structures of the Student component of the networks for each of the
100 institutions. Lighter disks indicate an organization that is based more predominantly on class year. See the main text for a description of this figure.
(Lower Right) Magnification near the Year vertex. As in Fig. 5, the disk sizes correspond to the maximum distances between partitions.

In Fig. 8, we show the social organization tetrahedron for the Male networks (i.e., for the largest connected components
of the male-only subnetworks) for all institutions. Class year is once again the overwhelmingly dominant organizing
characteristic, and dormitory residence is again the most important category at institutions such as Rice, Caltech, and UCSC.
Interestingly, considering the Male network suggests that residence is the most important factor for the social organization
for the males at Notre Dame (57). Residence also exerts an important influence on the males at Mich (67). This is starkly
different from what we observed for these institutions in the Full, Student, and Female networks (and would seem to be
something interesting to investigate more thoroughly in the future using other data and methods). The Male UCF (52), MSU
(24), USF (51), Auburn (71), and Maine (59) networks are strongly influenced by High School. The Male networks at Texas
(80), Rutgers (89), and UIllinois (20) stand out from other universities because of their proximity to the Major vertex. This
is true for Oberlin (44) as well, though one observes this for all 4 networks for this institution.

4.4. Discussion

As described above, we see using the z-scores of the Rand coefficients for demographic characteristics versus algorithmic
community assignments that class year is the strongest organizing factor at most institutions and that residence is much
more important for the community organization at some institutions than at others. The importance of residence is
especially prominent at Rice (31) and Caltech (36).We also observe that theMale networks tend to bemore scattered around
the Year vertex, as some institutions exhibit a stronger correlation with major, whereas others have a stronger correlation
with high school. This suggests that there are potential differences in the gender patterns of friendships, which would be
interesting to investigate in future studies with different data. We do not explore this general issue further and instead
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Fig. 7. (Color online) (Upper Left) Social organization tetrahedron for the community structures of the Female component of the networks for each of the
100 institutions. Lighter disks indicate an organization that is based more predominantly on class year. See the main text for a description of this figure.
(Lower Right) Magnification near the Year vertex. As in the two previous figures, the disk sizes indicate the maximum distances between partitions.

attempt to identify interesting comparisons with the results that we obtained above. Although it is of course impossible to
be exhaustive in our observations, we present all of our assortativity values, regression-model coefficients, and community-
comparing z-scores in the tables in Supplementary Data part A. We also highlight some interesting facets of our results.

Of particular interest is the comparison of results from the dyad-level regression models to those from community-level
correlations. We note, in particular, that the logistic regression and exponential random graph model that we employed
for the smallest 16 institutions specify that almost all institutions and all of their subnetworks give the highest model-
coefficient contribution toward the presence of edges between nodes from common High Schools. However, as we have
seen – andwhich is particularly evident using the visualizations with tetrahedra – at the community level, most institutions
are organized by class year and have a relatively small correlation with high school.

Even in the rare cases in which the rank ordering of the four categories (year, residence, major, and high school) at the
community level matches that obtained via dyad-level model coefficients, such as with the logistic regression model for the
Full and Female networks from Caltech (36), the relative sizes of the contributions at the dyad level are completely different
from those observed at the community level. Caltech supplies an illustrative example of the different insights obtained from
community detection versus logistic regression and exponential random graph models both because of its small size and
because of its outlying correlationwith dormitory residence at the community level. A simple interpretation of the apparent
dichotomy between the dyad-level model coefficients and the correlations at the community level is that the presence of
two students from the same high school at a small institution like Caltech yields a significant increase in the likelihood of
a tie between those students. Even though the corresponding model coefficient is smaller than in any of the other of the
16 smallest institutions, it is comparable to that for common residence (called ‘‘Houses’’ at Caltech). Nevertheless, the very
small number of node pairs (relative to the total number of such pairs) at Caltech that have matching high schools has a
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Fig. 8. (Color online) (Upper Left) Social organization tetrahedron for the community structures of the Male component of the networks for each of the
100 institutions. Lighter disks indicate an organization that is based more predominantly on class year. See the main text for a description of this figure.
(Lower Right) Magnification near the Year vertex. As in the three previous figures, disk size indicates the maximum distance between partitions. We note
that there are more d > 0.2 cases here than in the previous figures. This illustrates the greater variability in the relative positions of the z-scores in the
different Male networks than was the case for the Full, Student, and Female networks.

very small effect at the community level, as the algorthmically-obtained communities are correlated overwhelmingly with
House affiliation. The ERGM result with triangle contributions makes this distinction even more striking, as the common
high-school coefficient is actually larger than the coefficient from common House.

