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ABSTRACT
From microbial communities, human physiology to social and bio-
logical/neural networks, complex interdependent systems display
multi-scale spatio-temporal patterns that are frequently classified
as non-linear, non-Gaussian, non-ergodic, and/or fractal. Distin-
guishing between the sources of nonlinearity, identifying the na-
ture of fractality (space versus time) and encapsulating the non-
Gaussian characteristics into dynamic causal models remains ama-
jor challenge for studying complex systems. In this paper, we pro-
pose a newmathematical strategy for constructing compact yet ac-
curate models of complex systems dynamics that aim to scrutinize
the causal effects and influences by analyzing the statistics of the
magnitude increments and the inter-event times of stochastic pro-
cesses. We derive a framework that enables to incorporate knowl-
edge about the causal dynamics of the magnitude increments and
the inter-event times of stochastic processes into a multi-fractional
order nonlinear partial differential equation for the probability to
find the system in a specific state at one time. Rather than follow-
ing the current trends in nonlinear system modeling which pos-
tulate specific mathematical expressions, this mathematical frame-
work enables us to connect the microscopic dependencies between
themagnitude increments and the inter-event times of one stochas-
tic process to other processes and justify the degree of nonlinearity.
In addition, the newly presented formalism allows to investigate
appropriateness of using multi-fractional order dynamical models
for various complex systemwhich was overlooked in the literature.
We run extensive experiments on several sets of physiological pro-
cesses and demonstrate that the derivedmathematical models offer
superior accuracy over state of the art techniques.

CCS CONCEPTS
•Mathematics of computing →Probabilistic inference prob-
lems; Stochastic processes; Multivariate statistics; Informa-
tion theory; •Computing methodologies →Modeling method-
ologies; •Computer systems organization →Embedded and
cyber-physical systems; •Theory of computation→Models of
learning;
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1 INTRODUCTION AND RELATEDWORK
The recent advance in learning theory and computing power drives
the rapid development of the autonomous intelligent physical sys-
tem (IPS) that are cognizant and knowledge-rich. Autonomous
IPS exhibits high-level awareness beyond primitive actions and
employs a variety of reliable reasoning mechanisms to facilitate
a decision making process under the physical systems of rich un-
certainties. To enable an IPS that is able to operate in the physical
world for extended periods of time with minimal or no supervi-
sion by human operators, a good understanding of the underlying
complex behaviors of the physical systems is necessary.

The behavior of complex systems is influenced over many space
and time scales by multi-physics interactions. From cellular inter-
actions within the microbiome-to-brain architecture, to organ in-
terdependencies within human body expressed via signature phys-
iological processes, to animal swarms and food webs, to social
groups and society,memory, interdependency and concurrency
are fundamental characteristics. Although recent advances in sens-
ing technology contributed to large datasets, the modeling and
analysis of complex systems have mainly focused on modeling
frameworks that ignore the exhibited long-range memory, spatio-
temporal fractality, non-linear, non-ergodic and non-Gaussian prop-
erties. More precisely, traditionalmathematicalmodeling approaches
in nonlinear dynamical systems, statistical machine learning, sta-
tistical signal processing and process control, system identification
and econometrics focussed on describing the complex system dy-
namics via a set of integer-order ordinary differential equations
(ODEs) (see eq. (1)) and identify the parameters of the model by
minimizing a cost function that depends on a goodness-of-fit met-
ric (i.e., the difference between the data and the postulated model
class) and a complexity of the model penalty metric [12]:

dx j (t)
dt = fj (x1, ...,xn ,u1, ...,um ,θ j ) (1)

where the function fj encodes the linear/nonlinear interdependen-
cies between the state variables x1, ...,xn and the control variables
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u1, ...,um , and θ j represents the set of parameters to be estimated
from measured time series.

For instance, with the aim of determining equations of motion
from observations of time-dependent behavior, Crutchfield and
McNamara developed an informational measure to quantify the
modeling accuracy for eq. (1) from time series observations and
identifies the parameters of the ODEs by minimizing the distance
between the data and the postulated model [6]. Relying on the as-
sumption that the observed dynamical system is memoryless (i.e.,
the rate of change of its state variables obeys an integer order time
derivative), the heuristic modeling strategy proposed in [18] first
constructs a phase-space plot from the observations of a single vari-
able (ignoring the true causal interdependency) and determines the
dimensionality of the system’s attractor. Building on postulating
a particular integer order time derivative coupled with a specific
nonlinear mathematical expression and using the Ritt’s algorithm
of differential algebra, one can find the parameters of the model by
solving a regression problem [11]. Using a bilinear approximation
of the dynamics of interactions between system variables, the dy-
namic causal modeling in [10] proposes a Bayesian framework that
determines the parameters of a multi-dimensional linear (integer
order) dynamical system (the dynamics is assumed to be memory-
less). Along the same lines, numerous other approaches (e.g., man-
ifold learning [15], Bayesian networks [1], Q-learning [13], varia-
tional inference [17]) have been proposed in the literature. More
recently, a kernel cross-spectral density based analysis of station-
ary time series was proposed for measuring the independence and
the similarity between various time series [3].

While not being able to be exhaustive in covering all previous
work, the implicit assumption in all these prior approaches is that
the dynamics is intrinsically governed by a first order time derivative
which implies that the inter-event times between successive changes
in the magnitude of the processes are characterized by an exponential
law. However, many complex systems exhibit long-range mem-
ory [23] and fractal dynamics that are characterized by power
(non-exponential) law magnitude and inter-event times bringing
into question whether the nonlinearity should be considered in the
time or space domains or both [2, 4, 22, 25].

