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Abstract—We consider the classical problem of establishing a statistical ranking of a set of n items given a set of inconsistent and
incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis
(e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with
incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose
usefulness has been demonstrated in numerous applications in recent years in computer vision and graphics, sensor network
localization and structural biology. Its least squares solution can be approximated by either a spectral or a semidefinite programming
(SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data
sets, which show that our proposed method compares favorably to other ranking methods from the recent literature. Existing
theoretical guarantees on the group synchronization problem imply lower bounds on the largest amount of noise permissible in the data
while still achieving an approximate recovery of the ground truth ranking. We propose a similar synchronization-based algorithm for the
rank-aggregation problem, which integrates in a globally consistent ranking many pairwise rank-offsets or partial rankings, given by
different rating systems on the same set of items, an approach which yields significantly more accurate results than other aggregation
methods, including Rank-Centrality, a recent state-of-the-art algorithm. Furthermore, we discuss the problem of semi-supervised
ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP
which is able to recover the ranking of the remaining players, subject to such hard constraints. Finally, synchronization-based ranking,
combined with a spectral technique for the densest subgraph problem, makes it possible to extract partial rankings that other methods
are not able to find, in other words, to identify the rank of a small subset of players whose pairwise rank comparisons are less noisy
than the rest of the data. We discuss a number of related open questions which we defer for future investigation.

Index Terms—ranking, angular synchronization, spectral algorithms, semidefinite programming, rank aggregation, partial rankings,
least squares, singular value decomposition, densest subgraph problem.

F

1 INTRODUCTION

THE problem of ranking a set of n players from incom-
plete and noisy cardinal or ordinal pairwise measure-

ments has received a great deal of attention in the recent
literature. Most often, the data is incomplete, especially
when n is large, but also very noisy, with a large fraction
of the pairwise measurements being both incorrect and
inconsistent with respect to the existence of an underlying
total ranking. The goal is to recover a global ranking of
the players that is consistent with the given data as best
as possible.

The analysis of many modern large-scale data sets im-
plicitly requires various forms of ranking to allow for the
identification of the most important entries or features. A
myriad of such instances appear throughout various disci-
plines, including internet-related applications such as the
famous Google search engine [29], eBay’s feedback-based
reputation mechanism [37], Amazon’s Mechanical Turk sys-
tem, or the Netflix recommendation system [10].

Traditional ranking methods, most often coming from
the social choice theory literature, have proven less efficient
in dealing with nowadays data. Most of this literature has
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been developed with ordinal comparisons in mind, while
much of the current data deals with cardinal (numerical)
scores for the pairwise comparisons, such as sports data,
where the outcome of a match is often a score.

There exists a very rich literature on ranking, and it
would be impossible to give a fair account of it here. Instead,
we will mention some of the methods that relate to our
work, and especially methods we compare against. A very
common approach in the ranking literature is to treat the
input rankings as data generated from a probabilistic model,
and then learn the Maximum Likelihood Estimator of the
input data, an idea which has been explored in depth in
the machine learning community, and includes the Bradley-
Terry-Luce model (BTL) [9] or the Plackett-Luce (PL) model
[26]. Soufiani et al. propose an efficient Generalized Method-
of-Moments algorithm for computing parameters of the PL
model, by breaking the full rankings into pairwise compar-
isons, and then computing the parameters that satisfy a set
of generalized moment conditions [3]. The recent work of
[35] for ranking from a random sample of ordinal compar-
isons, also accounts for whether one seeks an approximately
uniform quality across the ranking, or more accuracy near
the top or the bottom.

The general idea of angular embedding, which we ex-
ploit in this paper, is not new, and aside from recent work by
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Singer in the context of the angular synchronization prob-
lem (ASP) [30], has also been explored by Yu [38], who ob-
served that embedding in the angular space is significantly
more robust to outliers when compared to embedding in
the usual linear space. In the latter case, the traditional
least squares formulation, or its l1 norm formulation, cannot
match the performance of the angular embedding approach,
thus suggesting that the key to overcoming noise comes not
with imposing additional constraints on the solution, but by
penalizing the inconsistencies between the measurements.
Yu’s proposed spectral method returns very satisfactory
results in terms of robustness to noise for an image recon-
struction problem. Recently, Braxton et al. [28] propose an
l1-norm formulation for ranking with cardinal data, as an
alternative to a previous l2-norm formulation [22].

Contribution of our paper. The contribution of our pro-
posed Sync-Rank algorithm can be summarized as follows.
• We make an explicit connection between ranking

and the angular synchronization problem, and use
existing spectral and SDP relaxations for the latter
problem to compute robust global rankings.

• We perform a very extensive set of numerical sim-
ulations comparing our proposed method with ex-
isting state-of-the-art algorithms from the ranking
literature, across a variety of synthetic measurement
graphs and noise models, both for numerical (car-
dinal) and binary (ordinal) pairwise comparisons. In
addition, we compare the algorithms on two real
data sets: scores of soccer games in the English Pre-
mier League, and NCAA College Basketball games.
Overall, we compare (in most instances, favorably)
to the two recently proposed state-of-the-art algo-
rithms, Serial-Rank [18], and Rank-Centrality [27].

• Furthermore, we propose and compare to a very
simple ranking method based on Singular Value De-
composition (that we currently investigate in a sep-
arate ongoing work1), which may be of independent
interest as its performance is comparable to that of
the recent Serial-Rank algorithm, and superior to it
in the setting where only the magnitude of the rank
offset is available, but not its sign.

• We propose a method for ranking in the semi-
supervised setting where a subset of the players have
a prescribed rank to be enforced as a hard constraint.

• We show that our approach is applicable to the rank
aggregation problem of integrating ranking infor-
mation from multiple rating systems that provide
independent, incomplete and inconsistent pairwise
comparisons for the same set of players.

• Finally, we show that by combining Sync-Rank with
recent algorithms for the densest subgraph problem,
we are able to identify planted partial rankings, which
other methods are not able to extract.

The advantage of Sync-Rank stems from the fact that
it is a computationally simple, algorithm that is model
independent and relies exclusively on the available (ordi-
nal or cardinal) data. Existing theoretical guarantees from
the recent literature on the group synchronization problem

1. With Alexandre d’Aspremont and Fajwel Fogel, INRIA and École
Normale Supérieure, Paris.

[4], [30] trivially translate to lower bounds for the largest
amount of noise permissible in the measurements that still
allows for an exact or almost exact recovery.2.

The remainder of this paper is organized as follows.
Section 2 summarizes related methods against which we
compare. Section 3 is a review of the angular synchroniza-
tion problem and existing results from the literature. Section
4 describes the Sync-Rank algorithm for ranking via eigen-
vector and SDP-based synchronization. Section 5 provides
an extensive numerical comparison of Sync-Rank with other
recent algorithms, across a variety of synthetic and real
data sets. Section 6 considers the rank aggregation prob-
lem, which we solve efficiently via the same spectral and
SDP relaxations of the angular synchronization problem. In
Section 7 we consider the constrained ranking problem and
propose a modified SDP-based synchronization algorithm
for it. Section 8 summarizes several open problems related
to ranking, on which we expand upon in Appendix D.
Section 9 is a summary and discussion. In Appendix A,
we proposes an algorithm for extracting partial rankings
from comparison data. Appendix B summarizes the recent
Serial-Rank algorithm. Appendix C summarizes the Rank
Centrality algorithm, and our proposed version for a single
rating system. In Appendix E we show recovered rankings
for the English Premier League 2013-2014 season.

2 RELATED METHODS
2.1 Serial Rank and Generalized Linear Models

In very recent work [18], Fogel et al. propose a seriation al-
gorithm for ranking a set of players given noisy incomplete
pairwise comparisons. The gist of their approach is to assign
similar rankings to players that compare similarly with all
other players. They do so by constructing a similarity matrix
from the available pairwise comparisons, relying on existing
seriation methods to reorder the similarity matrix and thus
recover the final rankings. The authors make an explicit
connection between the ranking problem and another re-
lated classical ordering problem, namely seriation, where one
is given a similarity matrix between a set of n items and
assumes that the items have an underlying ordering on the
line such that the similarity between items decreases with
their distance. In other words, the more similar two items
are, the closer they should be in the proposed solution. By
and large, the goal of the seriation problem is to recover the
underlying linear ordering based on unsorted, inconsistent
and incomplete pairwise similarity information. We briefly
summarize their approach in Appendix B, and note that it
closely resembles our proposed SVD-Rank algorithm.

2.2 The Rank-Centrality algorithm

Negahban et al. [27] recently proposed an iterative al-
gorithm for the rank aggregation problem of integrating
ranking information from multiple ranking systems, by esti-
mating scores for the items from the stationary distribution
of a certain random walk on the graph of items, where
each edge encodes the outcome of pairwise comparisons.
We summarize their approach in Appendix C, and compare

2. We point out that a perfect recovery of the angles in the ASP is not
a necessary condition for a perfect recovery of the underlying ground
truth ranking, since it suffices that only the relative ordering of the
angles is preserved.
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against it in the setting of the rank aggregation problem.
However, for the case of a single rating system, we propose
and compare to a variant of their algorithm, which we also
detail in the same Appendix C.

2.3 Ranking via Singular Value Decomposition

An additional ranking method we propose, and compare
against, is based on the traditional Singular Value Decom-
position (SVD) method. The applicability of the SVD-Rank
approach stems from the observation that, in the case of
cardinal measurements (25), the noiseless matrix of rank
offsets C is a skew-symmetric matrix of even rank 2 since

R = reT − erT (1)

where e denotes the all-ones column vector. In the noisy
case, C is a random perturbation of a rank-2 matrix. We
consider the top two singular vectors of C , order their
entries by their size, extract the resulting rankings, and
choose between the first and second singular vector based
on whichever one minimizes the number of upsets. Note
that since the singular vectors are obtained up to a global
sign, we choose the ordering which minimizes the number
of upsets. Though a rather naive approach, SVD-Rank re-
turns, under the multiplicative uniform noise model, results
that are comparable to those of very recent algorithms such
as Serial-Rank [18] and Rank-Centrality [27]. A previous
application of SVD to ranking has been explored in Gleich
and Zhukov [20], for studying relational data as well as
developing a method for interactive refinement of the search
results. To the best of our knowledge, we are not aware of
other work that considers SVD-based ranking for the setting
considered in this paper. An interesting research direction
we discuss in Appendix D.1, is to analyze the performance
of SVD-Rank using tools from the random matrix theory
literature on rank-2 deformations of random matrices.

