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l’Energie Atomique–Département de Physique Théorique et Appliquée, 91680 Bruyeres-Le-Chatel, France

Edited by David O. Siegmund, Stanford University, Stanford, CA, and approved November 6, 2006 (received for review July 17, 2006)

Detecting community structure is fundamental for uncovering the
links between structure and function in complex networks and for
practical applications in many disciplines such as biology and
sociology. A popular method now widely used relies on the
optimization of a quantity called modularity, which is a quality
index for a partition of a network into communities. We find that
modularity optimization may fail to identify modules smaller than
a scale which depends on the total size of the network and on the
degree of interconnectedness of the modules, even in cases where
modules are unambiguously defined. This finding is confirmed
through several examples, both in artificial and in real social,
biological, and technological networks, where we show that mod-
ularity optimization indeed does not resolve a large number of
modules. A check of the modules obtained through modularity
optimization is thus necessary, and we provide here key elements
for the assessment of the reliability of this community detection
method.

complex networks � modular structure � metabolic networks �
social networks

Community detection in complex networks has attracted a lot
of attention in recent years (for a review, see refs. 1 and 2).

The main reason is that complex networks (3–7) are made of a
large number of nodes and most previous quantitative investi-
gations focused on statistical properties disregarding the roles
played by specific subgraphs. Detecting communities (or mod-
ules) can be a way to identify substructures which could corre-
spond to important functions. This is, for example, confirmed in
the case of the World Wide Web, where communities are sets of
Web pages dealing with the same topic (8). In biological
networks, it is widely believed that the modular structure results
from evolutionary constraints and plays a crucial role in biolog-
ical functions (9–11), which makes community detection very
relevant (12–14). Relevant community structures were also
found in social networks (15–17), the Internet (18), food webs
(19, 20), and in networks of sexual contacts (21, 22).

Loosely speaking, a community is a subgraph of a network
whose nodes are more tightly connected with each other than
with nodes outside the subgraph. A decisive advance in com-
munity detection was made by Newman and Girvan (23), who
introduced a quantitative measure for the quality of a partition
of a network into communities, the modularity. This measure
essentially compares the number of links inside a given module
with the expected value for a randomized graph of the same size
and same degree sequence. If one chooses modularity as the
relevant quality function, the problem of community detection
becomes equivalent to modularity optimization. The latter is not
trivial, as the number of possible partitions of a network into
clusters increases at least exponentially with the size of the
network, making exhaustive optimization computationally un-
feasible even for relatively small graphs. Therefore, a number of
algorithms have been devised to find a good optimization
technique with the smallest computational cost possible. The
fastest available procedures use greedy techniques (24, 25) and
extremal optimization (26), which are, at the present time, the
only algorithms capable of detecting communities in large
networks. More accurate results are obtained through simulated

annealing (27, 28), but this method is computationally very
expensive.

Modularity optimization seems, therefore, to be a very effec-
tive method to detect communities, both in real and in artificially
generated networks. However, modularity itself has not yet been
thoroughly investigated, and only a few general properties are
known. For example, it is known that the modularity value of a
partition does not have a meaning by itself, but only when
compared with the corresponding modularity expected for a
random graph of the same size (29), as the latter may attain very
high values due to fluctuations (27).

In this article, we present a critical analysis of modularity and
of the applicability of modularity optimization to the problem of
community detection. We show that modularity contains an
intrinsic scale that depends on the total number of links in the
network. Modules that are smaller than this scale may not be
resolved, even in the extreme case where they are complete
graphs connected by single bridges. The resolution limit of
modularity actually depends on the degree of interconnected-
ness between pairs of communities and can reach values of the
order of the size of the whole network. Tests performed on
several artificial and real networks clearly show that this problem
is likely to occur.

It is thus a priori impossible to tell whether a module (large or
small), detected through modularity optimization, is indeed a
single module or a cluster of smaller modules. This raises doubts
about the effectiveness of modularity optimization in community
detection, and more generally about the applicability of quality
functions.

