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Abstract

Physics-informed Graph Neural Networks have achieved remarkable performance in learning through
graph-structured data by mitigating common GNN challenges such as over-smoothing, over-squashing,
and heterophily adaption. Despite these advancements, the development of a simple yet effective paradigm
that appropriately integrates previous methods for handling all these challenges is still underway. In this
paper, we draw an analogy between the propagation of GNNs and particle systems in physics, proposing
a model-agnostic enhancement framework. This framework enriches the graph structure by introducing
additional nodes and rewiring connections with both positive and negative weights, guided by node
labeling information. We theoretically verify that GNNs enhanced through our approach can effectively
circumvent the over-smoothing issue and exhibit robustness against over-squashing. Moreover, we
conduct a spectral analysis on the rewired graph to demonstrate that the corresponding GNNs can fit both
homophilic and heterophilic graphs. Empirical validations on benchmarks for homophilic, heterophilic
graphs, and long-term graph datasets show that GNNs enhanced by our method significantly outperform
their original counterparts.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated exceptional performance in learning tasks involving
graph-structured data [38, 18, 30, 25]. Recent studies in the GNN domain have unveiled a connection
between continuous physical diffusion processes and their discretized versions on graphs [6, 19]. Accordingly,
numerous physics-informed methods have been proposed to mitigate issues in GNN such as over-smoothing
(OSM) [39], over-squashing (OSQ) [40], and heterophily adaptation [9]. Specifically, in addressing the
OSM problem, one needs to ensure that node features remain distinguishable after several iterations of GNN
[5, 29]. To achieve this, it may be necessary for some connected nodes to “repulse” each other, so they
can be categorized into different classes from GNN outputs [43, 14]. Methods that enable GNNs to do this
naturally enhance the networks’ ability to adapt to heterophily graphs, in which connected nodes are more
likely to belong to different classes of labels. On the other hand, to mitigate OSQ issues, it is crucial to
allow information to flow more effectively through GNN propagation [35]. This can be accomplished by
leveraging strategies such as graph adjacency rewiring and reweighting based on topological features like
curvatures [40, 12, 33] and spectral expanders [24, 4, 2]. Additionally, it has been observed that there is a
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trade-off between the OSM and OSQ issues in GNNs, leading to a few recent studies to focus on alleviating
both issues simultaneously [31, 17].

Based on the aforementioned contents, to mitigate both OSM and OSQ problems, one may prefer to
leverage a mixed operation that involves graph rewiring to reduce the OSQ issue and induce repulsive forces
between nodes to alleviate OSM issues. In this paper, inspired by the field of particle systems in physics, we
introduce a novel model agnostic paradigm that leverages node labeling information to induce both repulsive
forces and rewiring on the graph. Our approach can be applied to many GNNs for deep learning on graphs.

Contributions First, we introduce the notion of collapsing nodes (CNs) that served as reliable “gravitational”
sources via GNNs training. We show that guided by the node labeling information, the graph adjacency,
expanded by the CNs, makes the propagation of GNNs through both attractive and repulsive forces. Second,
we theoretically verify that our proposed models can mitigate both OSM and OSQ issues and the heterophily
adaption problem. We also discuss the spectral property of the CNs rewired graph and show that it is those
negative eigenvalues that enhance our models’ adaption power to heterophilic graphs. Furthermore, we show
the impact of CNs via graph curvature and the trade-off relation between OSM and OSQ problems. Lastly,
we conduct various experiments to demonstrate the effectiveness of our method on both homophilic and
heterophilic graphs as well as long-term learning tasks.

2 Preliminary

Graph Basics and Graph Homophily Let G = (V, E0) represent an connected undirected graph with N
nodes, where V and E0 denote the sets of nodes and edges, respectively. The adjacency matrix A ∈ RN×N is
defined such that ai,j = 1 if (i, j) ∈ E0 and zero otherwise.

We introduce X ∈ RN×d0 to represent the matrix of d0-dimensional nodes features, with xi ∈ Rd0 as its
i-th row (transposed). Additionally, we define Y ∈ RN×C as the node label matrix, comprising label vectors
for the labeled nodes (via one-hot coding) and zero vectors for the unlabeled nodes, where C is the total
number of classes. Apart from these basic notations on graph, we also recall the notion of so-called graph
homo/heterophily, which shows how labels are distributed among connected nodes.