In addition, a number of outstanding challenges remain for con-
structing mathematical models of complex systems: (i) How can
we distinguish between spatial and temporal nonlinearity and how
can we construct mathematical models (i.e., dynamical equations)
that capture the spatio-temporal statistical characteristics of com-
plex systems? (ii) How can we identify the mathematical expres-
sions of the functions fj for the nonlinear models of complex sys-
tems and determine the degree of nonlinearity that should be ac-
counted for without incorporating unnecessarily many nonlinear
terms? (iii) How can the power law and non-Gaussian properties
of the magnitudes observed in many time series impact the degree
of nonlinearity? (iii) How one can interpret the asymmetry ob-
served in the time series realization of various processes and esti-
mate the amount of information gained from analyzing the spatio-
temporal complexity present in time series?

To overcome the afore-mentioned drawbacks, in this paper, we
seek to understand mathematically how various fundamental and
essential components of the complex systems interact and exchange
information to influence the overall performance and behavior. To

the best of our knowledge, this paper is the first to investigate the
impact of microscopic dynamics encapsulated in the ordered se-
quence of magnitude increments and inter-event times of the sto-
chastic process. More precisely, we have made the following
novel contributions in this work:

Firstly, we show that by adopting a causal inference like frame-
work and combining with probabilistic tools that were originally
developed in statistical physics context we can develop mathemat-
ical strategies that can enable us to distinguish when a time series
exhibits a short-range or a long-range dependence dynamics.

Secondly, we show how the analysis of a multi-point probabil-
ity density function can be interpreted through the lens of maxi-
mum entropy principle and distinguish between a memoryless or
a complex time-dependency structure.

Thirdly, this analysis allows to identify conditions under which
a complex systemunder investigation can be approximated through
a single order (i.e., the inter-event times can be characterized by a
marginal power law distribution being reminiscent ofmono-fractal
dynamics) or multiple order (i.e., the inter-event times and over-
all system dynamics requires multiple interwoven power laws and
multiple scaling exponents being reminiscent of multi-fractal dy-
namics) fractional dynamics. With respect to the afore-mentioned
question (i), the proposed mathematical formalism allows us to
determine when the space and time components of a stochastic
process can be decoupled and its overall evolution be described
through a multi-fractional nonlinear partial differential equation
(PDE) for the probability to reach a state at a particular point in
time.

With respect to the afore-mentioned question (ii), we demon-
strate how the power law behavior exhibited in the space (mag-
nitudes) and time (intervals of time between successive changes
in the magnitude) domains can be encapsulated through a com-
pact fractional calculus representation for the probability to reach
a state at a particular point in time and how this new formalism
enables the derivation of the nonlinear dynamical equations with
minimal postulation. Simply speaking, the statistical analysis of
the magnitudes and the inter-event times dictates the mathemati-
cal expression (form) of the dynamical model.

With respect to the afore-mentioned question (iii), we illustrate
how the asymmetry observed between the positive and negative
increments in the magnitude of the stochastic process can be en-
coded through Riesz-Feller fractional order operators leading to
a new class of multi-fractional nonlinear PDEs that could be ex-
ploited for computing information theoretic metrics regarding the
modeling accuracy and overfitting. This is left for future work.

2 COMPACT MATHEMATICAL MODELING
OF COMPLEX DYNAMICS

We show in Figure 1 the overview of the proposed framework that
enables the construction of the compact mathematical causal mod-
eling of the complex dynamics in a wide spectrum of applications
in cyber-physical domain. By setting up sensors that monitor the
physical process of interest, we are able to investigate the micro-
scopic dynamics of the underlying system evolution in both space
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Figure 1: The overview of the proposed framework to construct compact mathematical modeling of complex dynamics and
its application to the development of closed-loop cyber-physical systems. The monitored physical process is interfaced with
a data-driven learning framework that investigates the system dynamics from a microscopic perspective (e.g., magnitude
and inter-event time increments). A non-Markovian probabilistic description is constructed based on generalized master
equation and the principle of maximum causal entropy to encapsulate the exhibited power-law behaviors (Section 2.1 and
Section 2.2). This master equation based formalism allows the derivation of the nonlinear dynamical state equations with
minimal postulation to capture system dynamics (Section 2.3). By retrieving the system model parameters from a specific
physical process from which the model is derived, the proposed framework can serve as the intelligent core of the closed-
loop intelligent cyber-physical systems for a wide spectrum of CPS applications( e.g., decode the neuron activities to generate
stimulation signals for the control of prothesis ormuscles to help amputee or paralyzed patients to regain body functionality).

(magnitude increments) and time (inter-event times). We demon-
strate that the interdependency between the jumps of the magni-
tude and inter-event times i) dictate the mathematical characteri-
zation of changing rate of system states and ii) impact the degree
of nonlinearity of the couplings among system components. To
capture these properties, we propose a non-Markovian probabilis-
tic description of the physical process through generalized master
equation. By principle of maximum causal entropy considering
the power-law behavior exhibited in the system dynamics, we are
able to derive the nonlinear dynamical state equations with mini-
mal postulation.

By leveraging the system identification techniques to retrieve
the model derived by learning the microscopic dynamics of the ob-
served physical process, the proposed causal modeling of complex
dynamics can be integrated as the core of the intelligent cyber-
physical systems in a widely ranged CPS applications such as the
prediction of system dynamic behaviors, the detection of system
anomalies and the synthesis of the closed-loop controllers for au-
tonomous systems. In what follows, we will present the detailed
discussion on all components of our proposed mathematical mod-
eling framework.

