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Abstract

We generalize the stochastic block model to
the important case in which edges are an-
notated with weights drawn from an expo-
nential family distribution. This general-
ization introduces several technical difficul-
ties for model estimation, which we solve
using a Bayesian approach. We introduce
a variational algorithm that efficiently ap-
proximates the model’s posterior distribution
for dense graphs. In specific numerical ex-
periments on edge-weighted networks, this
weighted stochastic block model outperforms
the common approach of first applying a sin-
gle threshold to all weights and then applying
the classic stochastic block model, which can
obscure latent block structure in networks.
This model will enable the recovery of latent
structure in a broader range of network data
than was previously possible.

1. Introduction

In social and biological networks, vertices often play
distinct functional roles in the large-scale structure
of the graph. The automatic detection of these la-
tent roles, by identifying the induced “community”
or block structures from connectivity data alone,
is a fundamental problem in network analysis and
many approaches have been proposed (Fortunato,
2010; Porter et al., 2009). The stochastic block model
(SBM) is a popular generative model that solves this

problem in an unsupervised fashion (Holland et al.,
1983; Wang & Wong, 1987).

In its classic form, the SBM is a probabilistic model
of pairwise interactions among n vertices. Each vertex
belongs to one of k latent groups, and each undirected
edge exists or does not with a probability that depends
only on the block memberships of the connecting ver-
tices. The model is thus defined by a vector z contain-
ing the block assignment of each vertex and a k x k
matrix p, where p,, gives the probability that a vertex
of block u connects to a vertex of block v.

This model can capture a wide variety of large-scale or-
ganizational patterns of network connectivity, depend-
ing on the choices of p and z. If p’s diagonal elements
are greater than its off-diagonal elements, the block
structure is assortative, with communities exhibiting
greater edge densities within than between them, as is
often found in social networks. Other choices of p can
generate hierarchical, multi-partite, or core-periphery
patterns, among others. This flexibility, and the prin-
cipled probabilistic statements it produces, has made
the SBM a popular tool for unsupervised network anal-
ysis, in which we seek to infer the latent block labels
from the observed graph structure alone.

There is broad interest in machine learning, physics,
and computational social science to develop and
apply generalizations of the classic SBM. Gen-
eralizations have been made to allow degree
heterogeneity ~within blocks (Karrer & Newman,
2011), probabilistic or mixed block member-
ship (Airoldi et al., 2008; Ball et al., 2011), infinite
number of blocks (Kemp et al., 2006), or hierarchical
(nested) relationships among blocks (Clauset et al.,
2008).

Several efficient techniques exist for estimating la-


http://arxiv.org/abs/1305.5782v1

The Weighted Stochastic Block Model

tent block structures from data. Of particular rel-
evance to our weighted generalization of the SBM
are the variational algorithms, both Bayesian and
frequentist. Scalability is typically achieved by
constraining the parameter space or using modern
optimization techniques. Examples include varia-
tional expectation-maximization (EM) for the clas-
sic SBM (Daudin et al., 2008; Park et al., 2010), vari-
ational Bayes EM for a restricted, two-parameter
p matrix (Hofman & Wiggins, 2008), nested vari-
ational EM for the classic mixed membership
SBM (Airoldi et al., 2008), and stochastic varia-
tional inference for assortative mixed membership
SBM (Gopalan et al., 2012).

In most of these efforts, the SBM is restricted to binary
or Bernoulli networks, in which edges are unweighted.
The one exception has been block models with Poisson
distributed edge weights (Mariadassou et al., 2010;
Karrer & Newman, 2011; Ball et al., 2011), which can
be fitted to multigraphs. In practice, however, most
binary networks are produced after applying a thresh-
old to a weighted relationship (Thomas & Blitzstein,
2011), and this practice clearly destroys potentially
valuable information. To apply the SBM on weighted
data without thresholding, we introduce a generaliza-
tion of the SBM to the important case in which edges
are annotated with weights drawn from an exponential
family distribution.