Definition 1 (Homophily and Heterophily). The homophily or heterophily of a network is used to define the
relationship between labels of connected nodes. Denote Ni ⊆ V as the neighbors of node i. The level of
homophily of a graph is measured by the positive score H(G) = Evi∈V [|{vj : vj ∈ Ni and yj = yi}|/|Ni|].
A score H(G) close to 1 corresponds to strong homophily while a score H(G) nearly 0 indicates strong
heterophily. We say that a graph is a homophilic (heterophilic) graph if it has stronger homophily (heterophily),
or simply strong homophily (heterophily).

Based on the definition of graph homophily, one can see that, compared to homophily graphs which
require a learning model to predict nearly identical labels to connected nodes, distinct label predictions are
preferred for heterophilic graphs.

MPNNs and Graph Neural Diffusion Consider node i with feature representation h
(ℓ)
i at layer ℓ, and

h
(0)
i = xi. Message Passing Neural Networks (MPNNs) [15] use message functions ψℓ : Rdℓ × Rdℓ → Rd′ℓ
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and update functions ϕℓ : Rdℓ × Rd′ℓ → Rdℓ+1 defined by:

h
(ℓ+1)
i = ϕℓ

h
(ℓ)
i ,

∑
j∈Ni

Aijψℓ(h
(ℓ)
i ,h

(ℓ)
j )

 . (1)

It is worth noting that A can be replaced with the features that are defined on the edges of the graph. For the
simplicity of our analysis, we only consider MPNNs with A included.

Classical GNNs like GCN [25] and GAT [41] are the examples
of this MPNN framework. Crucially, MPNNs also act as solvers for discrete dynamics on graphs, like the

well-known graph neural diffusion [6, 39]. Specifically, [6] incorporated the message passing scheme and its
variants in their GRAND models as described as:

∂

∂t
h(t) = div (G(h(t), t)∇h(t)) , (2)

where G(h(t), t) = diag(a(hi(t),hj(t), t)) in which a denotes a function that quantifies the similarity
between node features, such as the attention coefficient [41]. We further let ∇h represents the graph gradient
operator, defined as ∇ : L2(V) → L2(E0) such that (∇h)ij = hj − hi, where L2(V) and L2(E0) be Hilbert
spaces for real-valued functions on V and E0, respectively with the inner products given by

⟨f, g⟩L2(V) =
∑
i∈V

figi, ⟨F,G⟩L2(E0) =
∑

(i,j)∈E0

FijGij ,

for f, g : V → R and F, G : E0 → R. Similarly, we denote graph divergence div : L2(E0) → L2(V), being
the inverse of graph gradient operator, is defined as (divF )i =

∑
j:(i,j)∈E0 Fij .

3 Motivations and Model Formulation

3.1 Graph Diffusion as Particle System

Let us go deeper to the scheme of GRAND presented in (2), one can rewrite (2) into a component-wise form
such that

∂

∂t
hi =

∑
j∈Ni

a(hi,hj)(hj − hi), (3)

where we drop time t from now on for the ease of notation. It suggests that the dynamic of the change of
the feature of node i is conducted by aggregating its neighbouring information, suggesting a homogenizing
process on the connected nodes. Furthermore, similar to the work in [43], one can interpret (3) as an
interactive particle system, in which all particles (nodes) attracted each other and eventually, after sufficient
propagation, collapsed into one overlapped node with fixed feature, as long as we have the similarity score
(i.e., a(hi,hj)) positive throughout the propagating process. Although such feature processing might be
friendly to homophily graphs, it is not hard to see that it may not be necessary for heterophily graphs, in
which adjacent nodes are preferred to be pushed apart from each other, resulting in more distinctive node
features. Accordingly, the recent work [43] enhances (3) by including negative similarities (i.e., negative
edge weights) such that

∂

∂t
hi =

∑
j∈Ni

(a(hi,hj)− βi,j)(hj − hi) + δhi(1− h2
i ), (4)
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in which βi,j is leveraged to adjust the sign of (a(hi,hj)− βi,j) so that the particle system can adopt both
attractive and repulsive forces. The additional term hi(1 − h2

i ) is the double-well potential that is widely
used in quantum particle physics [22] to prevent the so-called energy explosion, serving as a physical barrier
(bound) of the node feature variation. Although remarkable improvement in learning accuracy has been
observed from the model defined in (4), it is still unknown that what type of force is needed for a given
node pair. In fact, in [43], βi,j was simplified as a single constant hyper-parameter throughout the training.
This opens a rich venue for future research to explore the criteria for determining the suitable type of force,
which is measured by the sign of similarity for the given pair of nodes.