Modularity and the Notion of Community
The modularity of a partition of a network (23) can be written as

Q � �
s�1

m � ls
L

� � ds

2L�
2�, [1]

where the sum is over the m modules of the partition, ls is the
number of links inside module s, L is the total number of links
in the network, and ds is the total degree of the nodes in module
s. The first term of the summand in Eq. 1 is the fraction of links
inside module s; the second term, in contrast, represents the
expected fraction of links in that module, if links were located at
random in the network (under the only constraint that the degree
sequence coincides with the one of the original graph).

If, for a subgraph S of a network, the first term is much larger
than the second, it means that there are many more links inside
S than one would expect by random chance. This means that S
is, indeed, a module. The comparison with the null model
(represented by the randomized network) leads to the quanti-
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tative definition of community embedded in Eq. 1. We conclude
that, in a modularity-based framework, a subgraph S with ls
internal links and total degree ds is a module if

ls
L

� � ds

2L�
2

� 0. [2]

We can express the number of links ls
out joining nodes of the

module s to the rest of the network in terms of ls, i.e. ls
out � als

with a � 0. Therefore, ds � 2ls � ls
out � (a � 2)ls and the

condition (Eq. 2) becomes

ls
L

� ��a � 2�ls
2L �2

� 0, [3]

from which, rearranging terms, one obtains

ls �
4L

�a � 2�2 . [4]

If a � 0, the subgraph S is a disconnected part of the network
and is a module if ls � L, which is always true. If a is strictly
positive, Eq. 4 sets an upper limit to the number of internal links
that S must have in order to be a module. This is counterintuitive,
because it means that the definition of community implied by
modularity depends on the size of the whole network, instead of
involving a ‘‘local’’ comparison between the number of internal
and external links of the module. For a � 2 one has 2ls � ls

out,
which means that the total internal degree of the subgraph is
larger than its external degree: ds

in � ds
out. The attributes

‘‘internal’’ and ‘‘external’’ mean that the degree is calculated
considering only internal or external links, respectively. In this
case, the subgraph S would be a community according to the
‘‘weak’’ definition given by Radicchi et al. (30).

For a � 2, the right-hand-side of inequality (4) is in the
interval [L�4, L]. A subgraph of size ls such that a � 2 and ls is
less than a quantity in the interval [L�4, L] would then be a
community both within the modularity framework and accord-
ing to the weak definition of Radicchi et al. (30). Sufficient
conditions for which these constraints are always met are then

ls �
L
4

and a � 2. [5]

In the following, we will only consider modules of this kind.
According to Eq. 2, a partition of a network into actual

modules (i.e. subgraphs satisfying the condition Eq. 2) would
have a positive modularity, as all summands in Eq. 1 are positive.
On the other hand, it is possible to partition a network such that
Q is negative. The network itself, considered as a partition with
a single module, has modularity zero: in this case, in fact, l1 �
L, d1 � 2L, and the only two terms of the unique module in Q
cancel each other. Usually, a value of Q larger than 0.3–0.4 is a
clear indication that the subgraphs of the corresponding parti-
tion are modules. However, the maximal modularity differs from
one network to another and depends on the number of links of
the network. Below, we will derive the expression of the maximal
possible value QM(L) that Q can attain on a network with L links.
We will prove that the upper limit for the value of modularity for
any network is one and we will see why modularity is not scale
independent.

The Most Modular Network
Here, we discuss the properties of the network with the highest
possible modularity, which will then naturally lead to the prob-
lem of scales in modularity optimization. In ref. 2, the authors
consider the interesting example of a network made of m
identical complete graphs (cliques), disjoint from each other. In

this case, the modularity is maximal for the partition of the
network into the cliques and is given by the sum of m equal terms.
In each clique there are l � L�m links, and the total degree is
d � 2l, as there are no links connecting nodes of the clique to
the other cliques. We thus obtain

Q � m� l
L

� � 2l
2L�

2� � m� 1
m

�
1

m2� � 1 �
1
m

, [6]

which converges to one when the number of cliques goes to
infinity. We note that this result is still valid even if the m
connected components are not cliques. Also, the number of
nodes of the network and within the modules does not affect
modularity. If we have m modules, we just need to have L�m
links inside the modules, as long as this is compatible with
topological constraints such as connectedness.