The SVD-Rank approach is similar to that of the Serial-
Rank algorithm detailed in Appendix B, since the singular
vectors of C are nothing but eigenvectors of CCT , the only
differences being the addition of a multiple of the all ones
matrix as in (42) and working with the Fiedler vector of
the resulting Laplacian matrix. Finally, we mention that in
ongoing work1 we use SVD-Rank in the context of the seri-
ation problem, where one aims to recover the global ordering
of the items (up to a global sign) using only information
on the absolute value of the rank offsets (see Section D.3
for additional details), and note that SVD-Rank performs
significantly better than its Serial-Rank counterpart.

2.4 Ranking via Least Squares

We also compare our proposed ranking method with
the more traditional least-squares approach. Assuming the
number of edges in G is given by m = |E(G)|, we denote
by B the edge-vertex incidence matrix of size m× n

Bij =


1 if (i, j) ∈ E(G), and i > j
−1 if (i, j) ∈ E(G), and i < j

0 if (i, j) /∈ E(G),
(2)

and by y the vector of length m × 1 which contains the
pairwise rank measurements y(e) = Cij , for all edges e =

(i, j) ∈ E(G). We obtain the least-squares solution to the
ranking problem by solving the following minimization

minimize
x∈Rn

||Bx− y||22. (3)

We point out here the work of Hirani et al. [21], who show
that the problem of least-squares ranking on graphs has far-
reaching rich connections with various other research areas,
including spectral graph theory and multilevel methods for
graph Laplacian systems, and Hodge decomposition theory.

3 THE GROUP SYNCHRONIZATION PROBLEM

Finding group elements from noisy measurements of their
ratios is known as the group synchronization problem. For ex-
ample, the synchronization problem over the special orthog-
onal group SO(d) consists of estimating a set of n unknown
d × d matrices R1, . . . , Rn ∈ SO(d) from noisy measure-
ments Rij of a subset of their pairwise ratios R−1

i Rj . The
least squares solution to synchronization aims to minimize
the sum of squared deviations

minimize
R1,...,Rn∈SO(d)

∑
(i,j)∈E

wij‖R−1
i Rj −Rij‖2F , (4)

where || · || denotes the Frobenius norm, and wij are non-
negative weights representing the confidence in the noisy
pairwise measurements Rij . Spectral and semidefinite pro-
gramming (SDP) relaxations for solving an instance of the
above synchronization problem were originally introduced
and analyzed by Singer [30] in the context of angular
synchronization, over the group SO(2) of planar rotations,
where one is asked to estimate n unknown angles

θ1, . . . , θn ∈ [0, 2π), (5)

given m noisy measurements Θij of their offsets

Θij = θi − θj mod 2π. (6)

The difficulty of the problem is amplified on one hand by
the amount of noise in the offset measurements, and on
the other hand by the fact that m �

(n
2

)
, i.e., only a very

small subset of all possible pairwise offsets are measured.
In general, one may consider other groups G (such as SO(d),
O(d)) for which there are available noisy measurements gij
of ratios between the group elements gij = gig

−1
j , gi, gj ∈ G.

The set E of pairs (i, j) for which a ratio of group elements
is available can be realized as the edge set of a graph
G = (V,E), |V | = n, |E| = m, with vertices corresponding
to the group elements g1, . . . , gn, and edges to the available
pairwise measurements gij = gig

−1
j .

In [30], Singer analyzed the following noise model,
where each edge in the measurement graph G is present
with probability p, and each available measurement is either
correct with probably 1− η or a random measurement with
probability η. For such a noise model with outliers, the
available measurement matrix Θ is given by the mixture

Θij =


θi − θj for a correct edge, w.p. p(1− η)
∼ U(S1) for an incorrect edge, w.p. pη

0 for a missing edge, w.p. 1− p.
(7)

where U(S1) denotes the uniform distribution over the unit
circle. Using tools from random matrix theory, in particular
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rank-1 deformations of large random matrices [17], Singer
showed in [30] that for the complete graph (p = 1), the
spectral relaxation for angular synchronization given by
(12) and summarized in the next Section 3.1, undergoes
a phase transition phenomenon, with the top eigenvector
of the Hermitian matrix H in (9) exhibiting above random
correlations with the ground truth as soon as

1− η > 1√
n
. (8)

In other words, even for very small values of 1 − η (thus a
large noise level), the eigenvector synchronization method
yields a solution which (prior to the normalization in ()
), is shown to exhibit above random correlations with the
ground truth angles if there are enough pairwise measure-
ments available, i.e., whenever n(1−η)2 is large enough. For
the general case of Erdős-Rényi graphs the above threshold
probability can be extended to O

(
1√
np

)
. We remark that

while there exist no theoretical guarantees on the exactness
of the eigenvector method for angular synchronization, in
practice this relaxation has been observed to be nearly tight
for small enough levels of noise η. On the other hand, for
the SDP relaxation of the Least Unsquared Deviation (LUD)
formulation [33], there do exist exact recovery guarantees
under the above Erdős-Rényi graph measurement model.

3.1 Spectral Relaxation

Following the approach introduced in [30], we build the n×
n sparse Hermitian matrix H = (Hij) whose elements are
either zero or points on the unit circle in the complex plane

Hij =

{
eıθij if (i, j) ∈ E
0 if (i, j) /∈ E.

(9)

In an attempt to preserve the angle offsets as best as possi-
ble, Singer considers the following maximization problem

maximize
θ1,...,θn∈[0,2π)

n∑
i,j=1

e−ιθiHije
ιθj (10)

which gets incremented by +1 whenever an assignment of
angles θi and θj perfectly satisfies the given edge constraint
Θij = θi − θj mod 2π (i.e., for a good edge), while the con-
tribution of an incorrect assignment (i.e., of a bad edge) will
be uniformly distributed on the unit circle in the complex
plane. Note that (10) is equivalent to the formulation in (4)
by exploiting properties of the Frobenius norm, and relying
on the fact that it is possible to represent group elements for
the special case of SO(2) as complex-valued numbers. Since
the non-convex optimization problem in (10) is difficult to
solve computationally [39], Singer introduced the following
spectral relaxation

maximize
z1,...,zn∈C;

∑n
i=1 |zi|2=n

n∑
i,j=1

z̄iHijzj (11)

by replacing the individual constraints zi = eιθi hav-
ing unit magnitude by the much weaker single constraint∑n
i=1 |zi|2 = n. Next, we recognize the resulting maximiza-

tion problem in (11) as the maximization of a quadratic
form whose solution is given by the top eigenvector of the
Hermitian matrix H , which has an orthonormal basis over

Cn, with real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and cor-
responding eigenvectors v1, v2, . . . , vn. In other words, the
spectral relaxation of the non-convex optimization problem
in (10) is given by

maximize
||z||2=n

z∗Hz (12)

which can be solved via a simple eigenvector computation,
by setting z = v1, where v1 is the top eigenvector of H ,
satisfying Hv1 = λ1v1, with ||v1||2 = n, corresponding
to the largest eigenvalue λ1. Before extracting the final
estimated angles, we consider the following normalization
of H using the diagonal matrix D, whose diagonal elements
are given by Dii =

∑N
j=1 |Hij |, and define

H = D−1H, (13)

which is similar to the Hermitian matrix D−1/2HD−1/2

H = D−1/2(D−1/2HD−1/2)D1/2.

Thus, H has n real eigenvalues λH1 > λH2 ≥ · · · ≥ λHn with
corresponding n orthogonal (complex valued) eigenvectors
vH1 , . . . , v

H
n , with HvHi = λHi v

H
i . We define the estimated

rotation angles θ̂1, ..., θ̂n using the top eigenvector vH1 via

eιθ̂i =
vH1 (i)

|vH1 (i)|
, i = 1, 2, . . . , n (14)

Note that the estimation of the rotation angles θ1, . . . , θn is
up to an additive phase since eiαvH1 is also an eigenvector
of H for any α ∈ R. We point out that the only difference
between the above approach and the angular synchroniza-
tion algorithm in [30] is the normalization (13) of the matrix
prior to the computation of the top eigenvector, considered
in our previous work [12], and formalized in [31] via the
notion of graph connection Laplacian L = D −H .

3.2 Semidefinite Programming (SDP) Relaxation

A second relaxation proposed in [30] as an alternative to the
spectral relaxation, is via the following SDP formulation. In
an attempt to preserve the angle offsets as best as possible,
one may consider the following maximization problem

n∑
i,j=1

e−ιθiHije
ιθj = trace(HΥ), (15)

where Υ is the unknown n× n rank-1 Hermitian matrix

Υij = eι(θi−θj) (16)

with ones in the diagonal Υii,∀i = 1, 2, . . . , n. Note that,
with the exception of the rank-1 constraint, all the remaining
constraints are convex and altogether define the following
SDP relaxation for the angular synchronization problem

maximize
Υ∈Cn×n

trace(HΥ)

subject to Υii = 1 i = 1, . . . , n

Υ � 0,

(17)

which can be solved via standard methods from the con-
vex optimization literature [32]. We remark that, from a
computational perspective, solving such SDP problems is
computationally feasible only for relative small-sized prob-
lem (typically with several thousand unknowns, up to
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about n = 10, 000), though there exist distributed methods
for solving such convex optimization problems, such as
the popular Alternating Direction Method of Multipliers
(ADMM) [8] which can handle large-scale problems. Al-
ternatively, block coordinate descent methods have been
shown to be extremely efficient at solving a broad class of
semidefinite programs, including Max-Cut SDP relaxation
and minimum nuclear norm matrix completion [36]. Finally,
the very recent work of Boumal [7] also addresses the
issue of solving large-scale SDP problems via a Riemannian
optimization approach.

As pointed out in [30], this program is very similar to
the well-known Goemans-Williamson SDP relaxation for the
famous MAX-CUT problem of finding the maximum cut in
a weighted graph, the only difference being the fact that
here we optimize over the cone of complex-valued Hermi-
tian positive semidefinite matrices, not just real symmetric
matrices. Since the recovered solution is not necessarily
of rank-1, the estimator is obtained from the best rank-
1 approximation of the optimal solution matrix Θ via a
Cholesky decomposition. We plot in Figure 3 the recovered
ranks of the SDP relaxation for the ranking problem, and
point out the interesting phenomenon that, even for noisy
data, under favorable noise regimes, the SDP program still
returns a rank-1 solution. The tightness of this relaxation has
been explained only recently in the work of Bandeira et al.
[4]. The advantage of the SDP relaxation is that it explicitly
imposes the unit magnitude constraint for eιθi , which we
cannot otherwise enforce in the spectral relaxation.