3.2 The Ideal Universe

To identify the criteria of determining the type of forces for a given node pair, ideally one shall prefer the
particle system to be evolved as

All nodes with the same labels shall eventually collapse to one node with identical features. Nodes
with different labels shall be apart from each other with distinctive features.

This requirement directly suggests leveraging the node labeling information as a guide to determine the
type of force for one specific node pair during the training process. Below we introduce the notion of (label)
collapsing nodes.

Definition 2 (Collapsing Nodes). Let V = {v1, ..., vN} be the nodes in the input graph and ṽ be a node with
known label information ỹ. ṽ is a collapsing node (CN) if for any vi ∈ V with known labels yi, ṽ is connected
to vi with positive weights if ỹ = yi and negative weights if ỹ ̸= yi regardless of original connectivity.

The definition of collapsing nodes (CNs) suggests that by leveraging the known node label information,
CNs serve as a “gravitational” source via the feature propagation, since all nodes with available label
information are connected to CNs, and will be attracted/repulsed by CNs if they have the same/different
labels. We further note that CNs can be either sourced from the node from the original graph or added as
additional nodes to the graph. For the convenience of this study, in the sequel, we only consider the second
type of CNs (additional nodes to the graph).

Accordingly, this augments the original graph by adding a connection matrix C ∈ RN×K (for K
collapsing nodes),

Ci,k =


+1, if yi known and yi = ỹk

−1, if yi known and yi ̸= ỹk

0, otherwise

where we use ỹk to denote the label of CN k for k = 1, ...,K.
For convenience, we set K equal to C, the number of unique labels in a given graph.
The corresponding adjacency matrix after including CNs is thus given by

Ac =

 A C

C⊤ 0

 . (5)

Further if the adjacency includes self-loops, then Ac =

A C

C⊤ 1K×K

, where 1K×K is a diagonal matrix

(block) of size K × K with entries of all ones. Considering that Ac contributes valuable node labeling
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information to the propagation of node features, a model-agnostic framework can be established. We name
such framework as UYGNNs, short for Universal Label based (Y) Graph Neural Networks. Accordingly,
one can define UYGCN that propagates nodes features with the following dynamic

∂

∂t
hi =

∑
j∈Ni

(aGCN
c (hi,hj))(hj − hi), (6)

where aGCN
c (hi,hj) denotes the edge similarities contained in Ac. Note that here the index i runs through all

the N +K nodes and Ni includes the neighbours of node i from the extended edge set Ê = E0
⋃
E1, where

E1 denotes the set of edges of connecting nodes with label information available to CNs. Similarly, attention
mechanism [41] can be deployed into the above massage passing scheme. In this case, one can further define
the dynamic of UYGAT as

∂

∂t
hi =

∑
j∈Ni

(
aGCN
c (hi,hj) · aGAT

c (hi,hj)
)
·
(
hj − hi

)
, (7)

where aGAT
c (hi,hj) > 0 is the attention coefficient for the connected nodes pair (i, j). The multiplication

between aGCN
c and aGAT

c is leveraged to preserve the sign of the edge weights so that the type of forces
can be maintained. Furthermore, to prevent the potential energy explosion in UYGNN models, similar to
ACMP [43], double-well potential as well as other type of physical potential terms (e.g., harmonic oscillator
potential [28]) can be leveraged to further restrict the motion of nodes.

3.3 An even More Complexed Universe

Apart from the structure of UYGCN and UYGAT, which only assigns repulsive force between NC and the
nodes with different labels, node labeling information can also serve as a guide to assign repulsive forces
on original graph connectivities. Specifically, one can achieve this by leveraging the label-based adjacency
matrix Ay, with its entries defined as

(Ay)i,j =


+1, if yi = yj

−1, if yi ̸= yj

0, otherwise

for any edge pair (i, j) ∈ E . The corresponding dynamic is

∂

∂t
hi =

∑
j∈N 0

i

(ay(hi,hj) · a(hi,hj)) · (hj − hi) +
∑
j∈N 1

i

ac(hi,hj) · (hj − hi), (8)

where we denote N 0
i and N 1

i as the neighbors of node i from E0 and E1, respectively. It is not hard to see
that for any nodes with label information above, such universe design will ensure that nodes will only be
attracted by those nodes with the same label and pushed away from nodes with different labels.
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3.4 MLP in&out Paradigm

To implement the propagation according to the dynamic UYGNNs (i.e., (6)), one can conduct an MLP
in-and-out paradigm [6] as follows.

