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Abstract

Background: Understanding the evolution of biological networks can provide insight into how their modular
structure arises and how they are affected by environmental changes. One approach to studying the evolution of
these networks is to reconstruct plausible common ancestors of present-day networks, allowing us to analyze how
the topological properties change over time and to posit mechanisms that drive the networks’ evolution. Further,
putative ancestral networks can be used to help solve other difficult problems in computational biology, such as
network alignment.

Results: We introduce a combinatorial framework for encoding network histories, and we give a fast procedure that,
given a set of gene duplication histories, in practice finds network histories with close to the minimum number of
interaction gain or loss events to explain the observed present-day networks. In contrast to previous studies, our
method does not require knowing the relative ordering of unrelated duplication events. Results on simulated histories
and real biological networks both suggest that common ancestral networks can be accurately reconstructed using
this parsimony approach. A software package implementing our method is available under the Apache 2.0 license at
http://cbcb.umd.edu/kingsford-group/parana.

Conclusions: Our parsimony-based approach to ancestral network reconstruction is both efficient and accurate. We
show that considering a larger set of potential ancestral interactions by not assuming a relative ordering of unrelated
duplication events can lead to improved ancestral network inference.

Keywords: Network evolution, Arsimony, Ancestral network reconstruction, Interaction networks, Regulatory
networks

Background
High-throughput experiments have revealed thousands
of regulatory and protein-protein interactions that occur
in the cells of present-day species. To understand why
these interactions take place, it is necessary to view them
from an evolutionary perspective. In analogy with ances-
tral genome reconstruction [1], we consider the problem
of predicting the topology of the common ancestor of
pathways, complexes, or regulatory programs present in
multiple extant species.
Reconstructing plausible ancestral networks can help

answer many natural questions about how present-day
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networks have evolved. For example, joint histories can
be used to compare the conservation and the route to
divergence of corresponding processes in two species.
This allows us to more finely quantify how modularity
has changed over time [2] and how interactions within
a protein complex may have reconfigured across species
starting from a single shared state [3]. Such analysis can
also be integrated to develop better network alignment
algorithms and better network-based phylogenies [4-8],
and it can be used to study robustness and evolvability
[9-11]. Further, inferred changes in metabolic networks
can be linked to changes in the biochemical environ-
ment in which each species has evolved, and this can
reveal novel mechanisms of ecological adaptation [12,13].
Finally, comparing network histories inferred using dif-
ferent model parameters can be used to estimate the
likelihoods of various evolutionary events [14,15].
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There has been some recent work on reconstruct-
ing ancestral interactions. Gibson and Goldberg [16]
presented a framework for estimating ancestral protein
interaction networks that handles gene duplication and
interaction loss using gene trees reconciled against a
species phylogeny. However, their approach assumes that
interaction losses occur immediately after duplication and
does not support interaction gain outside of gene dupli-
cation. These assumptions are limiting because interac-
tion loses may occur well after duplication, and inde-
pendent gains are believed to occur at non-trivial rates
[17]. Dutkowski and Tiuryn [6] provided a probabilis-
tic method for inferring ancestral interactions with the
goal of improved network alignment. Their approach is
based on constructing a Bayesian network with a tree
topology where binary random variables represent exis-
tence or non-existence of potential interactions. A similar
graphical model was proposed by Pinney et al. [18], who
applied it to inferring ancestral interactions between bZIP
proteins. In the former method, interaction addition and
deletion is assumed to occur only immediately following
a duplication or speciation event. Further, both meth-
ods assume the relative ordering of duplication events
is known even between events in unrelated homology
groups. Pinney et al. [18] also explore a parsimony-
based approach [19] and find it to work well; however, it
too assumes a known ordering of unrelated duplication
events. The main drawback of these approaches is that the
assumed ordering comes from sequence-derived branch
lengths, which do not necessarily agree with rates that
would be estimated based on network evolution [20]. This
motivates an approach such as we describe below that
does not use branch lengths as input.
Zhang and Moret [20,21] use a maximum-likelihood