A further interesting question is how to construct a connected
network with N nodes and L links which maximizes modularity.
To address this issue, we proceed in two steps: first, we consider
the maximal value QM(m, L) for a partition with a fixed number
of modules m; after that, we look for the number m* that
maximizes QM(m, L).

Let us first consider a partition with m modules. Ideally, to
maximize the contribution to modularity of each module, we
should reduce the number of links connecting modules as much
as possible. To keep the network connected, we must have at
least m � 1 intercommunity links. For the sake of clarity and to
simplify the mathematical expressions (without affecting the
final result), we shall analyze the simple ring-like configuration
illustrated in Fig. 1, which has m intercommunity links instead
of m � 1.

The modularity of such a network is

Q � �
s�1

m � ls
L

� �2ls � 2
2L �2�, [7]

where

�
s�1

m

ls � L � m. [8]

Fig. 1. Design of a connected network with maximal modularity. The
modules (circles) must be connected to each other by the minimal number of
links.
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The expression of Eq. 7 reaches its maximum when all modules
contain the same number of links, i.e. ls � l � L�m � 1, @s �
1, 2, . . ., m. The maximum is then given by

QM�m, L� � m�L�m � 1
L

� �L�m
L �2� � 1 �

m
L

�
1
m

.

[9]

We have now to find the maximum of QM(m, L) when the
number of modules m is variable. For this purpose, we treat m
as a continuous variable and take the derivative of QM(m, L)
with respect to m

dQM

dm
�m, L� � �

1
L

�
1

m2 , [10]

which vanishes when m � m* � �L. This point indeed
corresponds to the absolute maximum QM(L) of the function
QM(m, L). This result coincides with the one found by Guimerà
et al. (27) for a one-dimensional lattice, but our proof is
completely general and does not require preliminary assump-
tions on the type of network and modules.

Because m is actually integer, the maximum is reached when
m equals one of the two integers closest to m*, but this is not
important for our purpose and from now on we will stick to the
real-valued expressions, their meaning being clear. The maximal
modularity is then

QM�L� � QM�m*, L� � 1 �
2
�L

, [11]

and approaches one if the total number of links L goes to infinity.
The corresponding number of links in each module is l � �L � 1.
The fact that all modules have the same number of links does not
imply that they have the same number of nodes. Again, modularity
does not depend on the distribution of the nodes among the
modules as long as the topological constraints are satisfied. For
instance, if we assume that the modules are connected graphs, there
must be at most n � l � 1 � �L nodes in each module. The crucial
point here is that modularity has some intrinsic scale of order �L,
which constrains the number and the size of the modules. For a
given total number of nodes and links we could build many more
than �L modules, but the corresponding network would be less
‘‘modular,’’ with a modularity lower than the maximum given by Eq.
11. This fact is the fundamental reason why small modules may not
be resolved through modularity optimization, as it will be clear in
the next section.

The Resolution Limit
We analyze a network with L links and with at least three
modules (see Fig. 2), each of which satisfies the conditions given
in Eq. 5. We focus on a pair of modules, M1 and M2, and
distinguish three types of links: those internal to each of the two
communities (l1 and l2, respectively), between M1 and M2 (lint)
and between the two communities and the rest of the network
M0 (l1

out and l2
out). To simplify the calculations, we express the

numbers of external links in terms of l1 and l2, so lint � a1l1 �
a2l2, l1

out � b1l1 and l2
out � b2l2, with a1, a2, b1, b2 � 0. Because

M1 and M2 are modules by construction, we also have a1 � b1 �
2, a2 � b2 � 2 and l1, l2 � L�4 (see Eq. 5). We now consider
two partitions A and B of the network. In partition A, M1 and
M2 are taken as separate modules, and in partition B they are
considered as a single community. The subdivision of the rest of
the network, M0, is arbitrary but identical in both partitions. We
want to compare the modularity values QA and QB of the two
partitions and, because modularity is a sum over the modules, the

contribution of M0 is the same in both partitions and is denoted
by Q0. From Eq. 1, we obtain