4 SYNC-RANK: RANKING VIA SYNCHRONIZATION

We now consider the application of the angular synchro-
nization framework [30] to the ranking problem. The under-
lying idea has also been considered by Yu in the context
of image denoising [38], who suggested, similar to [30],
to perform the denoising step in the angular embedding
space as opposed to the linear space, and observed increased
robustness against sparse outliers in the measurements.
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Fig. 1. Top: equidistant mapping of the rankings 1, 2, . . . , n in the upper
half circle, for n = 100, where the rank of the ith player is i (left), and the
recovered solution at some random rotation (right). Bottom: the ranking
induced by the θ angles from the ASP (left), and the ranking obtained
after finding the optimal circular permutation (right).

Denote the true ranking of the n players by r1 < r2 <
. . . < rn, and assume without loss of generality that ri = i,

i.e., the rank of the ith player is i. In the ideal case, the ranks
can be imagined to lie on a one-dimensional line, sorted
from 1 to n, with the pairwise rank comparisons given, in
the noiseless case, by Cij = ri − rj (for cardinal measure-
ments) or Cij = sign(ri−rj) (for ordinal measurements). In
the angular embedding space, we consider the ranks of the
players mapped to the unit circle, say fixing r1 to have a zero
angle with the x-axis, and the last player rn corresponding
to an angle equal to π. In other words, we imagine the n
players wrapped around a fraction of the circle, interpret
the available rank-offset measurements as angle-offsets in
the angular space, and thus arrive at the setup of the angular
synchronization problem from Section 3.

We also remark that the modulus used to wrap the
players around the circle plays an important role in the
recovery process. If we choose to map the players across the
entire circle, this would cause ambiguity at the end points,
since the very highly ranked players will be positioned very
close (or perhaps even mixed) with the very poorly ranked
players. To avoid the confusion, we simply choose to map3

the n players to the upper half of the unit circle [0, π].
In the ideal setting, the angles obtained via synchro-

nization would be as shown in the left plot of Figure 1,
from where one can easily infer the ranking of the players
by traversing the upper half circle in an anti-clockwise
direction. However, since the solution to the angular syn-
chronization problem is computed up to a global shift (see
for example the top right and the bottom left plots in Figure
1), an additional post-processing step is required to accu-
rately extract the ordering of the players that best matches
the given data. To this end, we simply compute the best
circular permutation of the initial rankings obtained from
synchronization, that minimizes the number of upsets in the
given data. We illustrate this step with a noisy instance of
Sync-Rank in the bottom of Figure 1, where the left plot
shows the rankings induced by the initial angles recovered
from synchronization, while the right one shows the final
ranking, after shifting by the best circular permutation.

Denote by s = [s1, s2, . . . , sn] the ordering induced by
the angles recovered from angular synchronization, when
sorting the angles from smallest to largest, where si denotes
the label of the player ranked on the ith position. For exam-
ple, s1 denotes the player with the smallest corresponding
angle θx1

. To measure the accuracy of each candidate cir-
cular permutation σ, we first compute the pairwise rank
offsets associated to the induced ranking, via

Pσ(s) = (σ(s)⊗ 1− 1⊗ σ(s)) ◦A (18)

where ⊗ denotes the outer product of two vectors x ⊗ y =
xyT , ◦ denotes the Hadamard product of two matrices
(entrywise product), and A is the adjacency matrix of the
graph G. In other words, for an edge (u, v) ∈ E(G), it holds
that (Pσ(s))uv = σ(s)u−σ(s)v , i.e., the resulting rank offset

3. The spectral and SDP synchronization methods could be applied
in the case of non-compact groups only after ”compactifying” them. In
the present approach, the line is ”compactified” by simply mapping
it to the unit circle (or part of it), making the approach amenable
to the synchronization methods and less sensitive to outliers. On the
other hand, the extension to non-compact groups, such as Euc(d) the
Euclidean group of rigid transformation, or the general linear group of
invertible matrices GLn(R) poses significant challenges.
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after applying the cyclic shift 4. Next, we choose the circular
permutation minimizing the l1 norm5 of the residual matrix

σ = arg min
σ1,...,σn

1

2
‖sign(Pσi(s))− sign(C)‖1 (19)

which counts the total number of upsets. Note that an
alternative to the above error is given by

σ = arg min
σ1,...,σn

‖Pσi(s)− C‖1 (20)

which takes into account the actual magnitudes of the
offsets, not just their sign. We summarize the above steps
of Sync-Rank in Algorithm 1, and note that throughout the
paper, we denote by SYNC (or SYNC-EIG) the version of
synchronization-based ranking which relies on the spectral
relaxation of the synchronization problem, and by SYNC-
SDP the one obtained via the SDP relaxation. Figure 2

Algorithm 1 Summary of the Synchronization-Ranking
(Sync-Rank) Algorithm
Require: G = (V,E) the graph of pairwise comparisons

and C the n × n matrix of pairwise comparisons (rank
offsets), such that whenever (i, j) ∈ E(G) we have
available a (perhaps noisy) comparison between players
i and j, either a cardinal comparison (Cij ∈ [−(n −
1), (n− 1)]) or an ordinal comparison Cij = ±1.

1: Map all rank offsets Cij to an angle Θij ∈ [0, 2πδ) with
δ ∈ [0, 1), using the transformation

Cij 7→ Θij := 2πδ
Cij
n− 1

(21)

We choose δ = 1
2 , and hence Θij := π

Cij
n−1 .

2: Build the n × n Hermitian matrix H with Hij =
eıθij , if (i, j) ∈ E, and Hij = 0 otherwise, as in (9).

3: Solve the angular synchronization problem via either
its spectral (12) or SDP (17) relaxation, and denote the
recovered solution by r̂i = eıθ̂i =

vR1 (i)

|vR1 (i)| , i =

1, 2, . . . , n, where v1 denotes the recovered eigenvector
4: Extract the corresponding set of angles θ̂1, . . . , θ̂n ∈

[0, 2π) from r̂1, . . . , r̂n.
5: Order the set of angles θ̂1, . . . , θ̂n in increasing order,

and denote the induced ordering by s = s1, . . . , sn.
6: Compute the best circular permutation σ of the above

ordering s that minimizes the resulting number of up-
sets with respect to the initial rank comparisons given
by C

σ = arg min
σ1,...,σn

||sign(Pσi(s))− sign(C)||1 (22)

with P defined as in (18).
7: Output as a final solution the ranking induced by the

circular permutation σ.

is a comparison of the rankings obtained by the different
methods: SVD, LS, SER, SER-GLM, RC, and SYNC-EIG, for
an instance of the ranking problem given by the Erdős-Rényi

4. The circular or cyclic shift σ is given by σ(i) = (i + 1) mod n.
The result of repeatedly applying circular shifts to a given n-tuple
[x1, . . . , xn] are often denoted circular shifts of the tuple.

5. This is just the l1 norm of the vectorized form of the matrix ‖X‖1 =∑n
i=1

∑n
j=1 |Xij |

measurement graph G(n = 100, p = 0.5) with cardinal
comparisons, and outliers chosen uniformly at random with
probability η = {0.35, 0.75}, according to the ERO(n, p, η)
noise model (29). At low levels of noise, all methods yield
satisfactory results, but as the noise level increases, only
Sync-Rank is able to recover a somewhat accurate solution,
and significantly outperforms all of the other methods in
terms of the number of flips (i.e., the Kendall distance) with
respect to the original ranking.

From a computational perspective, we point out that in
most practical applications where the matrix of pairwise
measurements is sparse, the eigenvector computation on
which Sync-Rank is based can be solved in almost linear
time. Every iteration of the power method is linear in the
number of edges in the graphG (i.e., the number of pairwise
measurements), but the number of iterations is greater than
O(1), as it depends on the spectral gap.

As a final remark, we point out that existing theoretical
guarantees on the angular synchronization problem [4], [5],
[30] imply lower bounds on the largest amount of noise
permissible in the pairwise rank offsets while still achieving
exact recovery of the ground truth ranking. This is due to
the fact that perfect recovery of the angles in the angular
synchronization problem is not necessary for a perfect re-
covery of the underlying true ranking, it only suffices that
the relative ordering of the angles is preserved. However,
the numerical results shown in the heat map (c) of Figure
4, corresponding to the outliers noise model on the pair-
wise cardinal rankings (as given by (29)), suggests that the
threshold probability in the case of ranking is very similar
to its analogue from angular synchronization obtained via
the spectral relaxation, i.e., O

(
1√
np

)
obtained by Singer [30]

and illustrated by the overlayed black curve. In other words,
as soon as angular synchronization fails, it does so by not
only estimating incorrectly the magnitude of each and every
angle, but also fails in preserving the relative ordering of the
angles, which is precisely what Sync-Rank relies on.
4.1 Synchronization Ranking for Ordinal Comparisons
When the pairwise comparisons are ordinal, and thus Cij =
±1,∀ij ∈ E, all the angle offsets in the synchronization
problem will have constant magnitude, which is perhaps
undesirable. To this end, we report on a scoring method
that associates a magnitude to each ±1 entry, and gives a
more accurate description of the rank-offset between a pair
of players, which ultimately constitutes the input to Sync-
Rank. For an ordered pair (i, j), we define the Superiority
Score of i with respect to j in a similar manner as the Smatchij

score (41) used by the Serial-Rank algorithm. Let

Wij = L(i) ∩H(j) = {k | Cik = −1 and Cjk = 1} (23)

where L(x) denotes the set of nodes with rank lower than
x, and H(x) denotes the set of nodes with rank higher than
x. The rank offset used as input for Sync-Rank is given by

Sij = Wji −Wij (24)

The philosophy behind this measure is as follows. In the
end, we want Sij to reflect the true rank-offset between two
nodes. One can think of Wij as the number of witnesses
favorable to i (supporters of i), which are players ranked
lower than i but higher than j. Similarly, Wji is the number
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Fig. 2. Comparison of the methods for the ERO(n = 100, p = 0.5, η) noise model (29) with cardinal comparisons with η = 0.35 (top), η = 0.75
(bottom).

of witnesses favorable to j (supporters of j), which are
players ranked lower than j but higher than i. The final
rank offset is given by the difference of the two values
Wij and Wji (though one could also perhaps consider the
maximum), and Sij which can be interpreted as a proxy
for ri − rj . We solve the resulting synchronization problem
via the eigenvector method, and denote the approach by
SYNC-SUP. While this approach yields rather poor results
(compared to the initial synchronization method) on the
synthetic data sets, its performance is comparable to that of
the other methods when applied to the small sized Premier
League soccer data set. However, it performs remarkably
well on the NCAA basketball data set, and achieves a
number of upsets that is twice as low as that of the second
best method, as shown in Figure 8 of Section 5.4. One could
investigate whether there is a connection between the rather
intriguing performance of SYNC-SUP and the observation
that for this particular data set, the measurement graphs for
each season are somewhat close to having a one dimensional
structure, with teams grouped in leagues according to their
strengths, and it is less likely for a highly ranked team to
play a match against a very weak team. It would be inter-
esting to investigate the performance of all algorithms on a
measurement graph that is a disc graph with nodes lying on
a one-dimensional line corresponding to the ground truth
ranks, with an edge between two nodes if and only if they
are at most r units apart.