2.1 Microscopic Dynamics Dictates the
Governing Mathematical Equation

Weconsider a stochastic processx(t), whose realization is described
by a tuple sequence ofmagnitude and time increments: {(∆x1,∆t1);
(∆x2,∆t2); . . . ; (∆xm ,∆tm)} (see Figure 1). More precisely, the
∆tj represents the waiting time in which the stochastic process
makes a jump ∆x j in the j-th iteration. To define the underlying
stochastic process (sequence), we introduce the conditional proba-
bility density function

w(∆xm ,∆tm |∆xm−1,∆tm−1 . . . ;∆x1,∆t1) =

= w(∆xm ,∆tm |∆x1:m−1,∆t1:m−1) (2)

and the joint probability density function (PDF):

w(∆xm ,∆tm ; . . . ;∆x1,∆t1) = w(∆x1:m ,∆t1:m) =

=
m∏
j=1

w(∆tj |∆t1:j−1)
m∏
j=1

w(∆x j |∆x1:j−1,∆t1:m) (3)

where we have taken into account the chain rule and the causal de-
pendency. The rationale for considering these probabilities is mo-
tivated by the need to understand how the so called microscopic
dynamics influences the overall evolution; alternatively stated we
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aim to understand: i) How the changes in the magnitude incre-
ments affect the degree of linearity /nonlinearity of the function
fj in equation (1); ii) How the statistics of the inter-event times
impact the overall dynamics and could dictate the mathematical
operator characterizing the rate of change in the system.

One fundamental assumptionwemake is that the tuple (∆x j ,∆tj )
is not random and independent of the previous magnitude incre-
ments (∆xi ,∆ti ) with 1 ≤ i < j. Instead, we assume that the or-
dered sequence {(∆x1,∆t1); (∆x2,∆t2); . . . ; (∆xm ,∆tm)} posses
some form of directed information that is conveyed either from the
space of magnitudes ∆x j to that of time increments ∆tj or from
the space of time increments∆tj to that of the process magnitudes
∆x j from one iteration (generation) to another (preserving the axis
of time). This ordered dependency represents the source of the frac-
tal behavior that could be observed in either the magnitudes or the
waiting (inter-event) times. Consequently, in this work, we inves-
tigate how this directional information and its related statistics de-
termine the type of dynamical equation that governs the evolution
of process x(t). An important problem in establishing a governing
dynamical state equation (i.e., a differential equation describing
the evolution of the k-th order statistical moments) is represented
by the need to elucidate the dependency structure between the pro-
cess magnitudes and time increments and the mathematical form
of the joint PDFw(∆xm ,∆tm ; . . . ;∆x1,∆t1).

In order to describe a strategy for investigating the dependency
structure between the process magnitudes and time increments,
we assume that the stochastic process x(t) corresponds to a non-
extensive1 system and introduce the following definitions:

Definition 1: ([24]) Given a continuous probability distribution
f (x ,y), the non-extensive Tsallis entropy is defined by:

Sq [f ] =
1

q − 1

xmax∫
xmin

ymax∫
ymin

{ f (x ,y) − f (x ,y)q }dxdy (4)

where q is a real number and represents the entropic index. When
q → 1 the above formula reduces to the Boltzmann-Gibbs or Shan-
non entropy (up to a constant parameter).

Definition 2: Given two continuous joint probability distribu-
tionsw(∆x1:m ,∆t1:m) andw(∆x1:m−1,∆t1:m−1), we define the
causal non-extensive Tsallis entropy as follows:

Sq(∆xm ,∆tm |∆x1:m−1,∆t1:m−1) =
1

q − 1

∫
. . .

∫
{ w(∆x1:m ,∆t1:m)

w(∆x1:m−1,∆t1:m−1)
[

w(∆x1:m ,∆t1:m)1−q

w(∆x1:m−1,∆t1:m−1)1−q
− 1]} (5)

As will be shown in the next subsection, the mathematical ex-
pression of the joint PDF w(∆x1:m ,∆t1:m) plays a crucial role
in establishing the dynamical equations of the k-th order statisti-
cal moments. Consequently, in order to elucidate the form of the
joint PDFw(∆x1:m ,∆t1:m)we employ the principle of maximum
entropy which describes a probability distribution estimator that
best represents the state of knowledge or known properties of that
distribution [14]. Simply speaking, this estimator implies maxi-
mizing an entropic functional subject to constraints that reflect

1Systems obey non-extensive statistical mechanics where entropy is non-additive

our knowledge about the distribution (e.g., normalization condi-
tion, fractional order statistical moments). In what follows, we
will describe a maximum entropy inspired estimator for the joint
PDFw(∆x1:m ,∆t1:m) and its related probabilistic components.

Definition 3: The principle of maximum causal non-extensive en-
tropy describes the causal non-extensive entropy-maximizing prob-
ability distribution estimator, ŵ(∆xm ,∆tm |∆x1:m−1,∆t1:m−1),
by solving the following optimization problem:

maxŵ(∆x1:m,∆t1:m){Sq [ŵ(∆x1:m−1,∆t1:m−1)]+

Sq(∆xm ,∆tm |∆x1:m−1,∆t1:m−1)} (6)∫
. . .
∫
ŵ(∆x1:m ,∆t1:m)d(∆xm) . . .d(∆t1) = 1 (7)∫

...
∫
ŵ(∆x1:m−1,∆t1:m−1)d(∆xm−1)...d(∆t1) = 1 (8)∫
...
∫
∆xαm−1m−1 ŵ(∆x1:m−1,∆t1:m−1)

d(∆xm−1)...d(∆t1) = Iαm−1 (9)∫
...
∫
∆xαmm ŵ(∆x1:m ,∆t1:m)d(∆xm)...d(∆t1) = Iαm (10)

Theorem 1: The causal non-extensive entropy-maximizing prob-
ability distribution estimator in optimization problem (6) leads to a
solution for the conditional probability ŵ(∆xm ,∆tm |∆x1:m−1,∆t1:m−1)
= ŵ(∆x1:m ,∆t1:m)/ŵ(∆x1:m−1,∆t1:m−1), where the joint PDFs
ŵ(∆x1:m ,∆t1:m) = ŵm and ŵ(∆x1:m−1,∆t1:m−1) = ŵm−1 sat-
isfy the following relations:

