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We quantify the emergent complexity of quantum states near quantum critical points on regular
1D lattices, via complex network measures based on quantum mutual information as the adjacency
matrix, in direct analogy to quantifying the complexity of EEG/fMRI measurements of the brain.
Using matrix-product-state methods, we show that network density, clustering, disparity, and Pear-
son’s correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a
high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean
field superfluid/Mott insulator, and a BKT crossover.

Classical statistical physics has developed a powerful
set of tools for analyzing complex systems, chief among
them complex networks, in which connectivity and topol-
ogy predominate over other system features [1]. Com-
plex networks model systems as diverse as the brain and
the internet; however, up till now they have been ob-
tained in quantum systems by explicitly enforcing com-
plex network structure in their quantum connections [2–
7], e.g. entanglement percolation on a complex net-
work [4]. In contrast, complexity measures on the brain
observe emergent complexity arising out of, e.g., a regu-
lar array of EEG electrodes placed on the scalp, via an
adjacency matrix formed from the classical mutual infor-
mation calculated between them [8]. We apply the quan-
tum generalization of this measure, an adjacency matrix
of the quantum mutual information calculated on quan-
tum states [9], to well known quantum many-body mod-
els on regular 1D lattices, and uncover emergent quan-
tum complexity which clearly identifies quantum critical
points [10, 11]. Quantum mutual information bounds
two-point correlations from above [12], measurable in a
precise and tunable fashion in e.g. atom interferometry in
1D Bose gases [13], among many other quantum simula-
tor architectures. Using matrix-product-state computa-
tional methods [14, 15], we demonstrate rapid finite size-
scaling for both transverse Ising and Bose-Hubbard mod-
els, including Z2, mean field, and BKT quantum phase
transitions.

As we move toward more and more complex quan-
tum systems in materials design and quantum simula-
tors, involving a hierarchy of scales, diverse interacting
components, and a structured environment, we expect
to observe long-lived dynamical features, fat-tailed dis-
tributions, and other key identifiers of complexity [16–
18]. Such systems include quantum simulator technolo-
gies based on ultracold atoms and molecules [19], trapped
ions [20], and Rydberg gases [21], as well as supercon-
ducting Josephson-junction based nanoelectromechani-
cal systems in which different quantum subsystems form
compound quantum machines with both electrical and
mechanical components [22]. A key area in which we
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FIG. 1: Sketch of mutual information complex network. A
chain of L quantum bits (qubits) in a sinusoidal potential, for
the transverse Ising model, the “fruit-fly” of quantum many
body physics. (a) Links originating from site 3 (red, I3j) and
site 6 (black, I6j) for the mutual information complex net-
work Iij , corresponding to phases and critical point in (b).
In this weighted complex network, the height of the links in
our sketch denotes their relative strength; note descending
vertical axes from left to right. The entire complex network
is far too dense to depict, so we show just two representative
sites. (b) Sketch of ferromagnetic phase (left), critical point
(center), and paramagnetic phase (right). The sinusoidal po-
tential corresponds to an optical lattice for ultracold atoms
or molecules. In the ferromagnetic case, the dashed line in-
dicates a superposition between the Z2 symmetric states all
spin-up and all spin-down.

have taken a first step beyond phase diagrams and ground
state properties is non-equilibrium quantum dynamics,
where critical exponents and renormalization group the-
ory are only weakly applicable at best, e.g. in the Kibble-
Zurek mechanism, and are hard to find any use for at all
in far-from-equilibrium regimes. However, at the most
basic level we can first ask, are quantum systems inher-
ently complex? Must we impose complexity on quantum
systems to obtain it [2–7], or is there a regime in which
complexity naturally emerges, even in ground states of
regular lattice models? In this Letter we show that emer-
gent complexity can be well quantified in the simplest of
1D lattice quantum simulator models in terms of com-
plexity measures around critical points in direct analogy
to similar measurements on the brain; moreover we es-
tablish a much-needed new set of tools for quantifying the
complexity of far-from-equilibrium quantum dynamics.

Quantum phase transitions are often characterized by
quantum averages over physical observables such as two-
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point correlators. For example, the transverse Ising
model (TIM) consists of a chain of qubits with nearest
neighbor z-z coupling J and a transverse randomizing
field g. For large g the spins tend to be transverse and
therefore random in z (meaning an average z-spin mea-
surement of zero), while for small g the spins prefer to
align or anti-align, depending on the sign of J . The quan-
tum phase transition between large g (paramagnetic) and
small g (ferro/anti-ferromagnetic) at the critical point
gc = 1 is evidenced by a change in the long range behav-

ior of the two-point correlator g
(2)
ij = 〈σ̂zi σ̂zj 〉 − 〈σ̂zi 〉〈σ̂zj 〉,

where i, j are sites on a lattice and σ̂z are measurements
of spin in the z-direction; alternate measures include
the von Neumann entropy and concurrence [23]. The

mutual information Iij is bounded from below by g
(2)
ij ,

and indeed by any possible two-point correlator in the
model [12]. In general for quantum simulator technolo-
gies we obtain Hamiltonians for which we do not know a
priori what the right correlator is or indeed if there is a
quantum phase transition at all. Thus mutual informa-
tion provides a much more general tool to identify such
quantum phase transitions than any particular physical
correlator.