method to reconstruct ancestral regulatory networks as
a means to improve estimation of regulatory networks
in extant species. Mithani et al. [22] study the evolu-
tion of metabolic networks, but they only model the
gain and loss of interactions amongst a fixed set of
metabolites, whereas we also consider node duplication
and loss encoded by a tree. Navlakha and Kingsford
[15] present greedy algorithms for finding high-likelihood
ancestral networks under several assumed models of net-
work growth. They applied these methods to a yeast
protein interaction network and a social network to esti-
mate relative arrival times of nodes and interactions and
found that the inferred histories matched many indepen-
dently studied properties of network growth. This attests
to the feasibility of using networks to study evolution. The
authors, however, only consider a single network at a time,
and there is no guarantee that independent reconstruction
of two networks will converge to a common ancestor.
Here, we introduce a combinatorial framework for rep-

resenting histories of network evolution that can encode

gene duplication, gene loss, interaction gain and interac-
tion loss at arbitrary times and does not assume a known
total ordering of duplication events. We show that almost
parsimonious histories of interaction gain and loss can be
computed in practice quickly given a duplication history.
In simulated settings, we show that these parsimonious
histories can be used to accurately reconstruct a common
ancestral regulatory network of two extant regulatory net-
works. We also show that our approach can infer, with
high accuracy, the interactions among the bZIP family of
proteins in several ancestral organisms.

Methods
A framework for representing network histories
Any natural model of network evolution will include
events for gene duplication, gene loss, interaction gain,
and interaction loss. Many such growth models have
been studied (e.g. [9,21,23-26]). We describe below how
these events can be encoded in a history graph. We note
that there are other evolutionary events that affect the
growth and structure of biological networks. For example,
Toll-Riera et al. [27] provide evidence for de novo
gene birth originating from non-coding genomic regions.
While such events play a role in shaping the evo-
lutionary history and current structure of biologi-
cal networks; they are less common than the gene
duplication and loss and interaction gain and loss,
and are not explicitly modeled in the current frame-
work.
Consider a set V of proteins or genes (henceforth

“nodes”) descended from a common ancestor by dupli-
cation events. Those duplication events can be encoded
in a binary duplication tree T with the items of V as the
leaves. An internal node u in T represents a duplication
event of u into its left and right children, uL and uR. In this
representation, after a duplication event, the node repre-
sented by u conceptually does not exist anymore and has
been replaced by its two children. The leaves of a dupli-
cation tree are labeled Present or Absent. Absent leaves
represent products of duplication events that were sub-
sequently lost. A collection of such trees is a duplication
forest F.
The gain and loss of interactions can be represented

with additional non-tree edges placed on a duplication
forest. A non-tree edge {u, v} represents an edge flip event,
where the interaction between u and v is created if the
interaction is currently absent or removed if the interac-
tion is currently present. Let Pu and Pv be the paths from
nodes u and v to the root. An interaction exists between
u and v if there are an odd number of such flip non-
tree edges between nodes in Pu and Pv. Every non-tree
edge between Pu and Pv, therefore, represents alterna-
tively interaction creation or deletion between nodes u
and v in the evolution of the biological network.
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A graphH consisting of the union of a duplication forest
and flip non-tree edges is a network history. A history H
constructs a graph G when the Present leaves of the dupli-
cation forest in H correspond to the nodes of G and the
flip edges of H imply an interaction between u and v if
and only if {u, v} is an interaction in G. See Figure 1 for an
example history.
Not all placements of non-tree edges lead to a valid

network history. The interaction histories have to be con-
sistent with some temporal embedding of the tree. Let tcu
and tdu be respectively the time of creation and duplication
of node u. Naturally, tcu < tdu , tdu = ∞ if u is a Present leaf,
and if v is the child of u, then by definition we have

tcu < tdu = tcv < tdv . (1)

If {u,w} is a flip edge, then the time t{u,w} of appearance
of this edge must satisfy

tcu ≤ t{u,w} < tdu and tcw ≤ t{u,w} < tdw, (2)

because an event between u and w can only occur when
both u and w exist. A history graph H is said to be valid if
there exist tcu, tdu for every node u such that conditions (1)
and (2) are satisfied for every non-tree edge.
Whether a particular history is valid can be checked

combinatorially using the following alternative character-
ization of validity. A k-blocking loop is a set of flip edges
{{ui, vi}}0≤i<k such that ui+1 is an ancestor of vi in the tree
for 0 ≤ i < k (where the index i + 1 is taken modulo k).