5 NOISE MODELS AND EXPERIMENTAL RESULTS

We compare the performance of Sync-Rank with that of
other methods across a variety of measurement graphs,
varying parameters such as the number of nodes, edge
density, level of noise and noise models. We detail below the
two noise models we consider, and then proceed with the
performance outcomes of extensive numerical simulations.

5.1 Measurement and Noise Models

In most real world scenarios, noise is inevitable and imposes
additional significant challenges, aside from those due to
sparsity of the measurement graph. To each player i (cor-
responding to a node of G), we associate a corresponding
unique positive integer weight ri. For simplicity, one may
choose to think of ri as taking values in {1, 2, . . . , n}, and
assume there is an underlying ground truth ranking of the

n players, with the most skillful player having rank 1, and
the least skillful one having rank n. We denote by

Cardinal measurement : Oij = ri − rj (25)

the ground truth cardinal rank-offset of a pair of players.
Thus, for cardinal comparisons, the available measurements
Cij are noisy versions of the ground truth Oij entries.
On the other hand, an ordinal measurement is a pairwise
comparison between two players which reveals only who
the higher-ranked player is, or in the case of items, the
preference relationship between the two items, i.e., Cij = 1
if item j is preferred to item i, and Cij = −1 otherwise

Ordinal measurement : Oij = sign(ri− rj). (26)

without revealing the intensity of the preference relation-
ship. This setup is commonly encountered in classical social
choice theory, under the name of Kemeny model, where Oij
takes value 1 if player j is ranked higher than player i,
and −1 otherwise. Given (perhaps noisy) versions of the
pairwise cardinal or ordinal measurements Oij given by
(25) or (26), the goal is to recover an ordering (ranking) of
all players that is as consistent as possible with the given
data. We compare our proposed ranking methods with
those summarized in Section 2, on measurement graphs of
varying edge density, under two different noise models, and
for both ordinal and cardinal comparisons.

To test for robustness against incomplete measurements,
we use a measurement graph G of size n given by the
popular Erdős-Rényi model G(n, p), where edges between
the players are present independently with probability p.
We consider two different values of p = {0.2, 1}, the latter
case corresponding to the complete graph Kn on n nodes,
when comparisons between all possible pairs of players are
available. To test the robustness against noise, we consider
the following two noise models detailed below. We remark
that, for both models, noise is added such that the resulting
measurement matrix remains skew-symmetric.
5.1.1 Multiplicative Uniform Noise (MUN) Model
In the Multiplicative Uniform Noise model, which we
denote by MUN(n, p, η), noise is multiplicative and uniform,
meaning that, for cardinal measurements, instead of the true
rank-offset measurement Oij = ri−rj , we actually measure

Cij = Oij(1 + ε), where ε ∼ [−η, η]. (27)
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Acronym Name Section
SVD SVD Ranking Sec. 2.3
LS Least Squares Ranking Sec. 2.4

SER Serial-Ranking Sec. 2.1
SER-GLM Serial-Ranking in the GLM model Sec. 2.1

RC Rank-Centrality Sec. 2.2
SYNC Sync-Rank, spectral relaxation Sec. 4

SYNC-SUP Sync-Rank using the Sup. Score Sec. 4.1
SYNC-SDP Sync-Rank, SDP relaxation Sec. 3.2

TABLE 1
Names of the algorithms, their acronyms, and respective Sections.

An equivalent formulation is that to each true rank-offset
measurement we add random noise εij (depending on Oij)
uniformly distributed in [−ηOij , ηOij ], i.e.,

Cij =

{
ri − rj + εij for an existing edge w. p. p

0 for a missing edge w. p. 1− p.
(28)

with εij ∼ U([−η(ri − rj), η(ri − rj)]), where U denotes
the discrete uniform distribution. Note that we cap the
erroneous measurements at n − 1 in absolute value. Thus,
whenever Cij > n − 1 we set it to n − 1, and whenever
Cij < −(n − 1) we set it to −(n − 1), since the furthest
away two players can be is n− 1 positions. The percentage
noise added is 100η, (e.g., η = 0.1 corresponds to 10%
noise). Thus, if η = 50%, and the ground truth rank offset
Oij = ri − rj = 10, then the available measurement Cij is a
random number in [5, 15].

5.1.2 Erdős-Rényi Outliers (ERO) Model
The second noise model we consider is an Erdős-Rényi
Outliers model, abbreviated by ERO(n, p, η), where the
available measurements are given by the following mixture

Cij =


ri − rj w.p. (1− η)p

∼ U [−(n− 1), n− 1] w.p. ηp
0 w.p. 1− p,

(29)

Note that this noise model is similar to the one considered
by Singer [30], in which angle offsets are either perfectly
correct with probability 1 − η, and randomly distributed
on the unit circle, with probability η. We expect that in
most practical applications, the first noise model (MUN) is
perhaps more realistic, where most rank offsets are being
perturbed by noise (to a smaller or larger extent, pro-
portionally to their magnitude), as opposed to having a
combination of perfectly correct rank-offsets and randomly
chosen rank-offsets.

5.2 Numerical comparison on synthetic data sets
This section compares the spectral and SDP relaxations
of Sync-Rank with the other methods summarized in Sec.
2, and also in Table 1. We measure the accuracy of the
recovered solutions, using the popular Kendall distance,
i.e., the fraction of (ordered) pairs of candidates that are
ranked in different order (flips), in the two permutations, the
original one and the recovered one. We compute the Kendall
distance on a logarithmic scale (log2), and remark that in
the error curves, for small noise levels, the error levels for
certain methods are missing due to being equal to 0.

The heatmaps in Figure 4 compute the recovery error, as
given by the Kendall distance between the ground truth and
the rankings obtained via the spectral relaxation of Sync-
Rank, as we vary the sparsity p in the measurement graph
and the noise level in the data, for both cardinal and ordinal
measurements, and under both the MUN (28) and ERO
(29) noise models. For the ERO model, we overlay on the
heatmap the curve given by the threshold probability for re-
covery O

(
1√
np

)
by Singer [30], and note that in the cardinal

case, it matches very well the empirical performance.
In Figure 5 we compare the methods for the case of

cardinal pairwise measurements, while in Figure 6 we do
so for ordinal measurements. We average all the results
over 20 experiments. The SYNC and SYNC-SDP methods
are far superior to the other methods in the case of cardinal
measurements, and similar to the other methods for ordinal
measurements. In Figures 3 we plot the recovered rank of
the SDP program (17). Note that for favorable levels of
noise, the SDP solution is indeed of rank 1 even if we
did not specifically enforce this constraint, a phenomenon
explained only recently in the work of Bandeira et al. [4],
who investigated the tightness of this SDP relaxation.
5.3 Numerical Comparison on the English Premier
League Data Set
The first real data set we consider is from sports data, in par-
ticular, several years of match outcomes from the English
Premier League Soccer. We consider the three complete
seasons 2011-2014, both home (Chome) and away (Caway)
games. We pre-process the data and consider four methods
to extract information from the game outcomes and build
the pairwise comparison matrix C

1) Total-Point-Difference Ctpdij = Chomeij + Cawayij : for
each pair of teams, we aggregate the total score of
the two matches between teams i and j

2) Sign-Total-Point-Difference Cstpdij = sign(Ctpdij ) =

sign(Chomeij + Cawayij ): considers the winner after
aggregating the above score

3) Net Wins Cnwij = sign(Chomeij ) + sign(Cawayij ): the
number of times a team has beaten the other one.

4) Sign(Net Wins) Csnwij = sign(Cnwij ): only considers
the winner in terms of the number of victories.

Note that Ctpd and Cnw lead to cardinal measurements,
while Cstpd and Csnw to ordinal ones. One may interpret
the above variations of the pre-processing step as a different
winning criterion for the game under consideration, and
at the same time, as a different opportunity to test and
compare the algorithms. We remind the reader that for
soccer games, a win is compensated with 3 points, a tie with
1 point, and a loss with 0 points, and the final ranking of
the teams is determined by the cumulative points a team
gathers throughout the season. Given a particular criterion,
we are interested in finding an ordering that minimizes the
number of upsets. We denote by r̂i the estimated rank of
player i as computed by the method of choice. Recall that
lower values of r̂i correspond to higher ranks (better players
or preferred items). We then construct the induced (pos-
sibly incomplete) matrix of induced pairwise rank-offsets
Ĉij = r̂i − r̂j , if (i, j) ∈ E(G), and 0 otherwise, and remark
that Ĉij < 0 denotes that the rank of player i is higher than
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Fig. 3. The rank of the recovered solution from the SDP (17), for ordinal ranking, as we vary the noise level, for both the MUN(n = 200, p, η) and
ERO(n = 200, p, η) noise models. We average the results over 20 runs. Note that if the SDP relaxation admits a admits a rank-one solution, then
the relaxation is tight and the synchronization problem was solved optimally.
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due to Singer [30], which, for cardinal measurements, is in excellent agreement with the empirical findings.
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Fig. 5. Comparison of all ranking algorithms in the case of cardinal comparisons for the MUN(n = 200, p, η) and ERO(n = 200, p, η) noise models.
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Fig. 6. Comparison of all methods for ranking with ordinal comparisons for the MUN(n = 200, p, η) and ERO(n = 200, p, η) noise models.

the rank of player j. To measure the accuracy of a proposed
reconstruction, we rely on the popular metric

Q(u) =
n−1∑
i=1

n∑
j=i+1

1{sign(CijĈij)=−1} (30)

which counts the number of disagreeing ordered compar-
isons. It contributes with a +1 to the summation whenever
the ordering in the provided data contradicts the ordering
in the induced ranking.