ŵm = ŵm−1h(∆xm−1:m ,∆tm), where (11)

h(∆xm−1:m ,∆tm) = {(λm − γm∆xαmm )l(∆xm−1)
q−2
1−q }

1
q−1

with l(∆xm−1) = 1 + (q − 1)(λm−1 + γm−1∆xαm−1m−1 )

One can notice from eq. (11), that if we do not have knowl-
edge about the fractional order statistical moments, then wm =
w(∆x1:m ,∆t1:m) is proportional to the initial joint PDF w1 =
w(∆x1,∆t1) (i.e.,w(∆x1:m ,∆t1:m) ∝ w(∆x1:m−1,∆t1:m−1)... ∝
w(∆x1,∆t1)). It should be noted thatw(∆xm ,∆tm |∆x1:m−1,∆t1:m−1)
connects to the concept of Neyman–Rubin causality [19] and pre-
serves the causal dependence in space and time.

2.2 Non-Markovian Probabilistic Description
In the previous subsection, we observed that under some knowl-
edge about the stochastic process magnitudes (∆x and time incre-
ments (∆t ) reflected as constraints in the maximum causal non-
extensive entropy formulation, the joint distribution can take ex-
ponential, power law or more complex mathematical expressions.
In this section, we incorporate the results derived in subsection
2.1 and provide a probabilistic description of the stochastic process
x(t) through a generalized master equation (GME) for the condi-
tional PDF P(x , t |α , β):

P(x , t |α , β) = P0(x , t |α , β) +
t∫
0

d(∆t) (12)

∞∫
−∞

w(∆x ,∆t |α , β)P(x −∆x , t −∆t |α , β)d(∆x)

where the P(x , t |α , β) represents the conditional PDF that the sto-
chastic process x(t) attains value x at time t given that the process
magnitude increments ∆x and the process inter-event times ∆t
are characterized by fractal exponents α and β , thew(∆x ,∆t) rep-
resents the joint PDF of the process magnitude increments∆x and
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the inter-event times∆t that is assumed to satisfy a fractal scaling
relationship characterized by the fractal exponents α and β , and
P0(x , t |α , β) is the initial condition that the stochastic process was
initiated from state x at time t = 0.

The conditioning on the fractal exponents α and β in eq. (12)
of the PDF P(x , t |α , β) is motivated by the fact that the joint PDF
of the process magnitude increments and the inter-event times
w(∆x ,∆t) can be expressed as a generalized fractional Taylor (power)
series: w(∆x ,∆t) =

∑
k
(Ak + Bk∆x−αk )∆tβk−1. Consequently,

we express the GME for the conditional PDF P(x , t |α , β) for a spe-
cific α and β , with w(∆x ,∆t |α , β) ∝ ∆x−α∆tβ−1 and integrate
over the set of exhibited fractal exponents. Taking into account
the Riemann-Liouville fractional order integral of order β > 0 for
a function f over the space of locally integrable function [16]:

I β f (t) = 1
Γ(β)

t∫
0

τ β−1 f (t − τ )dτ (13)

the relation between the fractional order integral and fractional
order derivative (for 0 < β < 1)

0D
β
t f (t) =

dβ f (t)

dtβ
=0 I

−β
t f (t) =

= 1
Γ(1 − β)

t∫
0

1
(t − τ )β−1

d f (τ )
dτ

dτ (14)

and the fractional Kramer-Moyal expansion, the GME (12) [8] can
be rewritten as follows:

0D
β
t P(x , t |α , β) =

x∫
−∞

dψ l∗(x −ψ )[P(ψ , t |α , β)

−P(x , t |α , β)] +
∞∫
x
l(x −ψ )[P(ψ , t |α , β) − P(x , t |α , β)]dψ (15)

The transition functionals l∗(z) and l(z) can takemany different
mathematical expressions. In what follows, we consider a gener-
alized mathematical form motivated by observed statistical asym-
metry of several physiological time series as follows:

l∗(z) = a1
1
π Γ(1 + α)sin(

(α+θ )π
2 )z−(1+α ) + a2z

−1

for z ≥ 0 (16)

l(z) = a1
1
π Γ(1 + α)sin(

(α−θ )π
2 )z−(1+α ) + a2z

−1

for z < 0 (17)

Although other mathematical expressions can be retrieved from
statistical analysis of the magnitude increments observed in the
time series, the analysis of their implications on the overall math-
ematical form of the master equation is left for future work. For
the above power law asymmetric transition functionals, the GME
in (18) takes the following form:

0D
β
t P(x , t |α , β) =

a1∂
αP(x , t |α , β)
∂ |x |α + a2P(x , t |α , β) (18)

Taking into account that the magnitude increments and the inter-
event times can be characterized by a distribution of fractional

exponents, then the above partial differential equation can be re-
written as follows:

βmax∫
βmin

d(β)0D
β
t P(x , t)dβ =

αmax∫
αmin

a2P(x , t)e(α)dα+

+
αmax∫
αmin

a1
∂αP(x , t)
∂ |x |α e(α)dα (19)

whered(β) denotes the distribution of fractional exponents β char-
acteristic to the statistics of the inter-event times, βmin and βmax
are the lower and upper bounds on the exhibited fractional expo-
nents for inter-event times, e(α) is the distribution of fractional
exponents α corresponding to the statistics of the magnitude in-
crements of x(t), and αmin and αmax are the lower and upper
limits on the fractional exponents characterizing the magnitude
increments.