See Figure 2 for examples. Blocking loops are not permit-
ted in valid histories and, conversely, the non-existence of
blocking loops implies that a history is valid, as shown in
Prop. 1.

Proposition 1. A history graph H is valid if and only if
it does not have any blocking loop of any length.

Proof. Suppose there is a k-blocking loop. Using the
same notation as above, we have the inequalities

tdu0 > t{u0,v0} ≥ tcv0 ≥ tdu1 > t{u1,v1} ≥ . . . ≥ tcvk−1 ≥ tdu0 ,

which is a contradiction. Hence, to not have any blocking
loops is necessary.
Conversely, suppose that H does not have any blocking

loops. We assign times to the nodes and non-tree edges
using a modified depth-first search (DFS) algorithm fol-
lowing the tree edges only. First, the root of the tree is
given a creation time of 0. During DFS, just before calling
DFS recursively on the left and right children of a node u,
we set the duplication time tdu = max{max t{u,v}+1, tcu+1},
where the second max is taken over all non-tree edges
adjacent to u. Also, we set the creation time of the children
tcuL = tcuR = tdu .
When DFS visits a node u with some non-tree edge

{u, v} where v has not been assigned a creation time, u is
added to a set Q and DFS is not called recursively on the
children of u. The main loop consists of calling DFS again
on all the nodes in Q until this set is empty. By construc-
tion, the algorithm assigns times which satisfy conditions
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Figure 1 Framework Overview. A duplication forest (solid edges at top) with the non-tree edges (dashed) necessary to construct G1 and G2
(shown at bottom). Nodes 1, 2, and 3 represent the 3 homology groups present in the ancestral graph. Node 14 was lost. As an example of the
connectivity induced by the non-tree edges, consider edge (27, 18) in G2 which is implied by the directed non-tree edge from (3, 2). However, the
reverse edge (18, 27), which is implied by (2, 3), does not exist because its state is flipped by (8, 20).
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(a) 1-blocking loop (b) 2-blocking loop (c) 3-blocking loop

Figure 2 Blocking Loops. Blocking loops of size 1, 2 and 3. The solid lines represent a subset of the tree T. The dashed lines are non-tree edges
representing interaction flip events.

(1) and (2). Therefore, if the algorithm terminates, H is a
valid history.
At each main iteration, the nodes in the set Q are all the

nodes u for which tcu is set but tdu is not set. It suffices to
show that at each such iteration, at least one of the nodes
in the set Q will not be added again to Q by a call to DFS.
In other words, for at least one node u ∈ Q, every non-
tree edge {u, v} has tcv set. For a contradiction, suppose not.
Take u1 ∈ Q and {u1, v1} with tcv1 not set. There is neces-
sarily an ancestor of v1, call it u2, which is in Q. Similarly,
take {u2, v2} with tcv2 not set and its ancestor u3 ∈ Q, and
so on. Because Q is finite, uj = ui for some j > i, and we
constructed a blocking loop. Hence, the algorithm must
terminate.

Parsimonious reconstruction of a network history
Traditional phylogenetic inference algorithms and recon-
ciliation between gene and species trees can be used to
obtain duplication and speciation histories [28-30]. What
remains is the reconstruction of interaction gain and loss
events. This leads to the following problem:

Problem 1. (Minimum Flips) Given a duplication for-
est F and an extant network G, find H, a valid history
constructing G, with a minimum number of flip edges.

We will show that nearly optimal solutions to this prob-
lem for a large range of instances can be solved in poly-
nomial time in practice. Whether Problem 1 is NP-hard
or admits a polynomial-time algorithm for all instances
remains open.