We also observe other features that might be worthy of future investigation using other data sets and methodologies.
We report the results of our calculations in depth in Tables A.1–A.5. Here we highlight only a few potentially interesting
examples in which different methods or different subnetworks yield apparently different qualitative conclusions. For
example, we found that major is the second most important factor for the organization of the communities in all of the
Oberlin (44) networks, but only for the Full andMale networks does the logistic regression give the secondhighest coefficient
for major. We also observed that the relative ordering of major at the same institution is sometimes gender-dependent. For
example, major gives the second largest z-score in the Female and Male networks of Stanford (3), but it gives the fourth
largest z-score in Stanford’s Full network. Even more interesting, major gives the second largest z-score for the Female
network at UVA (16), the third largest z-score for UVA’s Male network, and the fourth largest z-score for its Full network.
The communities in the Auburn (71) Female network are dominated by residence, but those in the other Auburn networks
are not. Similarly, the communities in the MIT (8) Male network are dominated by residence, but those in the other MIT
networks are not. Another interesting disparity based on gender occurs in the communities in the Tennessee (95) networks.
High school is the primary organizing factor for the Male network, the secondary organizing factor for the Student network,
and the tertiary organizing factor for the Female and Full networks.
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5. Conclusions

We have studied the social structure of Facebook ‘‘friendship’’ networks at one hundred American institutions at a single
point in time (using data from September 2005). To compare the organizations of the 100 institutions using categorical
data, we considered both microscopic and macroscopic perspectives. In particular, calculating assortativity coefficients and
regression-model coefficients based on observed ties allows one to examine homophily at the local level, and algorithmic
community detection allows a complementary macroscopic picture. These approaches complement each other, providing
different perspectives on investigations of these Facebook networks. Such complementary calculations are particularly
valuable when the microscopic and macroscopic perspectives identify different dominant contributions. For example, in
the Caltech networks, the assumed ground truth of the importance of the House system is captured better by computing
community structure.

This ‘‘real-world ensemble’’ of 100 networks formed by ostensibly similar mechanisms has the potential to provide a
testing ground for various models of network formation. Because of the useful comparisons such an ensemble can facilitate,
this data will similarly be useful for studies of dynamic processes on networks, algorithmic community detection, and so on.
Because of the different rates of initial Facebook adoption at different institutions, the single point in time represented by
the data might usefully describe different stages in the formation of an online social network. In order to pursue such ideas
further, one needs to start by studying the networks for their own sake and comparing their structures. This was the goal of
the present paper. In particular, we have identified some of the key differences across these 100 realizations of online social
networks.

Some of our observations confirm conventional wisdom or are intuitively clear, providing soft verification of our
investigation via expected results. For example, we found that class year is often important, Houses are important at Caltech,
and high school plays a greater role in the social organization of large universities than it does at smaller institutions (where
there are typically fewer pairs of people from the same high school). Other results are quite fascinating and merit further
investigation. In particular, the differences in the community structures of the female-only and male-only networks would
be interesting to investigate in both offline and online settings. The Facebook data suggests that women are typically more
likely to have friends within their common residence (among the demographic data to which we have access) but that
the characteristics in the communities in the male-only networks exhibit a wider variation. Investigating this thoroughly
would require different data sets and methodologies, especially if one wishes to discern the causes of such friendships from
observed correlations.

The Facebook networks that we study offer imperfect counterparts of corresponding real-life social networks, which
have different properties from online social networks. It is thus crucial that our results are complemented by studies of the
corresponding real networks in order to quantify the extent of such differences.
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