QA � Q0 �
l1
L

� ��a1 � b1 � 2�l1
2L �2

�
l2
L

�� �a2 � b2 � 2� l2

2L � 2

; [12]

QB � Q0 �
l1 � l2 � a1l1

L

�� �2a1 � b1 � 2� l1 � �b2 � 2� l2

2L � 2

. [13]

The difference 	Q � QB � QA is

	Q � 
2La1l1 � �a1 � b1 � 2��a2 � b2 � 2�l1l2���2L2�.

[14]

As M1 and M2 are both modules by construction, we expect a
larger modularity for the partition where the two modules are
separated, i.e. QA � QB, which in turn implies 	Q � 0. From Eq.
14, we see that 	Q is negative if

l2 �
2La1

�a1 � b1 � 2��a2 � b2 � 2�
. [15]

If a1 � a2 � 0, there are no links between M1 and M2 and the
above condition is trivially satisfied. In contrast, if the two
modules are connected to each other, something interesting
happens. Each of the coefficients a1, a2, b1, and b2 must be less
than two. The numbers of internal links l1 and l2 are both smaller
than L�4 by construction and can be taken as small as we wish
with respect to L. In this way, it is possible to choose l1 and l2 so
that the inequality of Eq. 15 is not satisfied. In such a situation,
we have 	Q � 0 and the modularity of the configuration where
the two modules are considered as a single community (B) is
larger than the partition where the two modules are clearly
identified (A). This implies that, by looking for the maximal
modularity, there is the risk of missing important structures at
smaller scales. To estimate the size of l1 and l2 at which
modularity optimization could fail, we consider for simplicity the
case in which M1 and M2 have the same number of links, l1 � l2 �
l. The condition on l for the modularity to miss the two modules
also depends on the ‘‘fuzziness’’ of the modules, as expressed by
the values of the parameters a1, a2, b1, and b2. In order to find

Fig. 2. Scheme of a network partition into three or more modules. The circles
on the left represent two modules M1 and M2, the oval on the right represents
the rest of the network M0, whose structure is arbitrary.
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the range of potentially ‘‘dangerous’’ values of l, we consider the
two following extreme cases

Y The two modules have a perfect balance between internal and
external degree (a1 � b1 � 2, a2 � b2 � 2), so that they are
on the edge of being communities in the weak sense defined
in ref. 30.

Y The two modules have the smallest possible external degree,
which means that there is a single link connecting them to the
rest of the network and only one link connecting them to each
other (a1 � a2 � b1 � b2 � 1�l).

In the first case, the maximum value of the coefficient of L in Eq.
15 is 1�4, obtained for a1 � a2 � 2 and b1 � 0, b2 � 0. Eq. 15
may thus not be satisfied for

l � lR
max �

L
4

, [16]

which is a scale of the order of the size of the whole network. This
result means that even a pair of large communities may not be
resolved if they share enough links with the nodes outside them
(in this case we speak of ‘‘fuzzy’’ communities). A more striking
result emerges when we consider the other limit, when a1 � a2 �
b1 � b2 � 1�l. In this case it is easy to check that Eq. 15 is not
satisfied if the number of links inside the modules satisfies

l � lR
min � �L

2
. [17]

If we now assume that we have two (interconnected) modules
with the same number of internal links l � lR

min � lR
max, the

discussion above implies that the modules cannot be resolved
through modularity optimization, even if they were complete
graphs connected by a single link. As we have seen from Eq. 16,
it is possible to miss modules of larger size, if they share more
links with the rest of the network (and with each other). For
l1  l2 the conclusion is similar but the scales lR

min,max are
modified by simple factors.

Consequences
To illustrate the consequences of our finding, we begin with two
schematic examples. In Fig. 3A, we show a network consisting of
a ring of cliques, connected through single links. Each clique is
a complete graph Km with m nodes and has m(m � 1)�2 links.
If we assume that there are n cliques (with n even), the network
has a total of N � nm nodes and L � nm(m � 1)�2 � n links.