A fast heuristic algorithm
The challenge of Problem 1 comes from avoiding the cre-
ation of blocking loops. A polynomial-time algorithm can
find a minimum set of flip edges that reconstructs a graph
G and does not contain 1- and 2-blocking loops but allows
longer blocking loops. We define an interaction encoding
of G = (V ,E) as a function fG : V × V → {0, 1} such that
fG(u, v) = 1 if {u, v} is an interaction in G and fG(u, v) = 0
otherwise. We omit the subscript on fG if G is clear from
the context.

The following intertwined dynamic programming
recurrences find the minimum number of flip edges
required for H to construct a given graph G if blocking
loops of length ≥ 3 are allowed. First, S(u, f ) finds the
minimum number of flip edges for the subtree rooted at u
and interaction encoding f :

S(u, f ) = S(uL, f ) + S(uR, f ) + A(uL,uR, f ). (3)

The expression A(u, v, f ) gives the minimum number
of flip edges that should be placed between the subtree
rooted at u and the subtree rooted at v. This can be
computed using the recurrence:

A(u, v, f ) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(uL, v, f ) + A(uR, v, f )
A(u, vL, f ) + A(u, vR, f )
1 + A(uL, v, f̄ ) + A(uR, v, f̄ )
1 + A(u, vL, f̄ ) + A(u, vR, f̄ ).

(4)

In the above, if one of u or v is a leaf but the other
is not, the options that look at non-existent children are
disallowed.
The function f̄ in Eqn. (4) is defined as 1 − f and thus

represents a function such that f̄ (x) has opposite parity
from f (x) for all x. The A recurrence considers two possi-
ble options: (1) We connect u and v with a non-tree edge,
this costs us 1 and flips the parity of all interactions going
between the subtree rooted at u and the subtree rooted
at v; or (2) We do not connect u and v with a flip edge.
This costs 0 and keeps the parity requirement the same.
Regardless of the choice to create an edge, because we
are not allowed to have a 2-blocking loop, either (a) we
possibly connect u to some descendant of v (and do not
connect v to a descendant of u) or (b) we possibly con-
nect v to some descendant of u (and do not connect u to a
descendant of v).
The base case for the S recurrence when u is a leaf and

the base case for the A recurrence when u and v are leaves
are:

S(u, f ) = 0 and A(u, v, f ) = f (u, v).
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The minimum number of flip edges needed to turn a
duplication forest F into a history constructing G (allow-
ing blocking loops of ≥ 3) is then given by

∑
r S(r, dG) +∑

r,q A(r, q, dG), where dG is the interaction encoding of
G, and the sums are over roots r, q of the trees in F.
Standard backtracking can be used to recover the actual
minimum edge set. If n is the number of nodes in the for-
est, the dynamic program runs in O(n2) time and space
because only two functions f are ever considered: dG, and
d̄G. This yields ≈ n × n × 2 subproblems, each of which
can be solved in constant time.
The heuristic also can be extended to handle different

costs for interaction addition and deletion by changing the
constants in the recurrences to be a function of the parity
of each flip. Only two values of f (dG and d̄G) are ever con-
sidered, and every flip switches f between these two states.
Thus, by examining f, and determining if its current states
corresponds to dG or d̄G, one can determine if an odd or
even number of flips have occurred, and thus, whether the
current flip corresponds to the addition or deletion of an
interaction. If the current flip represents the addition of
an interaction, then it incurs the cost cadd. Otherwise, the
flip encodes the loss of an interaction, and incurs the loss
cost closs.

Identifying and removing blocking loops
To identify blocking loops, we use a modified depth-
first search procedure in which tree edges are traversed
according to their direction (i.e away from the root)
while non-tree edges can be traversed in either direction.
Whenever a node is encountered twice during the depth
first search, a cycle has been discovered and is checked
for the blocking loop condition given above. If the cycle is
not blocking loop, we can safely ignore it. Otherwise, one
of the non-tree edges of this loop is chosen at random,
and we forbid that edge from appearing in the solution
and rerun the dynamic program. Because there are O(n2)
possible non-tree edges, iterating this procedure will ter-
minate in polynomial time. We repeat the process of
identifying blocking loops and forbidding non-tree edges
until a valid solution is obtained. In the worst case, one
may obtain a solution where all non-tree edges are placed
at leaves, but in practice long blocking loops do not often
arise, and the obtained solutions are close to optimal (see
section below).