To establish the usefulness of mutual information com-
plex networks, we consider both the TIM and the Bose-
Hubbard model (BHM). The BHM balances particle tun-
neling J against on-site particle interaction U , with the
filling factor controlled by the chemical potential µ; thus
it has a richer phase diagram than the TIM, and exhibits
both mean field transitions from Mott insulators to a su-
perfluid phase as well as Berzinskii-Kosterlitz-Thouless
(BKT) crossovers at commensurate filling. We emphasize
that both these models are studied heavily in quantum
simulators experimentally and theoretically [19, 20, 24–
26].

Quantum Many-body Hamiltonians and Mutual Infor-
mation – The 1D transverse Ising model (TIM) takes the
form

ĤI = −J
L−1∑
i=1

σ̂zi σ̂
z
i+1 − Jg

L∑
i=1

σ̂xi , (1)

where
[
σ̂αj , σ̂

β
k

]
= 2iδjkεαβγ σ̂

γ
k . The 1D Bose-Hubbard

model (BHM) takes the form

ĤB = −J
L−1∑
i=1

(b̂†i b̂i+1+b̂ib̂
†
i+1)+

1

2
U

L∑
i=1

n̂i(n̂i−1̂)−µ
L∑
i=1

n̂i ,

(2)

where
[
b̂i, b̂

†
j

]
= δij are bosonic annihilation and cre-

ation operators and n̂i = b̂†i b̂i. Both the TIM and
BHM are standard workhorses of quantum many-body
lattice physics [11]. The quantum mutual information
Iij ≡ 1

2 (Si + Sj − Sij) is constructed from the one and
two point von Neumann entropies Si = −Tr (ρ̂i logd ρ̂i),

Sij = −Tr (ρ̂ij logd ρ̂ij), with reduced density operators
defined in terms of the partial trace as ρ̂i = Tr

k 6=i
ρ̂ and

ρ̂ij = Tr
k 6=i,j

ρ̂. We take d = 2 for the TIM (qubits) and

d = nmax + 1 for the BHM, since particles can pile up
on site in the latter, with nmax a truncation parameter
converged in our numerical method.
Complex Network Measures – We use weighted gen-

eralizations of standard measures based on unweighted
adjacency matrices [1]; a formal justification for and in-
terpretation of this generalization procedure can be found
in [27]. A primitive measure of a node’s importance is
the sum of the weights connecting it to other nodes in the
network, si ≡

∑L
j=1 Iij , where, si is called the strength

of node i. The disparity Yi of a node i in a network with L
nodes is defined as a function over weighted connections
to its neighbors,

Yi ≡
1

(si)
2

L∑
j=1

(Iij)2 =

∑L
j=1 (Iij)2(∑L
j=1 Iij

)2 . (3)

Observe that if the mutual information between lat-
tice sites adopts a constant value Iij = a, that Yi =

a2 (L− 1) /a2 (L− 1)
2

= 1/ (L− 1), so that if a node has
relatively uniform weights across its neighbors the dispar-
ity between nodes will be approximately 1/ (L− 1). On
the other hand, if a particular Iij takes on a dominant
value b, then Yi ≈ b2/b2 = 1. The average disparity over

all nodes in the network is Y ≡ 1
L

∑L
i=1 Yi . The cluster-

ing coefficient C is 3 times the ratio of triangles (three
mutually connected vertices) to connected triples in an
unweighted network. In our weighted network,

C ≡ Tr(I 3)∑L
j 6=i
∑L
i=1[I 2]ij

. (4)

The density D is the average fraction of the
(
L
2

)
links

that are present in the network:

D ≡ 1

L(L− 1)

L∑
i=1

si . (5)

As the number of nodes in an unweighted network is al-
lowed to approach infinity a network is said to be sparse
if D → 0, and dense if D > 0 as the number of nodes
in the network L approaches infinity [1]. Finally, a tech-
nique for assessing the similarity between two nodes i, j
in a network is to compute the Pearson correlation coef-
ficient between them,

rij ≡
∑L
k=1 (Iik − 〈Ii〉) (Ijk − 〈Ij〉)√∑L

k=1 (Iik − 〈Ii〉)2
√∑L

k=1 (Ijk − 〈Ij〉)2
. (6)