We show in Table 2 the rankings obtained by the dif-
ferent methods we have experimented with, for the 2013-
2014 Premier League Season, when the input is based on the
Cnw measurements (Net Wins). The final column, denoted
by GT, shows the final official ranking at the end of the
season. We sort the teams alphabetically, and show their
assigned rank by each of the methods. The very last row
in the Table computes the Kendall correlation between the
respective ranking and the official final standing GT.

We remark that, across the different type of inputs con-
sidered, LS, SYNC and SYNC-SDP correlate best with the
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official ranking. In terms of the number of upsets, the syn-
chronization based methods alternate the first place in terms
of quality with SER, depending on the pre-processing step
and the input used for the ranking procedure. In addition,
we show in Figure 7 the Q-scores associated to three recent
seasons in Premier League: 2011-2012, 2012-2013, and 2013-
2014, together with the mean across these three seasons. We
show the number of upsets in Figure 7 and note that for

• Cnw: SYNC-SDP is the best performer, while the
second place is tied by SYNC, SYNC-SUP and RC

• Csnw: LS, SYNC and SYNC-SDP are all tied for the
first place

• Ctpd: SYNC-SUP is by far the best performer, fol-
lowed by SER

• Cstpd: LS, SYNC and SYNC-SDP are all tied for the
first place, followed by SER and SER-GLM on the
second place.

Overall, we can conclude that, already for a very small
example of size only n = 20, the synchronization-based
methods show superior performance especially in the case
of cardinal inputs Cnw and Ctpd.
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Fig. 7. Number of upsets Q(u) (lower is better) for the English Premier
League 2011-2014 data set, where the input is given by Cnw (top left)
Csnw (top right), Ctpd (bottom left), and Cstpd (bottom right).

5.4 Numerical Comparison on the NCAA College Bas-
ketball Data Set
Our second real data set contains the outcomes of NCAA
College Basketball matches during the regular season, for
each of the past 30 seasons over the interval 1985 - 2014. Dur-
ing the regular season, most often it is the case that a pair of
teams play against each other at most once. For example,
during the 2014 season, for which 351 teams competed,
there were a total of 5362 games, with each team playing
on average about 30 games. We remark that in the earlier
years, there were significantly fewer teams participating in
the season, and therefore games played, which also explains
the increasing number of upsets, given by (30), for the more
recent years, as shown in Figure 8 (a). For example, during
the 1985 season, only 282 teams participated, playing a total
of 3737 games. In Figure 8 (a) we compare the performance
of all methods across the years, for the case of both cardinal
and ordinal measurements, i.e., when we consider the point
difference or simply the winner of the game. Similarly, in
Figure 8 (b) we compute the average number of upsets
across all years in the interval 1985-2014, for both cardinal
and ordinal measurements. Note that, for the less frequent

cases when two teams play against each other more than
once, we simply average out the available scores. We remark
that the SYNC-SUP method, i.e., eigenvector-based synchro-
nization based on the superiority score from Section 4.1,
performs remarkably well and achieves a number of upsets
which is half that of the next best performing methods. The
second best results are obtained (in no particular order) by
LS, SYNC, SYNC-SDP and RC, which all yield very similar
results, while SVD and SER are clearly the worst performers.
We left out from the simulations the SER-GLM method due
to its O(n3) computational running time.
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(b) Average number of upsets.Fig. 8. Comparison of the methods on the NCAA 1985-2014 Basketball
data set, in terms of the number of upsets (30), across the years (top)
and averaged over the entire period (bottom) for both cardinal and
ordinal measurements.

6 RANK AGGREGATION

In many practical instances, it is often the case that multiple
voters or rating systems provide incomplete and inconsis-
tent rankings or pairwise comparisons between the same set
of players or items (e.g., at a contest, two players compete
against each other, and k judges decide what the score
should be). In such settings, a natural question to ask is,
given a list of k (possibly incomplete) matrices of size
n×n corresponding to ordinal or cardinal rank comparisons
on a set of n players, how should one aggregate all the
available data and produce a single global ranking, that is as
consistent as possible with the observed data? The difficulty
of the problem is amplified on one hand by the sparsity of
the measurements, since each rating system only provides
a comparison for a small set of pairs of items, and on the
other hand by the amount of inconsistent information in the
provided individual preferences. For example, given a set of
3 items A,B,C, the first judge may prefer A to B, the second
one B to C, and the third one C to A.
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Assume there are k judges, each of which makes avail-
able a noisy incomplete matrix C(i), i = 1, . . . , k on the pair-
wise comparisons between a (perhaps randomly chosen) set
of pairs of players. In practice, it is not necessarily the case
that the same set of players appears in each comparison
matrix C(i); however, for simplicity, we do assume this is
the case. Furthermore, the pattern of pairwise existing and
missing comparisons may be, and usually is, different across
the above sequence of comparison matrices. We denote by
Θ(i), i = 1, . . . , k the resulting matrices of angle offsets after
the mapping (21), and by H(i), i = 1, . . . , k, the correspond-
ing matrices after the mapping (9).

Tentative approach A. One possible naive approach to
this problem would be to solve in parallel, via a method of
choice, each of the C(i), i = 1, . . . , k matrices, thus produc-
ing k possible rankings, one for each rating system, average
the resulting rankings and consider the induced ordering by
each method. In Figure 9 we denote by SVD-PAR, LS-PAR,
SER-PAR, SYNC-PAR, SER-GLM-PAR, SYNC-SDP-PAR this
approach for rank aggregation which runs, individually on
each matrix C(i), i = 1, . . . , k the various methods consid-
ered so far, and finally averages6 out the obtained rankings
across all rankings proposed by a given method.

Tentative approach B. Another approach would be to
first average out all the available matrices C(i), i = 1, . . . , k

into C̄ = C(1)+C(2)+...+C(k)

k , and extract a final ranking by
whatever preferred method that takes as input matrix C̄ ,
which we denote by Θ̄ after applying the transformation
(21) In Figure 9 we denote by SVD-AVG, LS-AVG, SER-AVG,
SYNC-AVG, SER-GLM-AVG, SYNC-SDP-AVG the approach
for rank aggregation which runs the various methods on C̄ .

6.1 Rank Aggregation via Synchronization

A less naive approach to the above rank aggregation
problem would be to consider the block diagonal matrix
of size N × N , with N = nk, given by CN×N =

blkdiag
(
C(1), C(2), . . . , C(k)

)
, and its counterpart, the

Hermitian matrix HN×N obtained after mapping to the
circle. Denote by Ai, i = 1, . . . , n the set of indices corre-
sponding to the same player i in C. For simplicity, assume
A1 = {1, n + 1, 2n + 1, . . . , (k − 1)n + 1}, and in general,
Ai = {i, n + i, 2n + i, . . . , (k − 1)n + i}. As a first step,
one could consider the SDP relaxation (17) which allows
us to easily incorporate the hard constraints Υij = 1 if
i, j ∈ Au,∀u = 1, . . . , k, and add a post-processing step
to ensure that the resulting top eigenvector vΥ

1 is piecewise
constant along the sets of indicesAu that represent the same
players (since after the rank-1 projection of the solution Υ,
the imposed hard constraints are no longer exactly satisfied).
However, the size of the resulting SDP is prohibitive nk×nk,
and one may wonder if is possible to reduce its size to
n × n, since there is a lot of redundant information in the
formulation, with many subsets of the rows being equal,
since they correspond to the same player. For computational
reasons, it is also desirable to solve the rank aggregation
problem via the eigenvector method. Indeed this is the

6. We simply consider the rank of each player across the different k
rankings, and compute the average. The final averaged ranking is then
recomputed from the induced average rankings

case, and this is based on the observation that the objective
function for the rank-aggregation problem can be written as

∑
ij∈E(G)

e−ιθi

(
k∑
u=1

eιΘ
(u)
ij

)
eιθj =

∑
ij∈E(G)

e−ιθiH̄ije
ιθj

(31)
where H̄ is given by the sum of the k Hermitian matrices
H̄ =

∑k
u=1H

(u). The gist of this approach, leading to a
much smaller-sized problem than the above SDP of size
nk × nk, is that we first average out (in the complex plane)
all measurements corresponding to the same pair of players
into a single n×n matrix H̄ , and then proceed with solving
the ranking problem via the spectral and SDP relaxations of
Sync-Rank, denoted by EIG-AGG, respectively SDP-AGG.

6.2 Numerical Results for Rank Aggregation
In this section, we provide numerical experiments com-
paring the various methods that solve the rank aggrega-
tion problem. Note that for ordinal measurements, we also
compare to the original version of the Rank-Centrality algo-
rithm, considered in [27] in the case of multiple rating sys-
tems and applicable only to ordinal measurements, whose
main steps are summarized in (45), (46) and (47). We denote
this approach by RCO in Figure 9. Furthermore, for both
cardinal and ordinal measurements, we also compare to our
proposed versions of Rank-Centrality, discussed in Sections
C.1 and C.2 for the case of a single rating system k = 1.
We adjust these two methods to the setting of multiple
rating systems k > 1, by simply averaging out the winning
probabilities in (50) or (51) of each rating system, as in (48).

In the top of Figure 9, we compare the methods in
the setting of the Multiplicative Uniform Noise MUN(n =
100, p, η), and average the results over 10 experiments. For
cardinal data, we note the SDP-AGG method yields signif-
icantly more accurate results that the rest of the methods,
followed by EIG-AGG, and the naive aggregation methods
SDP-AVG and SDP-PAR. In the case of the complete graph,
the Serial-Rank method SER-GLM comes in second best,
together with SYNC-SDP-PAR. For ordinal data, the four
methods EIG-AGG, SDP-AGG, SYNC-SDP-PAR and SYNC-
SDPAVG yield very similar results, and are more accurate
than the rest of the methods, especially for sparse graphs.