Reconstruction of a common ancestor of two graphs
Given extant networks of several species, in addition to
the reconstructed history, we seek a parsimonious esti-
mate for their common ancestor network. Specifically,
given extant networks G1 and G2, with interaction encod-
ings d1 and d2, and their duplication forests F1 and F2,
we want to find an ancestral network X = (VX ,EX) such

that the cost of X evolving into G1 and G2 after speciation
is minimized. VX is the set of roots of the homology
forests. We assume that the networks of the two species
evolved independently after speciation. Therefore, we can
use the recurrence above applied to F1 and F2 to compute
AF1(r, q, d1) and AF2(r, q, d2) independently for r, q ∈ VX ,
and then select interactions in X as follows. EX of X is
given by the pairs r, q ∈ VX × VX for which creating an
interaction leads to a lower total cost than not creating an
interaction. Formally, we place an interaction {r, q} in EX if

1+AF1(r, q, d̄1)+AF2(r, q, d̄2) < AF1(r, q, d1)+AF2(r, q, d2).
(5)

Rule (5) creates an interaction in X if doing so causes
the cost of parsimonious histories inferred for G1 and G2
between the homology groups associated with r and q to
be smaller than if no interaction was created.

Modifications for self-loops
Self-loops (homodimers) can be accommodated by modi-
fying recurrence (3):

S′(u, f ) = min
{
S′(uL, f ) + S′(uR, f ) + A(uL,uR, f )
1 + S′(uL, f̄ ) + S′(uR, f̄ ) + A(uL,uR, f̄ ).

(6)

The intuition here is that paying cost 1 to create a
self-loop on node u creates (or removes) interactions,
including self-loops, among all the descendants of u.

Modifications for directed graphs
The algorithm can bemodified to handle evolutionary his-
tories of directed graphs. For this, only the recurrence A
need be modified. When computing A′(u, v, f ), a non-tree
edge can be included from u to v, from v to u, both, or
neither. Each of these cases modifies the function f in a
different way. Specifically:

A′(u, v, f ) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 + A′(uL, v, f ) + A′(uR, v, f )

1 + A′(uL, v,
←
f ) + A′(uR, v,

←
f )

1 + A′(uL, v,
→
f ) + A′(uR, v,

→
f )

2 + A′(uL, v,
↔
f ) + A′(uR, v,

↔
f ),

...
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where the vertical ellipsis indicates the symmetric cases
involving vL and vR, and where

→
f ,

←
f ,

↔
f are defined,

depending on u and v, as follows:

→
f (x, y) = min

{
1 − f (x, y) if x ∈ ST(u) and y ∈ ST(v)
f (x, y) otherwise

(7)

↔
f (x, y) = min

⎧⎪⎨
⎪⎩
1 − f (x, y) if x ∈ ST (u) and

y ∈ ST(v) or vice versa
f (x, y) otherwise,

(8)

with
←
f defined analogously to

→
f . Here, ST(u) indicates

the set of nodes in the subtree rooted at u.

Accounting for phylogenetic branch lengths
One of the strengths of our proposed method is that it
does not require the user to specify the lengths of the
edges in a duplication history. The estimation of such
phylogenetic branch lengths relies on the molecular clock
assumption, and these lengths can easily be misestimated,
especially those for distant ancestors.
However, previous approaches [18,19] relied crucially

upon the phylogenetic branch lengths to impose a spe-
cific ordering on the set of potential ancestral interac-
tions. Small errors in the estimates of phylogenetic branch
lengths can lead these approaches to disallow potentially
high probability or high parsimony ancestral interactions.
Yet, the branch lengths in the duplication history do

encode potentially useful information. For example, two
ancestral proteins for which the intervals of existence are
separated by a significant amount of time are unlikely
to have interacted, even if branch length estimates are
imprecise. The algorithm we defined above can be fur-
ther modified to account for branch lengths, using them
to penalize unlikely ancestral states without explicitly dis-
allowing potentially important interactions. This can be
achieved by modifying the recurrence as follows:

A(u, v, f ) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(uL, v, f ) + A(uR, v, f )
A(u, vL, f ) + A(u, vR, f )
αδ(u, v) + 1 + A(uL, v, f̄ ) + A(uR, v, f̄ )
αδ(u, v) + 1 + A(u, vL, f̄ ) + A(u, vR, f̄ ).