The network has a clear modular structure where the com-
munities correspond to single cliques, and we expect that any
detection algorithm should be able to detect these communities.
The modularity Qsingle of this natural partition can be easily
calculated and is equal to

Qsingle � 1 �
2

m�m � 1� � 2
�

1
n

. [18]

On the other hand, the modularity Qpairs of the partition in which
pairs of consecutive cliques are considered as single communities
(as shown by the dotted lines in Fig. 3A) is

Qpairs � 1 �
1

m�m � 1� � 2
�

2
n

. [19]

The condition Qsingle � Qpairs is satisfied only if

m�m � 1� � 2 � n, [20]

which can also be rewritten as n � �L. In this example, m and
n are independent variables, and we can choose them such that

the inequality of Eq. 20 is not satisfied. For instance, for m � 5
and n � 30, Qsingle � 0.876 and Qpairs � 0.888 � Qsingle. An
efficient algorithm looking for the maximum modularity would
find the configuration with pairs of cliques and not the actual
modules. The difference Qpairs � Qsingle becomes even larger as
n increases, for m fixed.

The example we considered was particularly simple and is not
representative of situations found in real networks. However, the
initial configuration that we considered above (Fig. 2) is absolutely
general, and the results allow us to design arbitrarily many networks
with obvious community structures for which modularity optimi-
zation will not recognize (some of) the real modules. Another
example is shown in Fig. 3B, where the circles again represent
cliques (i.e., complete graphs): the two on the left have m nodes
each, the other two have p � m nodes. If we take m � 20 and p �
5, the maximal modularity of the network corresponds to the
partition in which the two smaller cliques are merged (as shown by
the dotted line in Fig. 3B). This trend of the optimal modularity to
group small modules has already been empirically observed in ref.
31, but without a complete explanation.

In general, we cannot make any definitive statement about
modules found through modularity optimization without a
method which verifies whether the modules are indeed single
communities or a combination of communities. It is then nec-
essary to inspect the structure of each of the modules found. For
example, if we take the network of Fig. 3A, with n � 30 and m �
5, we have seen that modularity optimization find modules which
are pairs of connected cliques. By inspecting each of the modules
of the ‘‘first generation’’ (by optimizing modularity, for exam-
ple), we would ultimately find that each module is actually a set
of two cliques.

Fig. 3. Schematic examples. (A) A network made out of identical cliques
(which are here complete graphs with m nodes) connected by single links. If
the number of cliques is larger than about �L , modularity optimization
would lead to a partition where the cliques are combined into groups of two
or more (represented by dotted lines). (B) A network with four pairwise
identical cliques (complete graphs with m and p � m nodes, respectively); if
m is large enough with respect to p (e.g., m � 20, p � 5), modularity
optimization merges the two smallest modules into one (shown with a dotted
line).
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We thus have seen that modules identified through modularity
optimization may actually be combinations of smaller modules.
During the process of modularity optimization, it is favorable to
merge connected modules if they are sufficiently small. We
showed in the previous section that any two interconnected
modules, fuzzy or not, are merged if the number of links inside
each of them does not exceed lR

min. This means that the largest
structure one can form by merging a pair of modules of any type
(including cliques) has at least 2lR

min internal links. By reversing
the argument, we conclude that if modularity optimization finds
a module S with lS internal links, it may be that the latter is a
combination of two or more smaller communities if

lS � 2lR
min��2L. [21]

This example is an extreme case in which the internal partition
of S can be arbitrary, as long as the pieces are modules in the
weak sense of (30). Under the condition in Eq. 21, the module
could, in principle, be a cluster of loosely interconnected com-
plete graphs.