For the Erdős-Rényi Outliers model ERO(n = 100, p, η)
with cardinal measurements, illustrated in Figure 9 EIG-
AGG, SDP-AGG are the best performers, followed very
closely by SYNC-PAR and SYNC-SDP-PAR. For the case of
the complete graph, the SER-GLM comes in next in terms of
performance, while all the remaining methods show a rather
poor relative performance. The relative performance of all
methods is completely different for the case of ordinal mea-
surents, under the ERO model, where SER-AVG and SER-
GLM-AVG are the best performers, especially at lower levels
of noise. Furthermore, the gap between these two methods
and all the remaining ones increases as the measurement
graphs become denser. For the case of the complete graph
with ordinal comparisons with outliers, SER-AVG and SER-
GLM-AVG produce results that are 2-3 orders of magnitude
more accurate compared to all other methods, at lower
levels of noise η ≤ 0.2. As a final observation, we point
out that, in the case of outliers given by the ERO model,
our proposed version of Rank-Centrality, denoted by RC,
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introduced in Section C.1 and given by (50), performs far
better than the original RCO method in [27].

7 RANKING WITH HARD CONSTRAINTS VIA
SEMIDEFINITE PROGRAMMING

Next, we consider a semi-supervised ranking problem, and
illustrate how one can enforce certain types of constraints.
Suppose that the user has readily available information on
the true rank of a subset of players, and would like to obtain
a global ranking solution which obeys the imposed ranking
constraints. To this end, we propose a modified Sync-Rank
algorithm based on the SDP relaxation of the ASP, followed
by a post-processing step. Ranking with vertex constraints,
i.e., information on the true rank of a small subset of players,
is the ASP with constraints, similar to synchronization over
Z2 with constraints considered in our previous work [13].
We refer to the subset of players whose rank is already
known as anchors and denote this set by A, while the set
of non-anchor players (referred to as free players) shall
be denoted by F . In the ASP, anchors are nodes whose
corresponding group element in SO(2) is known a-priori.
Given our measurement graph G = (V,E) with node set V
corresponding to a set of n group elements composed of h
anchorsA = {a1, . . . , ah}with ai ∈ SO(2), and l non-anchor
elements F = {f1, . . . , fl} with fi ∈ SO(2), with n = h + l,
and edge set E of size m corresponding to an incomplete
set of m pairwise angle offsets of the type fi− fj or ai− fj ,
the goal is to estimate f̂1, . . . , f̂l ∈ SO(2).

Since the ground truth rank of anchor players is known,
we compute the ground truth rank offset for all pairs of
anchor nodes, which we then map to the circle via (21), and
enforce the resulting offsets as hard constraints in the SDP
relaxation (17), thus leading to the program in (33), where
the maximization is taken over all matrices Υ � 0 with

Υij =


eι(fi−fj) if i, j ∈ F
eι(fi−aj) if i ∈ F , j ∈ A
eι(ai−aj) if i, j ∈ A.

(32)

with ones on the diagonal Υii = 1,∀i = 1, . . . , n

maximize
Υ∈Cn×n

Trace(HΥ)

subject to Υii = 1, i = 1, . . . , n

Υij = eι(ai−aj), if i, j ∈ A
Υ � 0.

(33)

While in the noiseless case, the SDP in (33) may return a
rank-1 one solution, for noisy data the rank could by larger
than 1, and we consider the best rank-1 approximation. We
use the top eigenvector v(Υ)

1 of Υ to recover the estimated
angles and the induced rankings, but only up to a global
rotation, i.e., a circular permutation. With this observation
in mind, we propose a post-processing step, depicted in
Figure 10, that ensures that the anchor players obey their
prescribed rank. We keep the ranks of the anchor players
fixed, and sequentially apply a cyclic permutation of the free
players on the available rankings, searching for the optimal
cyclic shift that minimizes the number of upsets (19). To
measure the accuracy of each candidate ranking s (i.e., a
permutation of size n), we first compute the associated
pairwise rank offsets Z(s) = s ⊗ 1 − 1 ⊗ s. Next, we

Fig. 10. Left: Searching for the best cyclic shift of the free players, shown
in red. The black nodes denote the anchor players, whose rank is known
and stays fixed. Right: The ground truth ranking.

choose the circular permutation σ
(i)
F of the ranks of the

set of free players F , which minimizes the l1 norm of the
following residual matrix that counts the total number of
upsets 1

2

∥∥∥sign(Z(σAσ
(i)
F )− sign(C)

∥∥∥
1

, where σA denotes
the permutation associated to the anchor players, which
stays fixed in the above minimization. The intuition is that
the SDP solution preserves as best as possible the relative
ordering of all players, in particular of the free players,
and does so up to a global shift, which we recover via
the above procedure. Figure 11 shows the outcome of nu-
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Fig. 11. Performance of Sync-Rank with constraints, for the MUN(n =
200, p, η) noise model, with p = 0.2 (left) and p = 1 (right). SYNC-SDP-
K denotes the SDP relaxation of Sync-Rank with K constraints.

merical simulations of Sync-Rank for several instances of
the constrained ranking problem, under the MUN model
with cardinal constraints. As expected, the numerical error
decreases as more anchor information becomes available.

8 FUTURE RESEARCH DIRECTIONS

We highlight in this section several possible future research
directions, which we expand in more detail in Appendix
D. As seen in Section 7, adding pairwise rank-offsets as
hard constraints improves the end results. A natural ques-
tion to consider is how one may incorporate similar soft
constraints, captured in a second matrix Q. As in (12),
one can maximize the same quadratic form z∗Hz, subject
to the given constraints being satisfied well enough, i.e.,
z∗Qz ≥ α, and also z∗z = n, which altogether lead to
a generalized eigenvalue problem. However, note that one
could further replace H and Q with their respective graph
Connection Laplacians, which are both PSD matrices, thus
rendering the problem solvable in nearly-linear time due
to recent progress in the area of Laplacian linear systems
solvers, as explored in our recent work [11] on the well-
studied constrained clustering problem. Another interesting
variation concerns the scenario in which one wishes to en-
force ordinal hard constraints that player i is ranked higher
than player j, i.e., r̂i > r̂j . Another question is whether an
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Fig. 9. Comparison of results for the Rank-Aggregation problem with m = 5 rating systems, for the Multiplicative Uniform Noise model MUN(n =
100, p, η) (top) and the Erdős-Rényi Outliers model ERO(n = 100, p, η) (bottom). We average the results over 10 runs.

l1-based formulation of the ASP could further improve the
robustness to noise or sparsity of the measurement graph,
since the existing spectral and SDP relaxations for the ASP
[30] approximate a least squares solution in the angular
space. One other very interesting direction concerns the
possibility of casting the ranking problem as a synchroniza-
tion problem over the group SO(3), as opposed to SO(2)
as in present work. The extra dimension would facilitate
the extraction of partial rankings, which one can collect
by traversing along longitudinal lines and their immediate
neighborhoods, and perhaps further increase the overall
robustness to noise. Yet another future direction would
be to aim for tighter guarantees in terms of robustness
to noise. Finally, we have also considered the problem of
planted partial rankings, which arises in the setting when a
small subset Λ of players have their pairwise measurements
more accurate than the rest of the network. We propose in
Appendix A a spectral algorithm based on the Laplacian of
the residual rank-offset matrix given by Sync-Rank, which,
unlike other methods, is able to preserve the planted partial
ranking and recover Λ, as shown in Figure 12.
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Fig. 12. Recovering planted rankings. The top (respectively, bottom)
subplot corresponds to the recovered rankings of the non-Λ-players,
respectively the Λ-players.

9 SUMMARY AND DISCUSSION

We considered the problem of ranking with noisy incom-
plete information and made an explicit connection with the

angular synchronization problem, for which spectral and
SDP relaxations already exist in the literature with provable
guarantees. This approach leads to a computationally effi-
cient (as is the case for the spectral relaxation), non-iterative
algorithm that is model independent and relies exclusively
on the available data. We provided extensive numerical
simulations, on both synthetic and real data sets that show
that our proposed procedure compares favorably with state-
of-the-art methods from the literature, across a variety of
measurement graphs and noise models.

We took advantage of the spectral, and especially SDP,
relaxations and proposed methods for ranking in the semi-
supervised setting where a subset of the players have a
prescribed rank to be enforced as a hard constraint. In addi-
tion, we considered the popular rank aggregation problem
of combining ranking information from multiple rating sys-
tems that provide independent incomplete and inconsistent
pairwise measurements on the same set of items, with the
goal of producing a single global ranking.
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APPENDIX A
RECOVERING PLANTED PARTIAL RANKINGS

Aside from its increased robustness to noise, we point out
another appealing feature of the Sync-Rank algorithm. In
many real-life scenarios, one is not necessarily interested
in recovering the entire ranking, but only the ranking of a
subset of the players. Often, the noise in the available mea-
surements may not be distributed uniformly throughout the
network, with part of the network containing pairwise com-
parisons that are a lot less noisy than those in the rest of the
network. This asymmetry provides us with an opportunity
and raises the question of whether one can recover partial
rankings which are locally consistent with the given data.
In this Appendix we demonstrate empirically that Sync-
Rank is able to preserve such partial rankings. In addition,
we extract such hidden locally consistent partial rankings,
relying on a spectral algorithm in the spirit of existing
algorithms for the planted clique and densest subgraph
problems.

We remark that this approach can be extended to ex-
tracting multiple partial rankings by relying on recent work
of Lee et al. on multi-way spectral partitioning and higher-
order Cheeger inequalities [25]. Note that in the case of k
partial rankings, one does not necessarily seek a partition of
the residual graph into k clusters, but rather seeks k disjoint
clusters, whose union is not necessarily the entire graph.
The Cheeger Sweep final step of their algorithm allows one to
extract k such sets of smallest expansion. For simplicity, we
only consider the case of a single planted locally consistent
partial ranking. We denote by Λ the set of players whose
pairwise ranking measurements contain less noise than the
rest of the available data, and we shall refer to such players
as Λ-players, and to the remaining ones as ΛC -players.

We evaluate our proposed procedure on graphs gener-
ated from the following ensemble G(n, p, β, η1, η2), where
the measurement graph G is an Erdős-Rényi random graph
G(n, p), |Λ| = βn, and the noise model is given by the
following mixture

Cij =


ri − rj {i, j} ∈ Λ, w.p. (1− η1)α

∼ U [−(n− 1), n− 1] {i, j} ∈ Λ w.p. η1α
ri − rj {i, j} /∈ Λ, w.p. (1− η2)α

∼ U [−(n− 1), n− 1] {i, j} /∈ Λ w.p. η2α
0 w.p. 1− α.

(34)
where U denotes the discrete uniform distribution.