(9)

where

δ(u, v) =

⎧⎪⎨
⎪⎩

tcv − tdu if tdu < tcv
tcu − tdv if tdv < tcu
0 otherwise

(10)

The analogous modification applies to the directed
recurrence as well. Here, αδ(·, ·) is a function that assigns
a cost to a pair of nodes {u, v} that is proportional to the
distance between the existence intervals of these nodes
(and is 0 if they overlap). The constant, α, is provided as
input to the algorithm and can be interpreted as the fac-
tor by which interactions are penalized between nodes
which do not overlap in time according to the inferred
phylogenetic branch lengths. At α = ∞, branch lengths
become hard constraints, and proteins between which
the existence intervals do not overlap are not allowed to
interact; this α also prohibits the formation of blocking
loops. However, results tend to be better (higher F1-score)
when one allows some constraints from branch lengths to
be violated. This approach allows our algorithm to take
phylogenetic branch lengths into account in a way that
incorporates the information they encode without suffer-
ing from the potential issues that occur when considering
these lengths as hard constraints.

Results and discussion
We analyze the performance of our parsimony-based
approach to ancestral network reconstruction on both
simulated and real biological data. To generate simulated
data, we consider a number of plausible models of net-
work evolution and show that the parsimony approach
is able to reconstruct ancestral networks reasonably well
over a wide range of model parameters. Further, follow-
ing the experiment of Pinney et al. [18], we evaluate the
performance of our approach on reconstructing the state
of several ancestral network states of the bZIP family of
proteins. We observe that our parsimony-based approach
obtains high precision and recall, even on fairly distant
ancestral networks.

Generating plausible simulated histories
We use a degree-dependent model (DDM) to simulate the
evolutionary path from a putative ancestral network to
its extant state. The model simulates node duplication,
node deletion, independent interaction gain, and inde-
pendent interaction loss with given probabilities Pndup,
Pnloss, Pegain and Peloss, respectively. The nodes or edges
involved in a modification are chosen probabilistically
based on their degrees (as in [31]) according to the follow-
ing expressions:

P(u | node duplication) ∝ 1/ku
P(u | node loss) ∝ 1/ku (11)

P((u, v) | interaction gain) ∝ kou
P((u, v) | interaction loss) ∝ 1/kou, (12)
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where kou is the out-degree of a node u, and ku is
the total degree. At each time step, the distribution
of possible modifications to the graph is calculated as
P(modification) = Poperation P(object | operation). Nodes
with out-degree of 0 are removed. Varying parameters
Pndup, Pnloss, Pegain and Peloss can produce a wide variety of
densities and sizes.We also consider a degree-independent
model (DIM) in which the four conditional probabilities in
Eqns. (11) and (12) are all equal.
The DDM model is theoretically capable of produc-

ing evolutionary trajectories between any two networks
while incorporating preferential attachment to the source
node and random uniform choice of the target node.
Furthermore, choosing a node for duplication or loss in
inverse proportion to its degree favors an event in inverse
relation to its expected disruption of the network.
We also consider a model of regulatory network evo-

lution by Foster et al. [32], which is based on gene
duplication, with incoming and outgoing interactions kept
after duplication as in other models (Pinkeep and Poutkeep
probabilities respectively). New edges are added with
probability Pinnovation.
In all of the network evolution models, we started with

a random connected seed graph that has 10 nodes and 25
interactions. We evolved it to X by 200 operations after
which we introduce a speciation event, and then both G1
and G2 evolve from X by an additional 200 operations
each. To generate more biologically plausible ancestral
graphs, instances were kept only if the ancestral graph X
had an in-degree that fit an exponential distribution with
parameter between 1.0 and 1.2 or an out-degree that was
scale-free with parameter between 1.8 and 2.2.