Investigating and determining the dynamical equations govern-
ing the evolution of complex systems implies analyzing and charac-
terizing the statistical interdependency ofmulti-dimensional signa-
ture processes. Towards this end, by assuming that the inter-event
times between changes in all the signature processes are character-
ized by a fractal exponent β , a multi-dimensional generalization of
eq. (15) reads:

P(x1, ...,xn , t |α1, ..,αn , βj ) = Pt=0(x1, ..,xn |α1, .., β)

+
t∫
0

dτ
x∫
−∞

dξ1...
x∫
−∞

dξnl
∗(x1 − ξ1, ...,xn − ξn , t − τ )

[P(ξ1, ..., ξn ,τ |α1, ..., β) − P(x1, ...,xn , t |α1, ...β)]

+
t∫
0

dτ
∞∫
x
dξ1...

∞∫
x
dξnl(x1 − ξ1, ...,xn − ξn , t − τ ) (20)

[P(ξ1, ..., ξn ,τ |α1, ..., β) − P(x1, ...,xn , t |α1, ..., β)]

where the transition probabilities l∗(z1, ..., zn ,τ ) and l(z1, ..., zn ,τ )
are introduced to capture the possible asymmetry in the evolution
of the positive and negative increments of each process x j (t) and
the interdependency between all processes x1(t), ...,xn(t).

In the master equation (20), the transition probabilities l help at
capturing both the causal structure (i.e., how one or a set of sys-
tem variables influence a specific variable and with what degree /
strength, how system variables are impacted by external perturba-
tions) and the causal dynamics (i.e., how much of the past evolu-
tion and with what strength influences the rate of change in one or
multiple system variables). Alternatively stated, the master equa-
tion encodes the spatio-temporal interdependency and memory
(changes in the patterns of interactions between system variables
and variations in external inputs if needed) of a complex system.
In the next subsection, we will consider a particular symmetric
case, when the l∗(z1, ..., zn ,τ ) and l(z1, ..., zn ,τ ) take the follow-
ing form:

l(z1, ..., zn ,τ ) =
n∑

j=1,

k,j

[aj + bjz
−1
j + c jz

−1
j z−1k ]τ βj−1 (21)
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Under these transition probabilities, the master equation (20) can
be expressed as follows:

P(x1, ..,xn , t |βj ) = I βj
n∑

j=1,

k,j

[ajP(x1, ..,xn , t |βj )+

bj
∂P(x1, ...,xn , t |βj )

∂x j
+ c j
∂2P(x1, ...,xn , t |βj )

∂x j∂xk
] (22)

where the inter-event times are characterized by a fractal exponent
βj that is determined by the intrinsic degree of memory associated
with process x j . We also express the conditional probability be-
cause in some cases the process x j (t) can be characterized by mul-
tiple fractal exponents and so a distribution d(βj ) is required to
fully characterize its dynamics.

2.3 Dynamical State Equations
One dimensional case: In what follows, we show how the afore-
mentioned analysis helps at determining the time dependence of
the statistical moments associated with the stochastic process x(t)
and defined as follows:

Mk (t) = E[x
k ] =

∞∫
−∞
|x |k P(x , t)dx (23)

where k denotes the order of the statistical moments and P(x , t) is
assumed to be described by equation (19).

By multiplying both sides of equation (19) with |x |k and inte-
grating over the x-magnitude space, we obtain the following rela-
tion for the k-th order moment of x(t):

βmax∫
βmin

h(β)
∂βMk (t)

∂tβ
dβ =

αmax∫
αmin

a2Mk (t)e(α)dα+

+

αmax∫
αmin

a1e(α)

∞∫
−∞
|x |k ∂

αP(x , t)

∂ |x |α dx dα (24)

Making use of the integration by parts formula leads to
βmax∫

βmin

h(β)
∂βMk (t)

∂tβ
dβ =

αmax∫
αmin

a2Mk (t)e(α)dα+

αmax∫
αmin

a1e(α)

∞∫
−∞

∂αMk (t)

∂ |x |α P(x , t) dx dα (25)

and using the following result from fractional calculus

∂α
[
xk (a + bx)m

]
∂xα

=
aαΓ(k + 1)xk−α (a + bx)m−α

Γ(k + 1 − α) (26)

equation (24) can be writted as follows:
βmax∫

βmin

h(β)
∂βMk (t)

∂tβ
dβ =

αmax∫
αmin

a2Mk (t)e(α)dα+

+

αmax∫
αmin

a1
Γ(k + 1)

Γ(k + 1 − α)Mk−α (t)e(α)dα (27)

Of note, for d(β) = δ(β − β0), a1 = 0, considering noise terms
and discretizing equation (27) using the Grünwald-Letnikov dis-
crete fractional differential operator [20] we obtain the well know
autoregressive fractionally integrated moving average (ARFIMA)
type of models [7][9]. Furthermore, equation (27) represents a new
class of mathematical models that could be used to study time se-
ries.

Multi-dimensional case: Modeling complex dynamical sys-
tems and determining governing differential equations for various
state variables (e.g., mean, variance, skewness, kurtosis associated
with a stochastic process) requires to characterize the statistical
inter-dependency between several processes. While the transition
probabilities can in general take many forms, in what follows, we
analyze the case in which the evolution of the magnitudes and
inter-event times associated with a set of interdependent processes
is described by a joint PDF of the form in (21). By multiplying both
sides of equation (22) byx j , integrating the equation over the entire
space (all variables x1 to xn ) and taking into account the inverse
relationship between the fractional order integral and fractional or-
der derivative operators, we can obtain a dynamical equation for
the mean Mj (t) of the process x j :

0D
βj
t Mj (t) =

∑n
j=1,

j,k
[ajMj (t) − bj + c jMk (t)] (28)

or in matrix format:
0D

β1
t

. . .

0D
βn
t



M1(t)
...

Mn(t)


= A


M1(t)
...