H(ℓ) = MLP
(ℓ)
in (H(ℓ)), (9)

H′ = σℓ(AcH
(ℓ)), (10)

H(ℓ+1) = MLP
(ℓ)
out(H

′), (11)

where we have H(0) = X. Practically, MLPin and MLPout are implemented with two learnable channel
mixing matrices W(ℓ)

in ∈ Rdℓ×d′ℓ and W
(ℓ)
out ∈ Rd′ℓ×dℓ+1 , respectively, and σ is the activation function. One

can further check that the computational complexity of UYGCN is with O(|Ê |d′ℓ), which is similar to the
classic GNNs [25].

4 Theoretical Analysis of Y-GNNs

In this section, we theoretically verify that UYGCN can handle the aforementioned GNN issues, such as
OSM, OSQ, and heterophily adaption. All proving details are included in Appendix.

4.1 Avoiding OSM

We start our analysis by showing that UYGCN can avoid the OSM problem. Specifically, the dynamics of (6)
can be shown to avoid OSM in the limit, i.e., not converging to a constant state. This can be read directly
from the result that the constant state is not a stationary point of the dynamics. To see this, we consider
normalized adjacency Âc = D−1

c (Ac + I) (for the symmetrically normalized adjacency, the idea is the
same), where (Dc)ii =

∑
j |(ac)i,j |. Without loss of generality, consider a single feature h = [x; f ] where

x ∈ RN , f ∈ RK represents the features of original nodes and added collapsing nodes. Thus (6) can be
viewed as a system of (x, f). In order for OSM to occur, there must exist a constant vector c = c1N such
that x = c as t→ ∞.

The next proposition shows that the constant state is not a limiting state of the dynamics we consider as
long as there exists at least one training sample per class. This suggests OSM can be avoided.

Proposition 1. Suppose K is equal to the number of classes and there exists at least one training sample
per class. Consider the Euler discretized dynamics of (6) as the fixed point iteration h(ℓ+1) = Ach

(ℓ)

where h ∈ RN+K . Then the limit h = (c, f̄) of the iteration, the stationary point, is not in the form of
c = c1N ∈ RN and f̄ ∈ RK .

One can verify that on one specific time t, the dynamic in (6) is the minimizer of the following energy

E−(H) = tr(H⊤(I−Ac)H) =
∑
i,j

(Ac)i,j∥hi − hj∥2

=
∑

(i,j)∈E0

∥hi − hj∥2 +
∑

(i,k)∈E1,yi=yk

∥hi − hk∥2 −
∑

(i,k)∈E1,yi ̸=yk

∥hi − hk∥2.

This provides an intuitive explanation for the behaviour of our proposed dynamics, i.e., pushing samples from
the same class to its corresponding collapsing node, while maximizing their separation from other collapsing

6



nodes. We further highlight that if we combine the energy E−(H) with the double-well potential term, then
the energy becomes the popular Ginzburg-Landau energy [27]. However, E−(H) can be negative depending
on the graph spectra, we provide a more detailed discussion on this phenomenon regarding GNN heterophily
adaption in Section 4.3.

Cluster Flocking At the beginning of Section 3.2, we proposed the ideal evolution of the node features
according to their labeling information, and we have verified that, based on our design, nodes propagated
under UYGNNs move toward the consequences that we prefer to observe. Yet it is still unknown whether
node features’ asymptotic states align with the criteria we proposed before. In Appendix, we demonstrate that
the UYGAT in (7) with double-well potential can asymptotically achieve the so-called cluster flocking [11]
in which nodes with same labels will be clustered due to the attractive forces whereas nodes with different
labels will be parted away because of the repulsive forces. However, it is unlikely for UYGCN to achieve
cluster flocking.

Similarly, determining the graph structure that guarantees node clustering flocking is a complex but
exciting field to explore, and we leave it to future works.

Deal with energy explosion Similar to ACMP [43], the double-well potential helps to regulate the
magnitude of Dirichlet energy, as shown in the following proposition.

Proposition 2. Denote Edir(h) = h⊤L̂h the Dirichlet energy of the signal on graph G. Then there
exist a constant depending only on N and the largest eigenvalue λmax of L, such that ∥h∥22 ≤ C and
Edir(h) ≤ λmax∥h∥22 ≤ 2∥h∥22, for some constant that depends on the node size.