Reconstructing simulated networks
Optimality of loop breaking The greedy procedure to
break blocking loops produces histories that are very close
to optimal. We generated 1400 networks using the DDM
model with the range of parameters shown on the x-axis
of Figure 3a. In the vast majority of cases (1325 out of
1400), either no loop breaking is required, or the solution
discovered after greedily breaking all loops has the same
cost as the original solution. In these cases, therefore, the
method returned a provably maximally parsimonious set
of interaction modification events. In the remaining 75
cases (5.4%), greedily removing blocking loops increased
the number of interaction modifications by no more than
10 (< 2% of the initial number of interaction modification
events). Since the initial solution provides a lower bound
on the optimal, we can verify that the greedy procedure
always found a solution within 2% of the optimal (and per-
haps even better). Thus, it seems that in practice, while
blocking loops occur, the greedy procedure does a good
job of eliminating them without increasing the number of
events significantly.

Effect of growth model and its parameters Modeling
the evolutionary dynamics of a regulatory network is still
an active topic of research. We therefore experimented
with three different network models. Despite their dif-
ferences, high precision and recall (implied from the F1
score) can be obtained for all of them for many choices of
their parameters (Figure 3a-c). We measure the precision
(defined as true positive/(true positive + false positive)),
the recall (defined as true positive/(true positive +
false negative)) and compute the F1-score (the har-
monic mean of precision and recall: 2 · precision ·
recall/(precision + recall)). Very good performance can
be achieved under the general model presented above
whether degree distributions are taken into account
(Figure 3a) or not (Figure 3b) when selecting nodes and
interactions to modify. In these cases, for most param-
eter choices, precision is close to 1.0, meaning every
interaction predicted to be in the ancestor, in fact, was.
Recall is often lower. The Foster et al. [32] model, with
its heavy reliance on duplication events and lack of node
loss events, tends to be the simplest under which to
reconstruct the ancestral graph (Figure 3c).
The largest factor leading to poorer performance is

lower recall caused by gene losses. If all descendants of a
gene are lost in both extant networks, it is not possible to
reconstruct interactions incident to it. If these interactions
are excluded from the computation of recall, the F1 score
often improves dramatically. Median F1 scores excluding
these interactions are shown as pentagons in Figure 3.

Robustness to evolutionary divergence Naturally, the
ability to recover the ancestral network degrades as
time passes and the extant networks diverge. However,
the degradation is slow (Figure 3d, using the degree-
dependent model with parameters fixed at Pndup=0.35,
Pnloss=0.05, Pegain=0.3, and Peloss=0.3). When the distance
is small (measured as the number of events separating
them), we are almost always able to recover the ances-
tral network well, as illustrated by the high F1-scores and
small interquartile ranges in Figure 3d. Even when the
distance between the ancestral and extant networks is
large (300) compared to the average ancestral network size
(55), we obtain an F1-score of 0.72 (0.77 when homology
groups lost in both lineages are not considered).

Reconstructing ancestral bZIP networks
We also repeated the test performed by Pinney et al.
[18] by using our method to reconstruct ancestral inter-
actions among the bZIP family of transcription factors.
The interactions between dimerizing bZIP transcription
factors are strongly mediated by their coiled-coil leucine
zipper domains, and the strength of these interactions
can be computationally predicted with high sensitivity
and specificity using sequence alone [33]. This sequence-
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(a) Degree-dependent model (b) Degree-independent model

(c) Foster et al. model (d) Divergence of G1 and G2 from ancestor  

Figure 3 Synthetic Performance. (a-c) Effect of model parameters on reconstruction accuracy under three different models. “Prob” in (c) is
Pinnovation. (d) Effect of evolutionary distance (number of network modification operations) on the quality of the ancestral network reconstruction. In
both plots, boxes show 1st and 3rd quartile over 100 networks with median indicated by a line. Pentagons show the median if interactions incident
to nodes lost in both lineages are not considered.

based method was used to predict both the interac-
tion strength between extant bZIP proteins and inferred
ancestral protein sequences. These interactions were used
as the ground truth [18]. The duplication history relating
the bZIP proteins is built atop the extant networks of 4
relatively distant species, D. rerio, T. rubripes, H. sapiens,
and C. intestinalis. From the interactions in these extant
networks and the structure of the duplication history of
the constituent proteins, we reconstruct 3 ancestral net-
works: the Teleost (ancestor of D. rerio and T. rubripes),
Vertebrata (ancestor of D. reo, T. rubripes and H. sapiens)
and Chordate (ancestor of D. rerio, T. rubripes,H. sapiens,
and C. intestinalis) networks.