Mn(t)


+ B (29)

where the matrices A and B contain the coefficients appearing in
each fractional order differential equation for Mj (t). Taking into
account of Riemann-Liouville fractional order operation, one can
notice the embedded capability of the proposed fractal dynamical
state equation (FDSE) in capturing the inter-dependency andmem-
ory effect by the construction of master equation (19). The major-
ity of prior works implicitly assume the dynamics of the system
is governed by the first order derivative that suggests the succes-
sive changes (positive and negative increments) in magnitude of
the processes are characterized by an exponential law. In contrast,
equation (29) considers systems where the magnitude of the varia-
tion over time contradicts with the patterns in time-domain of com-
monly employed Markovian processes (e.g., Poisson approaches).
The dynamics of such systems usually exhibit non-exponential and
fractal behaviors characterized by a power-law.

3 EXPERIMENTS
3.1 Experiment setup
To make the discussion more concrete and exemplify the mathe-
matical formalism, we investigated the statistical properties of a
set of primary physiological processes (i.e, muscular, cardiac and
neural processes). More specifically, we analyze the intramuscular
EMG (iEMG), EEG and ECG signals from realistic clinical experi-
ments.

The iEMG signals are collected at different sites of the forearm
muscles as shown in Figure 2: (i) extensor digitorum (ED); (ii)
flexor digitorumprofundus (FDP); (iii) abductor pollicis longus (APL);
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Extensor Digitorum

Supinator

Abductor Pollicis
Longus

Flexor Digitorum
Profundus

Pronator Teres

Fine wire electrodes

Motor neurons

Neural
activities

ADI EMG recording
system

Sampling@4KHz

Channel interested

Flexor Pollicis
Longus

Figure 2: EMG setup: Intramuscular EMG signals are mea-
sured at 6 muscles (i.e., 2 flexor muscles, 2 extensor muscles,
1 pronator muscle and 1 supinator muscle). The subject is
inserted with fine wire electrodes formeasurement purpose.
All channels are considered and the channels highlighted in
red are selected as case study.
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Figure 3: The 64-channel geodesic sensor distribution for
measurement of EEG.

(iv) flexor pollicis longus (FPL); (v) pronator teres (PT) and (vi)
supinator (SUP), when the subject is asked to relax 6 seconds, then
do the finger flexion at a consistent strength for 10 seconds. The
ADInstruments data acquisition system sampled the iEMG at 4
KHz.

The EEG signals are recorded by a 64-channel electroencephalo-
gram acquisition system shown in Figure 3 that monitors the brain
activity of 109 subjects when they are performing motor and im-
agery tasks upon noticing objects appearing on the screen [21].
Each subject is asked to open and close the corresponding fists or
feet as a function of where the target appears. Each individual per-
formed 14 experimental runs consisting of one minute with eyes
open, one minute with eyes closed, and three two-minute runs of
interacting with the target. The data set is collected by BCI2000
system with a sampling rate of 160Hz. The raw clinical ECG data
was extracted from the PTB diagnostic ECG database [5]. Data
on 52 healthy subjects (13 women, age 48 ± 19 and 39 men, age
42 ± 14) was obtained by the National Metrology Institute of Ger-
many. Each subject’s record includes 15 different signals simulta-
neously acquired: the conventional 12-lead (I, II, III, aVR, aVL, aVF,
V1, V2, V3, V4, V5, and V6) and 3 Frank orthogonal leads (VX, VY,
and VZ) as shown in Figure 4. Each signal is digitalized at 1000Hz,
with a signal bandwidth of 0Hz to 1KHz and with 1 uV LSB reso-
lution.

aVaVF

aVR

V3
V4
V5
V6

V2

RA

LL

LAI

II

III

aVL

I
Lateral left
ventricle

aVR
Square root of

squat

II
Inferior portion
of left ventricle

III
Inferior portion
of left ventricle

aVL
Lateral left
ventricle

Inferior portion
of left ventricle

aVF

Septal Anterior

V1

Lateral left
ventricle

Inferior portion
of left ventricle

Limb leads Precordial leads

V2

V3

V4

V5

V6

Antero-Septal

Antero-Septal

Channel interested

Figure 4: The deployment of 12-lead ECG system used in the
experiment is shown.

3.2 Investigation of non-exponential system
dynamics

In the first set of experiments, we study the stochastic nature of
magnitude increments (positive and negative) in all physiological
processes considered to distinguish between exponential and power
law behavior or between Gaussian and non-Gaussian cases. More
specifically, we perform a statistical analysis to first estimate the
empirical cumulative distribution function (CDF) and its support
of the physiological process magnitude positive and the absolute
value of negative increments. By fitting the measurements to the
postulated stochastic models, we estimate the parameters of i) an
α-stable distribution, ii) exponential distribution and iii) Pareto
distribution via maximum likelihood method. Then the CDFs of
three stochastic models are generated based on the estimates of
the model parameters.

To quantify the statistical confidence of model fitting, we per-
formed the two-sample Kolmogorov-Smirnov test between themea-
surements and the generated stochastic processes with identified
α-stable, exponential and Pareto distribution parameters. The null
hypothesis assumes the measurements come from the same distri-
bution as the postulated distributions with significance of 0.05. As
a case study, we report the results of a selected set of physiologi-
cal channels from the subjects that best illustrate their stochastic
natures. Both positive and negative increments are studied and
we visualize the experiments considering the positive increments
in Figure 5. Figure 5.(a-c) show how two models fit to the empir-
ical survival function (SF) of a set of EEG (a), ECG (b) and iEMG
(c) signal channels in the corresponding experiments, respectively.
The interested channels are highlighted in Figure 2-4. In all sub-
figures, the red squares correspond to the empirical SF, the blue
lines, the black lines and the green lines represent the best-fitted
α−stable distribution, exponential distribution and Pareto distri-
bution, respectively. The retrieved model parameters and p-values
are reported in both the plot legends and Table 1.

