corner
corner

Access provided through the subscription of Staats- und Universitaetsbibliothek Bremen

Phys. Rev. Lett. 108, 188701 (2012) [5 pages]

Graph Spectra and the Detectability of Community Structure in Networks

Download: PDF (180 kB) Export: BibTeX or EndNote (RIS)

Raj Rao Nadakuditi1 and M. E. J. Newman2
1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA

Received 14 February 2012; published 1 May 2012

We study networks that display community structure—groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.

© 2012 American Physical Society

URL:
http://link.aps.org/doi/10.1103/PhysRevLett.108.188701
DOI:
10.1103/PhysRevLett.108.188701
PACS:
89.75.Hc, 02.70.Hm, 64.60.aq, 05.10.-a