4.2 Deal with OSQ

As CNs bring additional connectivities to the original graph, it is natural to explore the impact of these newly
added edges on the so-called OSQ problem of GNNs. The OSQ issue of GNNs can be viewed as a type of
information compression problem such that a large amount of feature information is compressed into a narrow
path due to the graph topology, causing GNNs to fail to capture the long-term relationship between nodes
[40, 4]. In this section, we measure the OSQ problem via the sensitivity score leveraged in [40, 4, 35], and
show that with the help of CNs, UYGNNs could increase the OSQ score upper bound thus mitigate the OSQ
problem. We further highlight that despite CNs bringing both attractive and repulsive forces by assigning
different signs on edges, from the information transaction point of view, both types of these additional edges
make the information “easier” to communicate. Accordingly, it is natural to measure the OSQ problem via
|Ac| in which additional edges with negative weights are replaced by their absolute values. It is worth noting
that, for the sake of convenience in analysis, we only consider one channel mixing matrix (i.e., Win), and our
conclusion can be easily extended to the case for both Win and Wout.

Proposition 3. Consider the UYGNN paradigm defined in (9) and (10). Assuming G is not a bipartite graph,
let i, s ∈ V , if |σ′ℓ| ≤ α, ∥W(ℓ)

in ∥ ≤ βin for 0 ≤ ℓ ≤ r, then∥∥∥∥∥∂h(r)
i

∂xs

∥∥∥∥∥≤(2αβin)
r

(
r∑

ℓ=0

|Ac|ℓ
)

i,s

. (12)

We highlight that our result can serve as an extension of Lemma 3.2 in [4] by considering the impact of
negatively weighted edges in Ac. We leave detailed proof and additional remarks in Appendix 3. Based on
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the conclusion in Proposition 3, one can see the additional edges induced from CNs densified the original
graph adjacency A, thus naturally resulting as a higher upper bound as expressed in (12).

4.3 Role of Laplacian Negative Eigenvalues

In this section, we delve deeper into the impact of the negative weighted edges on the graph spectra.
Specifically, one can define the graph Laplacian Lc = EWcE

⊤ [8], where E ∈ R(N+K)×|Ê|

is the incidence matrix and Wc ∈ R|Ê|×|Ê| is a diagonal matrix with entries of edge weights . Based on
the form of the dynamics of UYGCN in (6), without considering the double-well potential term, one can
explicitly write out the solution of the differential equation as1

H(t) = e−tLcH(0) = Ue−ΛctU⊤H(0), (13)

where Λc is the diagonal matrix with entries of eigenvalues of the Laplacian. By assuming a discrete integer
time t and replacing it with the number of layer ℓ, one can have the solution of the UYGCN, which serves as
the discretized version of the dynamics in (6). Now, as we have included negative edge weights in Ac, Lc

could have negative eigenvalues [8]. We highlight that this is exactly what UYGNN needs to fit heterophily
graphs. Since from (13), one can treat e−Λc as a spectral filter, and if the entries of Λc ≥ 0, then e−Λc serves
as a low-pass filtering function (monotonic decrease), which tends to homogenize the components of node
features, whereas in the case when all (Λc)ii < 0

it becomes a high-pass filtering function (monotonic increase), which imposes sharpening effect on nodes
features. Let Gc be the graph with CNs additionally added, Vc be the set of nodes of Gc, and T (Vc) be the
training set. The following theorem provides insights into its Laplacian spectrum.

Theorem 1. Assuming every additionally added CN has at most one node in the training set T (Vc) that
shares the same label, then the number of negative eigenvalues of Lc ∈ R(N+K)×(N+K) is between 0 and
K(K−1)

2 +K(|T (Vc)| − 1).

One important observation from Theorem 1 is although edges with negative weights are included, Lc

can still be SPD, i.e., (Λ)ii ≥ 0 for all i. In this case, based on (13), e−Λ will remain as a low-pass filtering
This suggests that UYGCN inherits the feature smoothing property of the classic GCNs [25, 41]. On the
other hand, under the scenario such that K(K−1)

2 +K(|T (Vc)| − 1) > N +K, meaning all eigenvalues of
Lc are negative, then e−Λ will behave like a high-pass filtering function. This indicates that UYGCN can
induce both smoothing and sharpening dynamics and is thus able to fit both homophilic and heterophilic
graphs. Furthermore, the necessary and sufficient condition for the definiteness of Lc is closely related to the
topology of the so-called electrical network [8] of the input graph and is out of the scope of this paper, so we
omit it here.