This weighted stochastic block model (WSBM) includes
as special cases most standard distributional forms,
and thus allows us to use weighted relations directly
in recovering latent block structure, preventing the in-
formation loss caused by thresholding. Handling these
general weight distributions presents several technical
difficulties for model estimation, which we solve us-
ing a Bayesian approach. We first give the WSBM’s
form and derive a variational Bayes algorithm for fit-
ting to dense graphs. We then present synthetic ex-
amples that illustrate the type of behavior the WSBM
captures that is overlooked by thresholding. We close
with a brief discussion of extensions of the model.

2. Weighted Stochastic Block Models

The weighted stochastic block model is a generative
model for weighted pairwise interactions among n ver-
tices, and is composed of an exponential family distri-
bution F and a block structure R. The block structure
defines a set of vertex labels, denoted z = {z1,..., 2, }
where z; € K = {1,...,k}. The block structure R de-
fines a partition on the edges into R disjoint bundles,
one for each pair of blocks. Edges weights in some
bundle are modeled by a distribution in F, parame-

terized by 0, € 6 = {61,...,0r}. That is, each bundle
has its own set of distribution parameters.

The choice of R determines the large-scale structure
of the network, just as p and z do for the classic SBM.
When F is a Bernoulli trial, we cover this classic case.
Although constraining R, or the variation of its pa-
rameters across edge bundles, can be used to create
specific types of large-scale structure, here we focus
on the general case of blocks with independent param-
eters. In principle, the form of R could be learned
directly from data, but we do not explore this topic.

We denote a WSBM with edge distribution family F
and block structure R by Mz r, whose parameters
are the vertex labels z and the matrix of edge bundle
parameters §. The likelihood of observing a graph A,
given distribution f € F, is then

Pr(A|z,0, Mrr) = [ [ F(4i; |0r(..2,) -

i<j

Restricting F to exponential family distribution makes
the mathematics tractable while covering a broad
range of models of edge weights, including many com-
mon distributions produced by classic stochastic pro-
cesses. A distribution f belongs to an exponential fam-
ily F if it can be written as

f(@|¢) = hz)exp (T (x) - n(¢)) for z € X

where h, T, n are fixed mappings, ¢ is the distribu-
tion’s parameter, and X is the distribution’s support.
Under these assumptions, the log-likelihood becomes

R
L= Zlog h(AZJ) + ZTT : 77(97“)
r=1

1<j

where T, = 37, .z, .= T(Ai;) is the sufficient
statistic for the weights in edge bundle 7.

For some choices of M r , the likelihood function con-
tains degeneracies that prevent the direct estimation
of parameters z and 0. For instance, when weights are
real-valued and F is a Normal distribution. An edge
bundle with all-equal weights will have zero variance,
which creates a degeneracy in the likelihood calcula-
tion. Another technical problem is that non-edges in
a sparse graph (a zero in the adjacency matrix) may
represent a pair of non-interacting vertices, an inter-
action with zero weight, or an interaction we have not
yet observed. The classic SBM does not exhibit these
problems because edge weights are Bernoulli random
variables, whose sufficient statistics are always well de-
fined. To regularize the degeneracy problem, we take
a Bayesian approach and assign an appropriate prior
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distribution 7 to our parameters . Now, the poste-
rior distribution 7* will exhibit no degeneracies and
estimation can proceed smoothly.

Estimating the posterior distribution 7*(z, 6| A) given
the observed edge weights A and prior 7 is gener-
ally difficult, and so we approximate 7* by a factoriz-
able distribution ¢(z,6) = q(z)q(#). How we estimate
m* also depends on whether the graph A is dense or
sparse, and our interpretation of non-edges. Here, we
present the solution for dense graphs. In a separate
paper, we will present a belief propagation algorithm
for sparse graphs that correctly handles non-edges.

3. Variational Bayes

For a dense graph, we construct a variational Bayes
(VB) expectation-maximization algorithm to esti-
mate 7. We approximate the posterior distribu-
tion 7*(z,0|A) by a product of marginals ¢(z,0) =

[ qi(zi) I, a(0).