The approach we propose for recovering such a locally
consistent partial ranking starts as follows. For a given rank-
ing method of choice (such as the ones we have considered
throughout the paper), we estimate the complete ranking
r̂1, . . . , r̂n, and consider the resulting matrix of rank offsets

Ĉ = (r̂ ⊗ 1− 1⊗ r̂) ◦A (35)

where ⊗ denotes the outer product of two vectors x ⊗ y =
xyT , ◦ denotes the Hadamard product of two matrices
(entrywise product), and A is the adjacency matrix of the
graph G; in other words Ĉij = r̂i − r̂j , (i, j) ∈ E(G). Next,
we consider the residual matrix of pairwise rank offsets

R = |C − Ĉ| (36)

for the case of cardinal measurements, and

R = |C − sign(Ĉ)| (37)

for the case of ordinal measurements. We illustrate in Figure
13 the residual matrices obtained by each of the methods,
and remark that, for ease of visualization, the set Λ consists
of the first βn = 75 nodes, corresponding to the top
left corner of each of the residual matrices shown in the
heatmap. Whenever an estimated rank-offset Ĉij (induced
by the recovered ranking) matches very well with the initial
measurement Cij , we expect the residual Rij to have small
magnitude, and conversely, whenever the recovered offset
Ĉij is far from the initial measurement Cij then we expect
Rij to have large magnitude. Furthermore, we show in
Figure 14, the recovered rankings by each of the methods,
where we separate the rankings of the ΛC -players (shown in
the top subplot, in blue), from those of the Λ-players (shown
in the bottom subplot, in red). Note that the set Λ is not
available to the user, and at this point we do not have yet an
estimate Λ̂ for Λ; however this plot already highlights the
fact that synchronization-based ranking preserves almost
perfectly the relative ranking of the Λ-players, while all the
other methods fail to do so. Note that the title of each of the
bottom plots of Figure 14 shows the Jaccard Similarity index
between Λ and Λ̂ (which we show next how to estimate),
and the Kendall distance between the ground truth rankings
of the Λ̂-players, and the estimated rankings of the Λ̂-
players.

In practice, when the measurements between pairs of
Λ-nodes also contain noise, the corresponding sub-matrix
has no longer zero or close to zero residuals, and it is
harder to identify such a set of nodes. The resulting task at
hand is to identify a subset of nodes for which the average
inter-edge weights (the residuals shown in Figure 13) is
as small as possible. This problem is equivalent7 to the
well-known densest subgraph problem, investigated in the
theoretical computer science literature, for the case when
the graph G is unweighted. Densest-k-Subgraph (DkS) on an
undirected unweighted graph G concerns finding a subset
of nodes U ∈ V (G) of size |U | = k with the maximum
induced average degree. Using a reduction from the Max-
Clique problem, the Densest-k-Subgraph can be shown to be
NP-hard to solve exactly. Feige and Seltzer [16] showed
that the Densest-k-Subgraph problem is NP-complete even
when restricted to bipartite graphs of maximum degree
3. If the parameter k is not known a-priori, the problem
becomes the well known Densest Subgraph problem, where
one seeks to find a subset U (regardless of its size) in order
to maximize the average degree induced by U . The Densest
Subgraph problem can be solved in polynomial time using
either linear programming or flow techniques.

In a seminal paper [1], Alon, Krivelevich, and Sudakov
considered the graph ensemble G(n, 1/2, k), where one
starts with an Erdős-Rényi G(n, p = 1/2) and randomly
places a clique of size k in G. They proposed an efficient
spectral algorithm that relies on the second eigenvector of
the adjacency matrix of G, which almost surely finds the
clique of size k, as long as k > c

√
n. We remark that

7. Perhaps after hard thresholding the entries of the residual matrix
to 0 or 1.
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Fig. 13. The residual matrices given by (36), for each of the six methods, for a random instance of the ensemble G(n = 250, β = 0.3, η1 = 0, η2 = 1).
The Λ-nodes correspond to the first βn = 75 positions.

in our case the residual graph is weighted and thus a
different procedure is required, though one can perhaps
think of various heuristics for thresholding the entries of
W, setting to 1 all remaining weights (thus rendering the
graph unweighted), and perhaps further adding edges to
the graph between r-hop neighbors away pairs of nodes,
with the hope of producing a clique, which we can then
detect using the algorithm proposed in [1].

However, in this work, we take none of the above ap-
proaches, and rely on another spectral algorithm to uncover
the planted dense subgraph, and hence the partial ranking.
We use the following approach to uncover the planted dens-
est subgraph of given size k. We first compute a similarity
between the adjacent nodes of the graph using the Gaussian
Kernel

Wij = e−
Rij

ε2 , (i, j) ∈ E(G)

for the parameter choice ε2 = 2n/10, and consider
the random-walk Laplacian L = D−1W , whose trivial
eigenvalue-eigenvector pair is given by λ1 = 1 and the all-
ones vector v1 = 1. To extract a cluster of given size k (our
proposed estimate for the set Λ), we compute the first non-
trivial eigenvector v2 of L, and consider its top k largest
entries to produce an estimate Λ̂ for the set Λ. We detail
these steps in Algorithm 2. Figure 15 shows a comparison
of the methods (results averaged across 15 experiments) in
terms of the Jaccard Similarity Index between the ground
truth set Λ and our proposed estimate Λ̂, defined as

J (Λ, Λ̂) =
Λ ∩ Λ̂

Λ ∪ Λ̂
, (39)

meaning that for values equal to 1 the algorithm would
perfectly recover the planted nodes in Λ. Furthermore,
we plot in Figure 16 the corresponding Kendall distance
between the recovered ranking of the Λ̂-nodes (from Figure
15) and their ground truth values, for the ensemble given
by G(n = 250, p, β, η1, η2 = 1), for varying p = {0.2, 0.5, 1}
and η1 = {0, 0.2, 0.4}. Note that across all experiments, the
SYNC-SDP algorithm is by far the best performer, both in
terms of the Jaccard Index (thus being able to recover the
set Λ) and the Kendall distance (thus being able to recover
accurately the ranking8 of the estimated Λ̂-nodes). Note that
an alternative approach to estimating the ranking of the Λ̂-
nodes (once Λ̂ has already been estimated) would be to
recompute it by re-running the method of choice on the
original measurement matrix C , restricted to the sub-matrix

8. This partial ranking is simply extracted from the complete ranking
solution, as computed using the method of choice.

Algorithm 2 Algorithm for recovering the densest
(weighted) subgraph of size k of the residual graph whose
adjacency matrix is denoted by W .
Require: A weighted graph H = (V,E), and its symmetric

adjacency matrix W , and k < n
1: Compute the random-walk Laplacian L = D−1W ,

where D is a diagonal matrix with Dii =
∑n
j=1Wij

2: Find the second eigenvector v2 of L, corresponding to
the second largest eigenvalue λ2 < λ1 = 1

3: Sort the entries of v2 in decreasing order, consider the
top k largest entries in v2, let Λd denote the set of
corresponding vertices, and compute the residual error
associated to Λd

ERRΛd =
∥∥∥CΛd,Λd − ĈΛd,Λd

∥∥∥
1

4: Sort the entries of v2 in increasing order, consider the
top k largest entries in v2, let Λi denote the set of
corresponding vertices, and compute the residual error
associated to Λi

ERRΛi =
∥∥∥CΛi,Λi − ĈΛi,Λi

∥∥∥
1

5: Output the final estimate Λ̂ for Λ as

Λ̂ = arg min
Λd,Λi

{ERRΛd , ERRΛi} (38)

corresponding to nodes Λ̂. We expect this approach to yield
more accurate results, especially in the case when the mea-
surements between a pair of (ΛC ,ΛC)-nodes, or a pair of
(Λ,ΛC)-nodes are very noisy (i.e., η2 is large in the ensemble
G(n, p, β, η1, η2) defined by (34)), as was the case for the
numerical experiments detailed here, for which we have
chosen η2 = 1, meaning such measurements are pure noise
and chosen uniformly at random from [−(n− 1), (n− 1)].

APPENDIX B
SERIAL-RANK

A spectral algorithm that exactly solves the noiseless seri-
ation problem (and the related continuous ones problem) was
proposed by Atkins et al. [2], based on the observation that
given similarity matrices computed from serial variables,
the ordering induced by the second eigenvector of the asso-
ciated Laplacian matrix (i.e., the Fiedler vector) matches that
of the variables. In other words, this approach (reminiscent
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Fig. 14. The recovered rankings by each of the six methods, for a random instance of the ensemble G(n = 250, β = 0.3, η1 = 0, η2 = 1), for
which |Λ| = βn = 75. For each plot, the top subplot, respectively bottom subplot, corresponds to the recovered rankings of the (ground truth)
ΛC -nodes, respectively the (ground truth) Λ-nodes. Note that, in practice, the set Λ is not known a-priori, but we use this information here only for
the purpose of making the point that the synchronization-based method is able to perfectly preserve the relative ranking of the Λ-players. We exploit
this phenomenon, and are able to recover the planted set Λ in a totally unsupervised manner.
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Fig. 15. Comparison of the methods in terms of the Jaccard Similarity
Index (higher is better) between the recovered Λ̂ and the ground truth
Λ, from the ensembles given by G(n = 250, p, β, η1, η2 = 1), for varying
p = {0.2, 0.5, 1} and η1 = {0, 0.2, 0.4}. Experiments are averaged over
15 runs.

of spectral clustering) exactly reconstructs the correct order-
ing if the items in question lie on a one dimensional chain.
In [18], Fogel et al. adapt the above seriation procedure to
the ranking problem, and propose an efficient polynomial-
time algorithm with provable recovery and robustness guar-
antees. Under certain conditions on the pattern of noisy
entries, Serial-Rank is able to perfectly recover the under-
lying true ranking, even when a fraction of the comparisons
are either corrupted by noise or completely missing. In this
noisy setting, when the underlying measurement graph is
dense, in other words, a high fraction of all the pairwise
comparisons are observed, the spectral solution obtained
by Serial-Rank is more robust to noise that other classical
scoring-based methods.
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(b) p = 0.2, η1 = 0.2
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(c) p = 0.2, η1 = 0.4
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(d) p = 0.5, η1 = 0
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(e) p = 0.5, η1 = 0.2
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(f) p = 0.5, η1 = 0.4
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(g) p = 1, η1 = 0
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(h) p = 1, η1 = 0.2
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Fig. 16. The Kendall Distance (lower is better) between the recov-
ered ranking of the Λ̂-nodes by each of the methods (from Fig-
ure 15) and their ground truth values, for the ensemble given by
G(n = 250, p, β, η1, η2 = 1), for varying p = {0.2, 0.5, 1} and
η1 = {0, 0.2, 0.4}. Experiments are averaged over 15 runs.