4.4 Impact on Curvatures and Trade-off Relation

Recent studies have verified that the trade-off between OSM and OSQ issues is closely related to the so-called
discretized curvatures defined on the edge of the graph [12, 16]. Since additional edges induced by the CNs
enrich the higher order structure of the graph i.e., triangles and 4-cycles, thus the direct consequence of this is

1We further assume Lc has distinct eigenvalues.
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Figure 1: Learning Accuracy of UYGCN with different number of CNs.

that the curvature on the edge becomes larger. For example, consider the Augmented Forman curvature [12]
defined as

FC3(i, j) := 4− di − dj + 3|♯∆(i, j)|,

where |♯∆(i, j)| denote as the number of triangles that contain edge (i, j). If we add one CN, say node
k, into the graph, both node i and j will be rewired to connect to the CN, thus naturally we have one
additional triangle in the graph. Therefore, the corresponding curvature FC ′

3(i, j) on the edge (i, j) becomes
FC ′

3(i, j) = 4− (di + 1)− (dj + 1) + 3(|♯∆(i, j)|+ 1) which is larger than the original FC3(i, j). Similar
conclusions can be drawn when one considers higher-order structures such as 4-cycles Since negative
curvatures are responsible for the OSQ problems [40, 12, 16], and the inclusion of CNs increases curvatures
by its induced additional connectivities, therefore naturally mitigates the OSQ problem.

Regarding the OSM issue, intuitively, one can consider the following four situations between original
graph nodes i, j, and CNs: (1) The additional CN (denoted as node k for short) has the same label with
both nodes i, j; (2) The label of node k only aligns with one node either from node i or j; (3) Nodes i and
j shares the same label whereas node k is with a different label; (4) All three nodes have different labels.
Based on the analogy between GNN propagation and particle systems, one can find that only in situation (1),
all three nodes will eventually share the same feature, which is preferred due to their labeling information.
In all other situations, nodes with different labels will be pushed away by repulsive forces induced by CNs,
which further dilutes the non-desirable attractive forces from their original neighbor that has different labels,
suggesting a better fitness compared to the system with no repulsive force, and an analogy of continuous
shape deformation of surfaces [23]. However, to appropriately quantify the impact of CNs on the graph
curvature as well as the trade-off relation between OSM and OSQ, one shall be required to re-define the
curvature over the graph with negatively weighted edges (i.e., sign graphs), we leave this as future work.

5 Experiment

In this section, we conducted numerical experiments to test our proposed models. Specifically, in Section
5.1, we test UYGNNs via three homophilic (Cora, Citeseer, Pubmed) and three heterophilic graphs
(Cornell, Texas, Wisconsin) and one large-scale benchmark (Ogbn-Arxiv) [21]. Further in
Section 5.2, we analyze the sensitivity of our model to the number of CNs. In addition, in Section 5.3, we
show the performance of UYGNNs over long-range graph benchmarks (LRGB) provided in [10] to verify its
advantage on the OSQ problem. We provide more experimental details and some additional experiments in
Appendix.
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Table 1: Performance of UYGCN and UYGAT on homophilic, heterophilic, and large scale graph dataset
(Arxiv). The best performance is highlighted in bold and the second best performance is underlined.