We then select ¢ by minimizing the Kullback-Leibler
(KL) divergence between our approximation and the
posterior Dkr,(q || 7*). It can be shown that

logPr(A[ Mz r) =Grr(q) + Dkr (ql|7") ,

where Gr =(q) is a functional lower bound on the con-
stant log Pr(A | Mz ), calculated as

 T20)

The first term is the expected log-likelihood under
the approximation ¢ and the second term is the KL-
divergence of the approximation ¢ from the prior 7.
As the likelihood log Pr(A| Mz ) is constant, mini-
mizing the KL divergence Dkr,(¢|| 7*) is equivalent to
maximizing Gr r(q).

Grr(q) =Eq (L) +Eq <1o

To maximize Gr r, we maximize the expected log-
likelihood of the data and weakly constrain the ap-
proximation to be close to the prior. This regular-
izer prevents over fitting and eliminates the aforemen-
tioned likelihood degeneracies. In practice, the first
term overwhelms the second term given sufficient data.

Conjugate priors. For mathematical convenience,
we restrict the prior 7 to a product of parameterized
conjugate distributions.

The conjugate prior for the parameter 6 of an expo-
nential family has the form

7(0) = Z (1) exp (1 -1(0)) ,

where T parameterizes the prior and Z(7) is a nor-
malizing constant. When we update the prior based

on the observed weights in a given edge bundle r, the
posterior’s parameter becomes 7 = 7+ T,., and 7 can
be viewed as a set of pseudo-observations. This pre-
vents the posterior from becoming degenerate since
every edge bundle, no matter how small or uniform,
produces a parameter estimate.

The conjugate prior for a vertex label z is a categorical
distribution with parameter u € R*, where y;(r) is the
probability that node i belongs to group k. We fit u;
directly, with a flat prior po(k) = 1/k.

The form of our prior is thus
H /140 Zi H Z~

where pg, 79 are the parameters for the priors 7;, 7.
With conjugate priors for 7, our approximation g takes
the form

)exp (10 - n(0r))

Huz z;) H Z7 (7, exp (7

Now, maximizing Gr r is equivalent to maximizing
Gr,r over ¢’s parameters f;, Tr.

- 1(0r))

Optimizing Gr .

gm—Zbgh id +Z
—I—Zlogz +ZZM 2;) log'u0 i ,

where (T'),., (1), are expectations of T}, 7, under the
approximation ¢; for exponential families they are,

=2 2.

b R(zi,z5)=r
__Olog Z(1;)
<T]>r T 87’7« .

These choices of 7 and ¢ yield

»+t 70— Tr) : <77>r

1i(2i) g (25) T (Ai 5)

To optimize Gr r we take derivatives with respect to
q’s parameters p, 7 and set them to zero. We iter-
atively solve for the maximum by updating p and 7
independently.

For 7, this yields

90Gr R

87—7“ = [<T>r + 0 — Tr

x(T), +10—7 ,

and the update equation for each edge-bundle param-
eter is 7, = 10 + (T'),..
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Algorithm 1 VB for dense networks
Input: Data A, Model Mr r
Initialize p
repeat

for allr=1,...,R do

Set (T'), := 32, i D oR(zs,2)=r Mai(2i) 115 (25) T (Ai 5)

Set 7. == 19+ (T),

Set (), == 2 log Z()|
end for
repeat

for alli=1,...,ndo

T
a;ig;) = ZR(Z,Z’):T Zj;éi T(A; )i (")

i) < exp (3, 55 - (), )
end for
until p converge
until p, 7 converge
return pu, 7

T=Tp

For p, we use Lagrange multipliers \; to enforce
> wi(z) = 1. Setting the derivative of Gr r with
respect to u; equal to \; yields

- <n>r] Clogi(z) = A |

0GrRrR o(T),
Oui(z) ZT: {3/%'(2)

where

o{T), ._ S T A ()

6/%(2) 2:R(z,2")=r j#i

Solving for u;(z) produces the update equation

pa(2) o exp <Z S,ET(ZS : <77>T> ,

3

where each p; is normalized to a probability distribu-
tion. To calculate the u; values, we iteratively update
each p; from some initial guess until convergence to
within some tolerance.