This is treating link weight as a random variable; the
numerator of Eq. (6) is the covariance of the weights of
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node i with the weights of node j, while the denomi-
nator is the standard deviation in the weights of node
i multiplied by the standard deviation in the weights
of node j. A Pearson correlation coefficient near zero
means the weights of the two nodes are not meaningfully
correlated, while larger values mean that the two nodes
show a meaningful and linear relationship between their
weights. To restrict our study we focus on the Pearson
correlation coefficient between the middle two sites of the
lattice. These two nodes are spatially close to each other
and far from boundaries, making them the most similar
nodes in the network whose weights of connection are
not strongly modified by boundary conditions; we thus
choose R ≡ rL

2 ,
L
2 +1.

Numerical Techniques – We obtain our data with
our widely-used matrix-product-state (MPS) open source
code [14], a well-established algorithm [15]. The essence
of the approach is data compression of a quantum many-
body state onto a classical computer, using singular value
decomposition. The key convergence parameter is the
bond dimension χ, limiting the growth of spatial entan-
glement as defined by the truncated Schmidt number of
the reduced density matrix [9]; secondary convergence
parameters include the local Hilbert space dimension d
for the BHM. We use bond dimensions of up to several
hundred, which are adequate to establish the usefulness
of our complex network measures to pin down quantum
critical points, as is our aim (for extremely high accu-
racy calculations with bond dimensions in the thousands
see [28]). Our error estimates are made based on both
increased system size L and increased χ. Our largest
system sizes are L = 500 and χ = 2000. Mesoscopic cor-
rections have been explored for the BHM in detail in our
previous work [29].

Emergence of Critical Points – Figure 2 shows a finite-
size scaling study of complex network measures on the
mutual information calculated with matrix-product-state
(MPS) code for these two models, for 1D lattices with
L = 14 to 500, a range appropriate to experiments. Al-
though we studied twelve measures, we selected the four
most relevant for brevity: density of links D, cluster-
ing coefficient C, average disparity Y , and Pearson cor-
relation between middle lattice sites, R. All four mea-
sures are clearly useful to identify phase transitions in
the TIM and highlight different physical aspects. D
is high in the TIM ferromagnetic and BHM superfluid
phases where the nodes in the lattice are strongly con-
nected, as sketched in Fig. 1(a). However, the quan-
tum phase transition at the critical point is sharp at
L → ∞ for the TIM, where there is a Z2 transition and
L ' 100 suffices, whereas in the BHM we expect to ob-
serve a BKT crossover, which converges only for very
large L ' 1000 [30], and is most apparent in the first
and second derivative of D. The TIM paramagnetic and
BHM Mott insulating phases are only sparsely connected.
C follows a similar behavior except that for both the TIM
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FIG. 2: Complex network measures on the mutual informa-
tion. (a) Transverse quantum Ising model describing quan-
tum spins (qubits). The clustering coefficient C (red) and
density D (dashed black) serve as order parameters for the
ferromagnetic phase. The average disparity Y (dot-dashed
blue) identifies the short range correlations of the param-
agnetic ground state. The Pearson correlation coefficient R
(dotted green) develops a cusp near the critical point gc = 1,
identifying a structured nature to correlations near critical-
ity. (b) Bose Hubbard model describing massive particles for
commensurate lattice filling, with BKT crossover occurring
in the limit L → ∞ at a ratio of tunneling J to interaction
U of (J/U)BKT = 0.305; for smaller system sizes, the effec-
tive critical point [29] can be as small as (J/U)BKT ' 0.2.
The density and clustering coefficient grow as spatial correla-
tions develop in the superfluid phase. The average disparity
is high in the Mott insulator phase where correlations are
short-ranged. Critical/crossover behavior is most evident in
derivatives of these measures, see Fig. 3 and Table I. Note:
all network measures have been self-normalized to unity for
display on a single plot.

and BHM it develops a local minimum near the critical
point. This reflects the fact that the average number of
connected triples is temporarily growing faster the con-
trol parameter (g for the TIM, J/U for the BHM) for the
average number of triangles. Physically this could be be-
cause the length scale of correlations has become as long
as one lattice spacing but not two, resulting in a period
of rapid increase in mutual information between nearest
neighbors relative to second nearest neighbors. In strong
contrast to D and C, in the TIM ferromagnetic and BHM
superfluid phases Y asymptotically approaches 1

L−1 . In
the TIM paramagnetic and BHM Mott insulating phases,
where correlations decay exponentially, Y grows as spins
become more tightly bound to their nearest neighbor rel-
ative to other qubits in the complex network. Finally,
R has a completely different behavior, and clearly devel-
ops a cusp at the TIM critical point. Qualitatively, R is
low in both the ferromagnetic and paramagnetic phases
due to the collapse of the data onto single points in the(
IL

2 ,j
, IL

2 +1,j

)
plane when g � 1 and when g & 2. In

contrast, near criticality the weights display an approx-
imately linear relationship. In this way R measures the
non-trivial correlation that occurs near criticality.