Methods Cora Citeseer Pubmed Cornell Texas Wisconsin Arxiv

MLP 55.1 59.1 71.4 91.3±0.7 92.3±0.7 91.8±3.1 55.0±0.3

GCN 81.5±0.5 70.9±0.5 79.0±0.3 66.5±13.8 75.7±1.0 66.7±1.4 72.7±0.3

GAT 83.0±0.7 72.0±0.7 78.5±0.3 76.0±1.0 78.8±0.9 71.0±4.6 72.0±0.5

GIN 78.6±1.2 71.4±1.1 76.9±0.6 78.0±1.9 74.6±0.8 72.9±2.5 64.5±2.5

APPNP 83.5±0.7 75.9±0.6 79.0±0.3 91.8±0.6 83.9±0.7 92.1±0.8 70.3±2.5

H2GCN 83.4±0.5 73.1±0.4 79.2±0.3 85.1±6.1 85.1±5.2 87.9±4.2 72.8±2.4

GPRGNN 83.8±0.9 75.9±1.2 79.8±0.8 85.0±5.2 75.9±9.2 90.4±3.0 70.4±1.5

LEGCN 81.9±2.1 73.2±1.4 77.4±0.5 81.2±3.6 81.8±2.9 71.5±1.3 73.3±0.3

Replusion 82.3±0.8 71.9±0.5 79.3±1.2 86.3±2.8 83.9±1.5 86.6±4.2 71.9±0.4

GRAND 82.9±1.4 70.8±1.1 79.2±1.5 72.2±3.1 80.2±1.5 86.4±2.7 71.2±0.2

SJLR 81.3±0.5 70.6±0.4 78.0±0.3 71.9±1.9 80.1±0.9 66.9±2.1 72.0±0.4

ACMP 84.6±0.5 75.0±1.0 78.0±0.3 84.3±4.8 85.4±4.2 87.8±3.3 68.9±0.3

UYGCN 84.8±0.3 75.2±0.4 79.9±0.5 85.7±1.6 88.9±1.5 93.6±2.7 74.4±0.9
UYGAT 84.0±0.4 76.1±0.8 79.6±1.5 87.4±1.3 89.8±2.5 89.9±1.8 72.3±0.3

5.1 Node Classification on Homophily/Heterophily Graphs

Setup For the settings in UYGNNs, we initially choose CNs by adding K nodes with their features
generated by one layer MLP. For UYGCN, the form of Ac is used throughout the whole training process,
while in UYGAT, the (single-head) attention mechanism is conducted to re-weight Ac with attention

coefficients [41]. For both UYGCN and UYGAT, we normalized Ac (with self loop) with D
− 1

2
c AcD

− 1
2

c ,
where (Dc)ii =

∑
j |(ac)i,j |. Both UYGCN and UYGAT are implemented with two layers. The grid search

approach is conducted for fine-tuning model hyperparameters. Both methods are trained with the ADAM
optimizer. The maximum number of epochs is 200 for citation networks and heterophilic graphs, whereas
500 for Ogbn-Arxiv. All the datasets follow the standard public split and processing rules. The average
test accuracy and its standard deviation come from 10 runs.

Baselines We compare UYGNNs with various baseline models. Except for those classic baseline models
such as GCN [25] and GAT [41], we also include some recent works such as LEGCN [47], Repulsive GNN
[14], which respectively leverage labeling information and repulsive forces to enhance GNNs performances.
Furthermore, we also include SJLR [40], which serves as the initial work of measuring the OSQ problem and
resolving it using the graph rewiring paradigm. Finally, we include ACMP, which is the first analogizing the
dynamic of GNNs as an evolution of particle systems. All baseline performances are retrieved from public
results, and if the results are not available, we implement baseline models to produce the learning accuracy
with our best effort.

Results We report the accuracy score percentage with the top 2 highlighted in Table 1. One can find
that both UYGCN and UYGAT achieved remarkable learning accuracy compared to the baseline models,
especially when compared to their original counterparts, i.e., UYGCN compared to GCN and UYGAT
compared to GAT. This observation suggests that our approach of leveraging node labeling information
and repulsive force is a model agnostic method to enhance classic GNNs. Furthermore, our models show a
good fit on both homophilic and heterophilic datasets thanks to the repulsive forces and the definiteness of
graph Laplacian in Theorem 1. Lastly, one can observe that UYGAT is in general with better performances
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Figure 2: Learning Accuracy (F1 score) of UYGCN, UYGAT and their original models, GCN and GAT on
long-term graph benchmarks.

compared to UYGCN in terms of heterophilic graphs, this supports our claim on its bi-cluster flocking
property that we mentioned in Section 4.1.