Algorithm 1 gives pseudocode for the full variational
Bayes algorithm, which alternates between updating
the edge-bundle parameters and the vertex label pa-
rameters using the update equations derived above.
Because every pairwise interaction contributes to the
estimation of some parameter, the algorithm takes
O(n?) time, assuming fast convergence on 6 and pu.
Like all VB approaches, only convergence to a local
optima of Gr r is guaranteed. In practical contexts,
multiple trials with a variety of initial conditions are
used, and the best overall model selected.

4. Model Selection

An important intermediate step toward applying
the WSBM to some graph is the selection of a
class of distributions F or the number of blocks
k. Any of a number of principled approaches
could be employed, including maximum likelihood,
possibly with cross-validation (Airoldi et al., 2008),
Bayes factors (Hofman & Wiggins, 2008), approxima-
tions thereof (Mariadassou et al., 2010; Daudin et al.,
2008), or minimum description length (Peixoto, 2013).

In our experiments below, we use Bayes factors, which
assume a uniform prior and are equivalent to selecting
the model with the largest model-likelihood,

Pr(A| M)

log B(M1, M32) = logm ~ gF,Rl — g]:,Rz )

where we approximate log Pr(4 | Mz r) with Gr %.

Although Bayes factors assign a uniform prior on a set
of nested models, they have a built-in penalty for com-
plex models. Recall that Gz r is penalized for large
divergence from the prior and since the vertex-label
prior is uniform on all k& groups, there is a penalty if an
increase in k does not sufficiently reduce the entropy or
correspondingly increase the expected log-likelihood.

5. Experimental results

We compare the WSBM against several alternative
methods for recovering latent block structure. Our
goal is to demonstrate that the classic SBM after ap-
plying a single threshold to all edge weights may miss
important structure and that the WSBM can be used
to explicitly evaluate the accuracy of inferring latent
block via thresholding. We also include k-means clus-
tering and hierarchical clustering to show that the
weighted behavior the WSBM captures is different.

To demonstrate how the WSBM can find structure
other methods may miss, we use synthetically gener-
ated dense graphs with n vertices divided into k* =5
heterogenous blocks; the weights of each edge bundle
are Normally distributed with bundle-specific param-
eters (see Fig. 1(a)). This 5-block model is a weighted
variation of Newman’s four-group test for unweighted
graphs (Newman & Girvan, 2004). We then vary three
model parameters—graph size n, variance of the edge
weight distributions, and number of blocks we fit to
the data—and measure the accuracy of the inferred
block structure. Varying the graph size corresponds
to consistency, varying the variance shows the perfor-
mance in high-noise settings, and varying the number
of blocks corresponds to robustness.
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Figure 1. Results of fitting the WSBM (blue) and other methods to our dense synthetic data. (a) An example of a dense
synthetic network with n = 160. (b) Comparison of VI versus the parameter k, fixing the variance and n = 160. (c)
Comparison of VI versus the variance of the edges, fixing k = 5 and n = 160. (d) Comparison of VI versus the size
of the network n, fixing the variance and k = 5. Points in (b,c,d) are averaged over 30 generated datasets. SBM with
thresholding and K-means are averaged over 100 trials for each dataset for different thresholds.

We characterize the accuracy of the recovered block
structures using the variation of information (VI)
(Meild, 2007), a standard metric for such tasks. The
VI is a mathematically principled, information theo-
retic metric for the distance between the inferred and
true assignment (vertex labels). Let P denote the
true block structure and @ be our estimate. Then
VI(P,Q)=H(P|Q)+ H(Q|P), with H(P|Q) being
the conditional entropy. When Q = P and we recover
the true structure exactly, VI(P,Q) = 0. One nice
property of VI is that it increases only modestly when
Q differs from P mainly by splitting or dividing blocks.