Table 1 bZIP Reconstruction Performance

Ancestor Method Precision Recall F1

Teleost
Parsimony 0.84 0.91 0.87

Probabilistic 0.68 0.88 0.77

Vertebrata
Parsimony 0.79 0.94 0.86

Probabilistic 0.75 0.81 0.78

Chordata
Parsimony 0.67 0.87 0.76

Probabilistic 0.74 0.74 0.75

The relative performance of our parsimony approach and the probabilistic
method described by Pinney et al. in reconstructing the ancestral interaction
networks we consider.
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Table 1 compares the relative performance of our
parsimony-based approach and the probabilistic method
described by Pinney et al. [18] Our results were gener-
ated using a ratio of 11.4 : 1 for the cost of interac-
tion creation to interaction deletion (the same ratio as
was used in the probabilistic method). Furthermore, we
choose not to penalize interactions based on phyloge-
netic branch length (i.e. α = 0 in δα), thus allowing our

algorithm to explore the entire solution space. We note
that our approach outperforms the probabilistic method,
particularly on the Teleost and Vertebrata networks. One
explanation for the improved performance of our method
is that it considers a larger set of ancestral interac-
tions by not explicitly disallowing parsimonious interac-
tions based solely on potentially misleading phylogenetic
branch lengths.

(a) Teleost (b) Vertebrata

(c) Chordata

Figure 4 bZIP Reconstructions. The inferred networks of the Teleost, Vertebrata and Chordata ancestors. Edges drawn in gray were inferred by
both our parsimony-based approach and by the sequence-based approach. Red edges were inferred based on sequence but not by the parsimony
method, and the blue edges were inferred by the parsimony method but not based on sequence.
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We corroborated this hypothesis by measuring the
reconstruction performance of our approach for increas-
ing values of α, and noticed a very slow but steady
decrease in performance as α increases. Nonetheless, at
α=∞ (using branch lengths as hard constraints as Pinney
et al. do), our method still outperforms the probabilis-
tic method on the Teleost network (F1 score of 0.84 vs
0.77). This experiment suggests that, at least on this fam-
ily of protein interactions, relying on the phylogenetic
branch lengths to aid inference does not improve — and
potentially harms — performance.
A visual inspection (see Figure 4) of the inferred ances-

tral networks revealed no strong patterns among the
interactions predicted based on sequence versus those
predicted using our parsimony approach. However, if a
protein is involved in a disagreement, it is often involved
in more than one.

Conclusion
We have presented a novel framework for representing
network histories involving gene duplications, gene loss,
and interaction gain and loss for both directed and undi-
rected graphs. We also provide a combinatorial character-
ization for valid histories. Our experiments demonstrate
that a fast heuristic can recover optimal histories in a large
majority of instances. We further provide evidence that,
even with a probabilistic, weighted, generative model of
network growth, a parsimony approach can recover accu-
rate ancestral networks (F1 scores ≥ 0.8 for a wide range
of parameters under several different models). Finally, we
show that our method accurately reconstructs a num-
ber of ancestral networks for the bZIP family of proteins.
Interestingly, we observe that we obtain the highest accu-
racy in ancestral network reconstruction when we do
not impose a particular ordering on unrelated duplica-
tion events (as implied by phylogenetic branch lengths).
This suggests that the ability of our approach to explore
a larger space of potential solutions than previous work
can provide practical benefits. In future work, it will be
interesting to explore topological properties of the ances-
tral networks, such as modularity and degree distribution,
and to analyze how these properties may have changed
over time. We would also like to extend the evolutionary
history framework and inference algorithm to handle de
novo gene birth events, which are known to contribute to
network growth [27].
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