5.2 Sensitivity Analysis

In this section, we conduct the sensitivity analysis of UYGCN on the number of CNs. Specifically, we aim
to test whether a larger number of negatively weighted edges induced from more CNs will lead to higher
repulsive forces between nodes. In general, adding more CNs to the graph will lead to a higher number of
negatively weighted edges unless all labels are evenly distributed. To simplify our analysis, we only test
the number of CNs as C, 2C, 3C, 4C, and 5C. We select Cora, Citeseer, Cornell, and Wisconsin
and fix all other model parameters. The learning accuracy is presented in Figure 1. One can observe that for
homophilic graphs (Cora and Citeseer), there is a certain amount of accuracy drop with the increase of
CNs. This directly verifies that a higher number of CNs introduce more repulsive forces from those newly
added negatively weighted edges, making UYGCN less adaptable to homophilic graphs. On the other hand,
our model accuracy is even with a slight increase when the number of CNs increases from C to 3C via
heterophilic graphs. This suggests that more repulsive forces should be preferred for fitting heterophilic
graphs. However, with the number of CNs increasing to 4C and 5C, the learning accuracy drops and yields
an even worse outcome than |CNs| = C. This could be because when |CNs| = 4C and 5C, the power of
double-well potential might not be sufficient to restrict the variations between node features. We highlight
that, in this case, one may prefer to deploy a stronger trapping force to the system [43]. Lastly, it is worth
noting that a larger number of CNs might be more useful for a graph that contains a large number of nodes,
while a small number of distinctive labels, as in this case, one shall prefer to have sufficient “gravitational”
sources to induce appropriate attractive and repulsive forces to all nodes.

5.3 Node Classification on Long range Graph Benchmarks.

We test UYGCN and UYGAT over long-range graph benchmarks (LRGBs), namely COCO-SP provided in
[10]. The dataset is designed to test whether one GNN model can capture long-range dependency between
nodes under the metric of macro F1 score. Specifically, the COCO-SP dataset is a node classification dataset
based on the MS COCO image dataset [26] where each superpixel node denotes an image region belonging
to a particular class. We highlight that, given the dataset contains over 100000 graphs [10], our purpose for
this analysis is to verify that UYGNNs can capture the long-term dependency between nodes in one graph.
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Therefore, we randomly sample 10 graphs from both datasets and report the average F1 scores. We compare
UYGCN and UYGAT to the performance of GCN and GAT, and all models are 4 layers deep. The results
are shown in Figure 2. One can find that both UYGCN and UYGAT show superior performance compared
to their original counterparts, GCN and GAT, among all selected graphs. This suggests that our proposed
approach can dramatically increase the model’s power of capturing long-term dependency between nodes.

6 Related Works

Label Enhanced Approaches in GNNs Node labeling information has been leveraged in recent studies
of GNNs to enhance their performance. For example, [42] and [37] utilized labeling information to enrich
the node features, followed by the work [7] in which labeling information is leveraged for enhancing GNNs
on the long-distance node relations (i.e., OSQ problem). [44] further improved GNNs’ performance using
the labels from the outputs of the model. In addition, [45] deployed a topological optimization scheme to
propagate labels under fixed points conditions [34], assuming that the nearby vertices in a graph tend to share
the same label. Finally, the label-enhanced graph neural network (LEGNN) developed in [47] expands the
graph adjacency matrix with node labels and empirically shows the accuracy gain of the GNNs enhanced by
their methods.

Dirichlet Energy and OSM The so-called Dirichlet energy and its variants are the commonly applied
measurement on the OSM issue of GNNs. Although the OSM issue has been observed for years [5], its
commonly accepted definition has just been established recently [29]. Nevertheless, many attempts have been
made to mitigate the OSM issue via the lens of dynamic systems [19, 9, 39], multi-scale spectral filtering
[20, 31, 46] as well as feature optimizations [32, 13, 48].

Graph Topology and OSQ Unlike the OSM, the OSQ problem has just been identified and quantified
recently [1, 40], and little is known about a commonly acceptable definition of the OSQ issue. Despite
this, many topological indicators have been spotted to be responsible for the OSQ, for example, graph
Ricci/Forman curvature [40, 16, 36], leading to the so-called spatial rewiring approaches. Other indicators
such as spectral gap [24], Cheeger constant [2], and effective resistance serve as the motivation of so-called
spectral rewiring for the OSQ issue.

7 Concluding Remarks

In this work, we developed a model agnostic approach to enhance GNNs to handle several major challenges
via their propagation by leveraging the analogy of particle systems and node labeling information. We verified
the properties of our model along with theoretical analysis and various empirical studies. We also investigated
the functionality of negative eigenvalues in the graph spectrum from the perspective of heterophilic adaption
and the additional edges induced from CNs through the lens of curvature. As CNs bring the training of
GNNs in the realm of signed graphs, further exploration of the properties of signed graphs, such as the signed
graph “spectral gap” and curvature for measuring the goodness of connectivity are needed [3] to develop
more advanced GNN enhancement approaches. We leave these as future works.
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