By examining the figures, we can make several important obser-
vations: i) The null hypothesis that the positive increments follow
an exponential distribution is rejected in all physiological channels
we considered with p-value ranging from 0.001 to 0.043. This sug-
gests that magnitude variation over time domain strongly contra-
dicts with an exponential law which is a well-adopted assumption
in previous work.

ii)The p-value well coincides with our visual inspection that the
exponential SF fitting (black lines) deviates the empirical SF in all
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Figure 5: Empirical survival cumulative distribution functions and maximum likelihood best fitting α-stable, exponential
and Pareto distributions for magnitude increments in selected EEG, ECG and EMG channels. Figure (a)-(c) show the probabil-
ities of the positive increments in magnitude exceeding a threshold value. P-value is obtained by performing a two-sample
Kolmogorov-Smirnov test with the null hypothesis that the measurements come from the same distribution as the postulated
α-stable, exponential or Pareto distribution.
the channels considered. Instead, the Pareto distribution and the
α-stable fitting better represent the stochastic properties of the sig-
nal variations over time in all channels. This suggests the existence
of fractality which is governed by a power-law distribution as pos-
tulated by equation (21), which also coincides with our following
observation.

iii) For all channels that can be better characterized by an α-
stable distribution or Pareto distribution, the estimated stability
parameters α are all smaller than 2 where α = 2 corresponds to
a Gaussian process. For α < 2, stable distributions have one tail
(when α < 1 and β = ±1) or both tails (all other cases) that are
asymptotically power laws with heavy tails. This is best illustrated
in FDP and PT channel of iEMG signals where the empirical dis-
tribution fits well to the α−stable distribution up to a certain tran-
sition point where the empirical SF starts to obey the Pareto dis-
tribution (i.e., power-law). This suggests the existence of fractality
in these physiological processes which is aligned with our analyt-
ical prediction made by Theorem 1, hence justifying the applica-
tion of the proposed fractal dynamical state equation described in
equation (29). The similar conclusion can also be reached by inves-
tigating the stochastic properties of the negative increments (see
Table 1) in physiological processes.

3.3 Efficacy evaluation of FDSE for
physiological processes

The investigation of the stochastic characteristics of the processes
considered verified the existence of non-Gaussian and fractality

(non-linearity) in the physiological systems. Therefore, the dynam-
ical behaviors of these systems in time and spatial domain can not
be accurately described by the conventional methods that assumes
a stationary and Markovian system state equation with short-term
memory. In what follows, we present the second set of experi-
ments where we are interested in the spatial (i.e, interdependency
across multiple channels) and temporal (i.e., how previous system
state passes down its influence to current system dynamics) de-
pendency structure of the physiological processes. We evaluated
the capability of the proposed FDSE in capturing the complex dy-
namical behaviors of physiological processes. More precisely, we
employed a least-square error estimator proposed in [26, 27] to
identify the model described by equation (29). After the identifi-
cation of the model, we evaluate the model adequacy by compar-
ing the physiological measurements and predicted model output
as goodness-of-fit metrics.

To compare with the Vector ARMA (VARMA) model and under-
stand the significance of coupling the fractal exponents into FDSE
(i.e., considering the long term memory in system state dynamics),
we report three experimental settings: i) only fractal exponents β
are considered (i.e., assuming an identify matrix for A in equation
(29)); ii) only coupling matrixA is considered (i.e., assuming βi = 1
which reduces to VARMA type model) and iii) both coupling ma-
trix and fractal exponents β are considered (i.e., FDSE). We show
the comparison results of a selected set of channels from EEG (a),
ECG (b) and iEMG (c) measurements in Figure 6, respectively. The
blue lines show the actual measurements. The orange lines repre-
sent the predicted model output where only fractal exponents are
considered (i.e, setting i). The yellow lines and the magenta lines
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Figure 6: Fitting themodel to physiologicalmeasurements of EEG, ECG and iEMG considering i) FDSEwith no couplingmatrix
A, ii) FDSE with coupling matrix A and iii) Vector ARMA model with no fractal exponents.

Table 1: KS-test and ML best-fitting parameters of α-stable, exponential and Pareto distributions for selected channels

Channel Positive increments Negative increments
α ,β ,γ ,δ pstbl λ pexp k,σ ppar α ,β ,γ ,δ pstbl λ pexp k,σ ppar

Fc1 1.87,1,1,6.05 0.15 12.14 0.0089 -0.35,16.39 0.44 1.56,1,1,5.56 0.08 14.47 0.071 0.39, 20.04 0.18
F1 1.85,1,1,5.56 0.28 12.34 0.053 -0.47,18.07 0.58 1.89,1,1,6.02 0.15 11.29 0.05 -0.43,16.18 0.73
P8 1.57,1,1,4.62 0.19 11.38 0.0025 -0.19, 13.56 0.16 1.88,1,1,6.17 0.01 11.2 0.03 -0.25,14.03 0.16
II 1.56,1,1,0.003 0.44 0.007 0.02 -0.22, 0.008 0.30 1.69,1,1,0.003 0.24 0.006 0.0089 -0.20, 0.007 0.21
V2 1.57,1,1,0.001 0.19 0.003 0.043 -0.23,0.004 0.32 1.8,1,1,0.002 0.05 0.004 0.01 -0.40,0.005 0.38
V5 1.4,1,1,0.001 0.15 0.003 0.0017 -0.19,0.004 0.33 1.93,1,1,0.002 0.01 0.003 0.047 -0.42,0.005 0.49
ED 1.93,1,1,0.003 0.56 0.006 0.001 -0.30,0.008 0.15 1.92,1,1,0.003 0.1 0.005 0.034 -0.29,0.007 0.65
FDP 1.09,1,0.59,0.004 0.36 0.014 0.01 0.18,0.011 0.22 0.49,1,1,0.003 0.15 0.021 0.0001 0.87,0.007 0.47
PT 1.54,1,1,0.001 0.4 0.003 0.006 0.25,0.002 0.24 1.41,1,1,0.001 0.37 0.002 0.004 0.051,0.002 0.68

correspond to setting ii and iii, respectively. We use the system
identification approach proposed in [27]. The estimated fractal ex-
ponents range from 0.30 to 0.66, 0.94 to 1.19 and 0.18 to 0.61
for EEG, ECG and iEMG signals, respectively, hence verifying the
existence of fractality.