On the other hand, the upper limit of lS can be much larger
than �2L, if the substructures are, on average, more intercon-
nected with each other, as we have seen with Eq. 16. In fact, fuzzy
modules can be combined with each other even if they contain
many more than lR

min links. The more interconnected the mod-
ules, the larger will be the resulting supermodule. In the extreme
case in which all submodules are very fuzzy, the size lS of the
supermodule could be in principle as large as that of the whole
network, i.e., lS � L. This result comes from the extreme case
where the network is split in two very fuzzy communities, with
L�4 internal links each and L�2 between them. By virtue of Eq.
16, it is favorable (or just as good) to merge the two modules with
the whole network as the resulting structure. This limit lS � L
is always satisfied but suggests here that it is important to
carefully analyze all modules found through modularity optimi-
zation, regardless of their size.

However, the probability that a very large module conceals
substructures is small, because this only happens if all hidden
submodules are very fuzzy communities, which is unlikely.
Instead, modules with a size lS � �2L or smaller can result from
an arbitrary merge of smaller structures, which may go from
loosely interconnected cliques to very fuzzy communities. Mod-
ularity optimization is most likely to fail in these cases.

To illustrate this theoretical discussion, we analyze five exam-
ples of real networks: (i) the transcriptional regulation network
of Saccharomyces cerevisiae (yeast), (ii) the transcriptional reg-
ulation network of Escherichia coli, (iii) a network of electronic
circuits, (iv) a social network, and (v) the neural network of
Caenorhabditis elegans. We obtained the lists of edges of the first
four networks from www.weizman.ac.il�mcb�UriAlon, whereas
the last one was found at http:��cdg.columbia.edu.

In the transcriptional regulation networks, nodes represent
operons, i.e., groups of genes that are transcribed on to the same
mRNA. An edge is set between two nodes A and B if A activates
B. These systems have been previously studied to identify motifs
in complex networks (32). There are 688 nodes and 1,079 links
for yeast and 423 nodes and 519 links for E. coli. Electronic
circuits can be viewed as networks in which vertices are elec-
tronic components (capacitors, diodes, etc.) and connections are
wires. This network maps one of the benchmark circuits of the
so-called ISCAS’89 set; it has 512 nodes and 819 links. In the
social network that we considered, the 67 nodes are people of a
group and the 182 links represent positive sentiments (based on
questionnaires) directed from one person to another. Finally, the
neural network of C. elegans is made of 306 nodes (neurons),
connected through 2,345 links (synapsis, gap junctions). Most of
these networks are directed, but we will consider them as
undirected.

We look for the maximum modularity by using simulated
annealing and we adopt the same recipe introduced in ref. 13,
which makes the optimization procedure very effective.

We found that the maximum modularity of all these networks
is very high, with values Qmax ranging from 0.4081 (C. elegans)
to 0.7519 (E. coli). The corresponding optimal partitions consist
of 9 (yeast), 27 (E. coli), 11 (electronic), 10 (social), and 4 (C.
elegans) modules (for E. coli, our results differ but are not
inconsistent with those obtained in ref. 13 for a different
database; these differences, however, do not affect our conclu-
sions). In order to check if the communities have a substructure
we used modularity optimization again, by constraining it to each
of the modules found. In all cases, we found that most modules
displayed a clear community structure with very high values of
Q. The total number of submodules is 57 (yeast), 76 (E. coli), 70
(electronic), 21 (social), and 20 (C. elegans), and is far larger than
the number of modules obtained at the maximum modularity. By
restricting modularity optimization to a module, we neglect all
links between the original communities and we have no guar-
antee that we accurately detect its substructure and that this is
a safe way to proceed. Thus, we have to check whether all
substructures we detected are real modules, i.e. if they satisfy the
condition of Eq. 2; we find that it is indeed the case for all the
networks considered here. Our results thus show that the search
for the modularity optimum is not equivalent to the detection of
communities defined through Eq. 2. The communities found
through modularity optimization are in fact clusters of smaller
modules. The modularity values corresponding to the partitions
of the networks including the submodules are smaller than the
peak modularities that we originally found through simulated
annealing (see Table 1).