Under all test settings, the WSBM outperforms the
alternatives (Fig. 1b-d). As edge-weight variance in-
creases, all methods have decreased performance, but
the WSBM fails most gracefully. As the graph size n
increases, all methods perform better, with the WSBM
performing best by far. And, when varying the number
of blocks we infer, all methods perform better when
k =~ k*, but only the WSBM correctly recovers the
latent structure at k = 5 = k*, which is the value se-
lected under model selection using Bayes factors. Ad-
ditionally, the WSBM fails gracefully when k& > k*.

Thresholding with the SBM performs poorly in all
tests, because choosing a universal weight threshold
destroys information about the latent block struc-
ture. Thresholding converts the original weights into
a Bernoulli distribution with parameter equal to the
probability of exceeding the threshold. This effect
is substantial whenever distinct blocks exhibit similar
weight distributions. If the two blocks’ distributions
are similar (Fig. 2), the SBM with thresholding typi-
cally finds only one block because the probabilities of
exceeding the threshold are too similar. In this case,
thresholding confuses latent differences with Bernoulli

sampling noise, and the SBM merges blocks that are
distinct. With well-separated weight distributions and
an optimal threshold, the SBM may find correct struc-
ture. However, selecting the ‘optimal’ threshold is a
challenging problem itself. Because a threshold will
impact different edge bundles differently, a single ‘op-
timal’ threshold may not, in fact, exist.
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3 3 ‘
[ © ]
a Q '
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a 0 a 0 A
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(a) Small Variance (b) Large Variance
Figure 2. The probability density plots (pdfs) of two pairs
of normal distributions. In both figures, the distributions
are centered at x = 35 and x = 65, but differ in variance
and post-threshold probability. (a) The variance is 25 and
the probabilities of exceeding the threshold z = 50 are
0.001 and 0.999 respectively. (b) The variance is 2500 and
the probabilities of exceeding the threshold =z = 50 are
0.380 and 0.620 respectively.

As a result, when k > k*, the SBM with thresholding
tends to under-fit the data, leading to very poor re-
sults. In contrast, the WSBM, having no thresholds,
utilizes the complete weight information and performs
well even when given more flexibility than the under-
lying data require.

The performance of k-means and hierarchical cluster-
ing is particularly poor for increasing edge-weight vari-
ance, when the signal-to-noise ratio is low. These
methods over fit the data less than the classic SBM
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when given k > k*, but they still perform more poorly
than the WSBM. The reason for this difference is our
particular choice example. The k-means algorithm
uses principle component analysis, which suffers in
high variance settings. Similarly, hierarchical cluster-
ing focuses on only intra-block behavior (the blocks on
the diagonal) and misses out on inter-block behavior.

6. Discussion

The weighted stochastic block model we introduce here
generalizes the classic stochastic block model to the
important case of edges with weights drawn from an
exponential family distribution. This generalization
presented several technical challenges, which we solved
using a Bayesian approach to develop a variational
Bayes algorithm for dense graphs. This model accu-
rately recovers latent block structure under a wide va-
riety of conditions, and performs substantially better
than simple alternatives. These results demonstrate
that applying a threshold to edges weights before ap-
plying the unweighted SBM is generally unreliable.

The WSBM can be naturally generalized in several
potentially useful ways. For sparse graphs, we have
developed a scalable belief-propagation algorithm, to
be presented in future work. It could also be ex-
tended to mixed membership (Airoldi et al., 2008)
or, in the sparse case, to allow degree heterogene-
ity (Karrer & Newman, 2011). Stochastic variational
inference has shown promising results for scaling in the
mixed-membership SBM, and this technique could also
be adapted to the WSBM (Gopalan et al., 2012). Fi-
nally, an interesting question is the extent to which uti-
lizing weight information modifies the phase transition
in the detectability of latent block structure, which
is known to exist in the classic SBM (Decelle et al.,
2011).
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