Finite-size scaling – Figure 2(b) shows the BKT
crossover transition for commensurate filling (average one
particle per lattice site). However, a mean field phase
transition at non-commensurate filling also appears in
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FIG. 3: Finite-size scaling for the Bose-Hubbard model and
transverse Ising model. (a) BHM quantum phase diagram
for fixed L = 42 showing superfluid and Mott Insulating
phases with mean field phase transition along the Mott lobe
and a BKT transition at its tip. (b) BHM BKT transition
at unit filling. Scaling in 1/L places the critical point at
(J/U)BKT = 0.316 (clustering, solid red), 0.284 (average dis-
parity, blue dot-dashed) and 0.281 (density, black dashed), re-
spectively. Compare to the best value to date [28, 31] of 0.305,
or the Luttinger liquid prediction of 0.328. (c) Approaching
the BHM mean field superfluid/Mott insulator transition for
fixed (J/U) = 0.1. Maximum disparity (blue circles), mini-
mum clustering (red plus signs), and minimum density (black
star) scale towards the commensurate-incommensurate phase
boundary and lie closely on top of each other. (d) Scaling of
multiple measures and their derivatives for the TIM, see also
Table I.

the BHM. As the Mott insulating phase is gapped (mean-
ing the energy to create an excitation, even in the L→∞
limit, is non-zero), the usual way to find the boundaries
of the Mott lobe (the region encompassing the Mott in-
sulating phase) is to compute the energy required to add
a particle or a hole to the insulator: the chemical poten-
tials µpc = Ep−E0 and −µhc = Eh−E0, respectively [30].
Then one uses finite-size scaling to extrapolate µpc and µhc
in L−1 to estimate the phase boundary. Instead of work-
ing with chemical potentials, in Fig. 3(a) we use Y to
obtain the first Mott lobe with both mean field and BKT
crossover, shown here for L = 42. Figures 3(b)-(c) show
finite size scaling in L towards the BKT crossover and the
mean field phase transitions indicated in Fig. 3(a). Mini-
mization of D results in similar estimates to Y . However
minimization of C leads to slightly worse estimates as
shown in Fig. 3(b). The BKT transition has been es-
timated by many methods in the past, including from
the correlator 〈b̂†i b̂i+r〉 ∼ r−K/2, taking advantage of the
fact that at the critical point K = 1/2 [30], predicting
(J/U)BKT = 0.29 ± 0.01; more recent results estimate
(J/U)BKT = 0.305 [28, 31]. By fitting curves like those
shown in Fig. 3(b)-(c) (BHM) and Fig. 3(d) (TIM), to
power laws of the form (J/U)c (L) = (J/U)c + AL−1/ν

′

(BHM) and gc (L) = gc + AL−1/ν (TIM) we perform

quantitative analysis of critical points in Table I. In par-
ticular, examining this data we observe that by measur-
ing the complex network structure present in the quan-
tum mutual information, we can estimate the critical
point of the TIM to within 0.01% of its known value;
that the Mott-insulator phase boundary can be reliably
estimated by extremization of network quantities; and
that the BKT transition at the tip of the Mott lobe, fa-
mously difficult to pin down without going to extremely
large systems with 1000s of sites with high accuracy, can
already be estimated to within 3.6% of its accepted value
with just 80 sites.

Conclusions – We have shown that quantum complex-
ity already emerges in a clearly quantifiable way in quan-
tum states near quantum phase transitions in regular 1D
lattices. In direct analogy to complexity of EEG/fMRI
measurements on the brain, our measures are built on
taking the quantum mutual information as a weighted
adjacency matrix, and reliably estimate quantum critical
points for well-known quantum-many body models, in
particular the transverse Ising and Bose-Hubbard mod-
els. These models include three classes of phase tran-
sitions, Z2, mean field superfluid/Mott insulator, and a
BKT crossover; in each case we obtain rapidly converg-
ing accuracy for critical point values, a demonstrable
improvement in finite-size scaling over all other known
methods including e.g. high order perturbation theory.
Our work sets the stage for application of a new set
of quantum measures to quantify complexity of quan-
tum systems where traditional correlation measures are
at best weakly applicable. In future work we will ap-
ply our new methods to far-from-equilibrium dynam-
ics in such systems, for instance, quantum cellular au-
tomata [17, 18, 32, 33] and quantum degenerate ultracold
molecules with a multiscale hierarchy of internal and ex-
ternal degrees of freedom.
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grant numbers PHY-1306638, PHY-1207881, and PHY-
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