Two key observations can be made for Figure 6: i) In all ex-
periments we considered, the efficacy of incorporating the fractal
exponents that captures the long-term memory effect in system
dynamics can be best illustrated by the comparison between the
predicted model output and actual measurements. In spite of the
difference in magnitude, the predicted model output stays close
to the actual measurement in terms of preserving critical system
state transition behaviors. Intuitively, the predicted model output

preserves turning points and the envelope of the state dynamics of
actual physiological processes. This is primarily important for con-
struction of a time-series model capable of characterizing the phys-
iological processes. Vital changes in bio-markers of the physiolog-
ical system usually correspond to infrequent anomalies (e.g., the
abrupt decrease/increase in blood glucose/blood pressure or exces-
sive brain activity caused by epilepsy). The failure of the model in
capturing such vital changes translates to false negative errors and
might lead to irreversible undesired consequences. In contrast, the
fitted VARMA models without considering the long-term memory
have the tendency to smooth away the sudden changes in model
output in order to minimize least-square errors as a consequence
of the regression process.
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ii) Comparing the goodness-of-fit between FDSE models with
and without considering coupling matrix A that encodes the inter-
dependency across different channels leads to interesting findings.
As shown in the figure, the FDSE without matrix considering A
tends to overestimates the signal magnitude as a result of accu-
mulating the influence of the previous system states over a long
time course. In contrast, FDSE model with coupling matrix A in
all experiments aligns well with the actual measurements suggest-
ing its adequacy in characterizing the physiological processes. The
performance difference can be understood as follows: the FDSE
assuming an identity matrix A has no knowledge of how coupled
physiological processes contribute to the state transition dynam-
ics of each other. As a result, given a specific channel, the esti-
mation process tries to compensate the contribution from other
channels by assuming a long lasting influence from the previous
system states. By incorporating the matrix A, the predicted model
output is well regulated to adequately fit to actual measurements
by coupling the interdependency between different channels of the
physiological signals.

4 CONCLUSIONS AND FUTUREWORK
Understanding the implications of the degree of nonlinearity and
the nature of fractality (i.e., distinguishing between fractality in the
magnitude increments (space) of one variable with respect to other
variables and the fractality in the inter-event times) represents the
motivation of this work. We generalize the linear / nonlinear dy-
namic causal approaches, by adopting a statistical physics inspired
probabilistic description of various processes representing the evo-
lution of a complex system and incorporating the statistics of the
magnitude increments and the inter-event times into the mathe-
matical expression of the master equation.

First, this new approach allows to capture the power law and
nonlinear interactions that exist between themagnitude increments
and the inter-event times of one stochastic process on one hand,
and the inter-dependencies between themagnitude increments and
the inter-event times of one process and other processes, on the
other hand. Second, it provides a mathematical strategy for mod-
eling of complex systems whose dynamics exhibits a mixture of
Markovian and non-Markovian evolution. Relying on conditional
probabilistic description on how ordered sequence of magnitude
increments and the inter-event times affect the overall system dy-
namics allows to define new multivariate causal inference tech-
niques that take into account the non-Markovian nature of the dy-
namics. This is left for future work. Moreover, it allows to math-
ematically justify the adoption of a class of mathematical model
that could potentially complement current Bayesian model selec-
tion strategies. The presented mathematical framework could be
enriched by combining it with other techniques from statistical
machine learning and signal processing for developing new mod-
eling strategies for complex interdependent networks. Third, the
proposed causal modeling of complex dynamics can be integrated
as the core of the cognizant cyber-physical systems in a widely
ranged CPS applications to be able to understand, describe, predict
and control the underlying physical processes.
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5 APPENDIX
Proof toTheorem 1: Introduce LagrangemultiplierL(wm−1, λm , λm−1,
γm ,γm−1,φm) to eq. (6). Define δ∆ = δ(∆x −∆xm ,∆t −∆tm),
δ0 = δ(∆xm ,∆tm), δ−1 = δ(∆xm−1,∆tm−1) andw = wm/wm−1
such that we have,

L(wm−1, λm , λm−1,γm ,γm−1,φm) =
∫
...
∫

1
q−1 (wm −wm−1)δ∆ + w

q−1 (
w1−q

w1−q
m
− 1)

+λm(wwm−1 − δ0) + λm−1(wm−1 − δ∆ − δ−1)
+γm(∆x−αmm wwm−1 − Iαmδ0)

+γm−1(∆x−αm−1m−1 wm−1δ∆ − Iαm−1δ−1) (30)

Take the first order derivative of 1athcalL in terms ofwm−1, ∂L/∂wm−1
and make it equal to 0 such that,

∂L
∂wm−1

= 0 =
∫
...
∫

1
q−1 (1 − qw

q−1
m−1)δ∆ + ( w

wm−1
)2−q

+λmw + λm−1δ∆ + γm∆x−αmm w + γm−1∆x−αm−1m−1 δ∆

Eq.(31) holds for any choice ofm. Consequently, we have

1 − qwq−1
m−1 = (1 − q)(λm + γm−1∆xαm−1m−1 ) (31)

( w
wm−1

)2−q = −w(λm + γm∆xαmm ) (32)

Define λ′m = −λm
w = h(∆xm:m−1,∆tm)

= {(λ′m − γm∆xαmm )l(∆xm−1)
q−2
1−q }

1
q−1 (33)

with l(∆xm−1) = 1 + (q − 1)(λm−1 + γm−1∆xαm−1m−1 )
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