The networks that we have examined are fairly small but the
problem we have discovered can only get worse if we increase the
network size, especially when small communities coexist with
large ones and the module size distribution is broad, which seems
to happen in many cases (25, 33). As an example, we consider the
recommendation network of the online seller Amazon.com.
While buying a product, Amazon recommends items that have
been purchased by people who bought the same product. In this
way, it is possible to build a network in which the nodes are the
items (books, music), and there is an edge between two items A
and B if B was frequently purchased by buyers of A. Such a
network was examined in ref. 25 and is very large, with 409,687
nodes and 2,464,630 edges. The authors analyzed the community
structure by greedy modularity optimization, which is not nec-
essarily accurate, but represents the only strategy currently
available for large networks. They identified 1,684 communities
whose size distribution is well approximated by a power law with
exponent 2. From the size distribution, we estimated that �95%
of the modules have sizes below the limit of Eq. 21, which implies
that basically all modules deserve further investigation.

Table 1. Results of the modularity analysis on real networks

Network
No. of modules

(Qmax)

Total no. of
modules

(Q)

Yeast 9 (0.740) 57 (0.677)
E. coli 27 (0.752) 76 (0.661)
Elect. circuit 11 (0.670) 70 (0.640)
Social 10 (0.608) 21 (0.532)
C. elegans 4 (0.408) 20 (0.319)

In the second column, we report the number of modules detected in the
partition obtained for the maximal modularity. However, these modules
contain submodules; in the third column we report the total number of
submodules we found and the corresponding value of the modularity of the
partition, which is lower than the peak modularity initially found.
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Conclusions
Here, we have analyzed in detail modularity and its applicability
to community detection. We have found that the definition of
community implied by modularity is actually not consistent with
its optimization, which may favor network partitions with groups
of modules combined into larger communities. We could say
that, by enforcing modularity optimization, the possible parti-
tions of the system are explored at a coarse level, so that modules
smaller than some scale may not be resolved. The resolution limit
of modularity does not depend on particular network structures,
but results only from the comparison between the number of
links of the interconnected communities and the total number of
links of the network.

Our result implies that modularity optimization might miss
important substructures of a network, as we have confirmed in
real world examples. Our discussion suggests that it is not
possible to rule out that modules of virtually any size may be
clusters of modules, although the problem is most likely to occur
for modules with a number of internal links of the order of �2L
or smaller. For this reason, it is crucial to check the structure of
all detected modules, for instance by constraining modularity
optimization on each single module, a procedure which is not
safe but which might give useful indications.

The origin of the resolution scale lies in the fact that modu-
larity is a sum of terms, where each term corresponds to a
module. Finding the maximal modularity is then equivalent to
looking for the ideal tradeoff between the number of terms in the
sum, i.e., the number of modules, and the value of each term. An
increase of the number of modules does not necessarily corre-
spond to an increase in modularity because the modules would
be smaller and so each term of the sum would be smaller. This
is why, for some characteristic number of terms, modularity has

a peak. The problem is that this ‘‘optimal’’ partition, imposed by
mathematics, does not necessarily capture the actual community
structure of the network, where communities may be very
heterogeneous in size, especially if the network is large.

Quality functions other than modularity may have an intrinsic
resolution scale that undermines their reliability. We believe that
quality functions mathematically similar to modularity, i.e., such
that the quality of a partition is given by the sum of the qualities
of the individual modules, will have a resolution limit, because
of the tradeoff described above. However, there are many
possible ways to define the quality of a partition: for instance,
one could take the average quality of the modules, instead of the
sum, and obtain very different results. Besides, the null model
one adopts to describe the absence of community structure could
be global (this is the case for modularity, which uses a random
graph with the same expected degree sequence) or local, i.e.,
determined by the properties of the module alone, regardless of
the rest of the network. Because of the arbitrariness of the quality
function, it is hard to address this issue in general. Nevertheless,
for a given quality function, our results suggest that it is necessary
to perform tests such as we did for the modularity in order to
check for the existence of possible biases and resolution limits.

The fact that quality functions such as modularity can have an
intrinsic resolution limit calls for a new theoretical framework
that focuses on a local definition of community, rather than on
definitions relying on a global null model. Quality functions are
still helpful, but their role should probably be limited to the
comparison of partitions with the same number of modules.
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