The authors of [18] propose two approaches for com-
puting a pairwise similarity matrix from both ordinal and
cardinal comparisons between the players. In the case of
ordinal measurements, the similarity measure counts the
number of matching comparisons. More precisely, given as
input a skew symmetric matrix C of size n × n of pairwise
comparisons Cij = {−1, 0, 1}, with Cij = −Cji, given by
the following model

Cij =


1 if i is ranked higher than j
0 if i and j are tied, or never competed
−1 if j is ranked higher than i

(40)

For convenience, the diagonal of C is set to Cii = 1,∀i =
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1, 2, . . . , n. Finally, the pairwise similarity matrix is given by

Smatchij =
n∑
k=1

(
1 + CikCjk

2

)
. (41)

Note that CikCjk = 1 whenever i and j have the same
signs, andCikCjk = −1 whenever they have opposite signs,
thus Smatchij counts the number of matching comparisons
between i and j with a third reference item k. The lack of a
comparison of item k with either i or j contributes with a 1

2
to the summation in (41). The intuition behind this similarity
measure proposed by Fogel et al. is that players that beat
the same players and are beaten by the same players should
have a similar ranking in the final solution. Written in a
compact form, the final similarity matrix is given by

Smatch =
1

2

(
n11T + CCT

)
(42)

We summarize in Algorithm 3 the main steps of the Serial-
Rank method of Fogel et al. for ranking via seriation.

Algorithm 3 Serial-Rank: an algorithm for spectral ranking
using seriation [18].
Require: A set of pairwise comparisons Cij ∈ {−1, 0, 1} or

[-1,1]
1: Compute a similarity matrix as shown in (41)
2: Compute the associated graph Laplacian matrix

LS = D − S (43)

where D is a diagonal matrix D = diag (S1), i.e., Dii =∑n
j=1Gi,j is the degree of node i in the measurement

graph G.
3: Compute the Fiedler vector of S (eigenvector corre-

sponding to the smallest nonzero eigenvalue of LS).
4: Output the ranking induced by sorting the Fiedler

vector of S, with the global ordering (increasing or
decreasing order) chosen such that the number of upsets
is minimized.

In the generalized linear model setting, one assumes
that the paired comparisons are generated according to a
generalized linear model, where paired comparisons are in-
dependent, and item i is preferred to item j with probability

Pij = H(νi − νj)

where ν ∈ Rn is a vector denoting the strength, rank, or
skill level of the n players. In the context of the GLM model,
Fogel et al. propose the following similarity matrix

Sglmi,j =
n∑
k=1

1{mi,kmj,k>0}

(
1− |Ci,k − Cj,k|

2

)
+
1{mi,kmj,k=0}

2

(44)
where mi,k = 1 if i and j played in a match, and 0 oth-
erwise. We denote by SER-GLM the Serial-Rank algorithm
based on the above GLM model given by (44). For the
cardinal case, SER-GLM is roughly similar to SER, except
in the complete graph case, when SER-GLM consistently
outperforms SER under both the MUN and ERO noise
models. We refer the reader to Figures 5 and 6 for the
numerical results showing how SER and SER-GLM compare
to the existing and newly proposed methods.

APPENDIX C
RANK CENTRALITY

In recent work [27], Negahban et al. propose an iterative
algorithm for the rank aggregation problem by estimating
scores for the items from the stationary distribution of a
certain random walk on the graph of items, where edges
encode the outcome of pairwise comparisons. The authors
propose this approach in the context of the rank aggre-
gation problem, which, given as input a collection of sets
of pairwise comparisons over n players (where each set is
provided by an independent rating system) the goal is to
provide a global ranking that is as consistent as possible
with the given measurements of all k ranking systems.
At each iteration of the random walk, the probability of
transitioning from vertex i to vertex j is directly propor-
tional to how often player j beat player i across all the
matches the two players confronted, and is zero if the two
players have never played a match before. In other words,
the random walk has a higher chance of transitioning to a
more skillful neighbors, and thus the frequency of visiting a
particular node, which reflects the rank or the skill level of
the corresponding players, is thus encoded in the stationary
distribution of the associated Markov Chain. The authors
of [27] propose the following approach for computing the
Markov matrix, which we adjust to render it applicable
to both ordinal and cardinal measurements, in the case
of a single rating system. Note that in Section 6 where
we discuss the rank aggregation problem in the context of
multiple rating systems, we rely on the original version of
the algorithm. For a pair of items i and j, let Y (l)

ij be equal to
1 if player j beats player i, and 0 otherwise, during the lth

match between the two players, with l = 1, . . . , k. The BTL
model assumes that P(Y

(l)
ij ) =

wj
wi+wj

, where w represent
the underlying vector of positive real weights associated to
each player. The approach in [27] starts by estimating the
fraction of times players j has defeated player i, which is
denoted by

aij =
1

k

k∑
l=1

Y lij , (45)

as long as players i and j competed in at least one match,
and zero otherwise. Next, consider the symmetric matrix

Aij =
aij

aij + aji
, (46)

which converges to wj
wi+wj

, as k → ∞. To define a valid
transition probability matrix, the authors of [27] scale all the
edge weights by 1/dmax and consider the resulting random
walk

Pij =

{
1

dmax
Aij if i 6= j

1− 1
dmax

∑
k 6=iAik if i = j,

(47)

where dmax denotes the maximum out-degree of a node,
thus making sure that each row sums to 1. The stationary
distribution π is the top left eigenvector of P , and its entries
denote the final numerical scores associated to each node,
which, upon sorting, induce a ranking of the n players.

To render the above approach applicable9 in the case

9. Otherwise, in the ordinal case, Aij is either 0 or 1
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when k = 1 of a single rating system (for both cardinal
and ordinal measurement), but also when k > 1 for the
case of cardinal measurements, we propose the following
alternatives to designing the winning probabilities aij given
by (45), and inherently the final winning probability matrix
A in (46). Once we have an estimate for A (given by (50)
for ordinal data, respectively by (51) for cardinal data),
we proceed with building the transition probability P as
in (47) and consider its stationary distribution. Note that
we also make these two new methods proposed below
applicable to the setting of multiple rating systems k > 1,
by simply averaging out the resulting winning probabilities
A

(l)
ij , l = 1, . . . , k, given by each rating system via (50) or

(51), across all rating systems

Aij =
1

k

k∑
l=1

A
(l)
ij , (48)

and then consider the transition probability matrix P as in
(47) and its stationary distribution.

C.1 Adjusted Rank-Centrality for ordinal measure-
ments

To handle the case of ordinal measurements, we propose
a hybrid approach that combines Serial-Rank and Rank-
Centrality, and yields more accurate results than the former
one, as it can be seen in Figure 6. We proceed by computing
the Smatch matrix as in the Serial-Rank algorithm (given
by (41) and (42) in Appendix B) that counts the number of
matching comparisons between i and j with other third ref-
erence items k. The intuition behind this similarity measure
is that players that beat the same players and are beaten by
the same players should have a similar ranking in the final
solution. Note that Sij ≤ n for any pair of players10, and
thus Sij

n ∈ [0, 1]

Note that, whenever Sij is very large, say Sij ≈ n,
meaning the two players are very similar, then the quantity
1 − Sij

n is small and close to zero, and thus a good proxy
for the difference in the winning probabilities Aij and Aji
defined in (46). In other words, if two players are very
similar, it is unlikely that, had they played a lot of matches
against each other, one player will defeat the other in most
of the matches. On the other hand, if two players are very
dissimilar, and thus Sij is close to zero and 1− Sij

n is close to
one, then it must be that, had the two players met in many
matches, one would have defeated the other in a significant
fraction of the games. With these observations in mind, and
in the spirit of (46), we design the matrix A of winning
probabilities such that{

Aij +Aji = 1

|Aij −Aji| = 1− Sij
n .

(49)

for a pair of players that met in a game. We lean the balance
in favor of the player who won in the (single) direct match,
and assign to him the larger winning probability. Keeping
in mind that Aij should be a proxy for the fraction of times

10. This is since Cii is defined to be 1, otherwise it would be true that
Sij ≤ n− 2.

player j defeated player i (thus whenever Cij > 0 it must
be that Aij > Aji), the above system of equations (49) yields

Aij =


1− 1

2
Sij
n , if Cij > 0

1
2
Sij
n , if Cij < 0.
0, if Cij = 0.

(50)

We remark that, in the case of outliers given by the ERO
noise model (29), our above proposed version of Rank-
Centrality (denoted as RC), when used in the setting of
multiple rating systems, performs much better than the
original Rank-Centrality algorithm (denoted as RCO), as
shown in the bottom plot of Figure 9.

C.2 Adjusted Rank-Centrality for cardinal measure-
ments

For the case of cardinal measurements, we propose a sim-
ilar matrix A of winning probabilities, and incorporate the
magnitude of the score into the entries of A. The intuition
behind defining the winning probability is given by the fol-
lowing reasoning. Whenever Cij takes the largest possible
(absolute) value (i.e., assume Cij = (n − 1), thus j defeats
i by far), we define the winning probability that player j
defeats player i to be largest possible, i.e., Aij = 1, and
in general, the larger the magnitude of Cij , the larger Aij
should be. On the other hand, wheneverCij has the smallest
possible (absolute) value (i.e., assume Cij = 1), then the
wining probability should be as small as possible, i.e., close
to 1

2 . With these two observations in mind, we define the
winning probability matrix as

Aij =


1
2 + 1

2
Cij
n−1 , if Cij > 0

1
2 −

1
2
Cij
n−1 , if Cij < 0.

0, if Cij = 0.

(51)

APPENDIX D
FUTURE RESEARCH DIRECTIONS

We highlight in this section several possible future research
directions that we believe are interesting and worth pursu-
ing further.

D.1 Robustness to noise of SVD-based ranking

An interesting research direction is the analysis of the ro-
bustness to noise of the SVD-based ranking method dis-
cussed in Section 2.3. We remark here that, for the Erdős-
Rényi Outliers ERO(n, p, η) model (29), the following de-
composition could render the SVD-Rank method amenable
to a theoretical analysis using tools from the random matrix
theory literature on rank-2 deformations of random matrices
[6]. Note that the expected value of the entries of C is given
by

ECij = (ri − rj)(1− η)p, (52)

in other words, EC is a rank-2 skew-symmetric matrix

EC = (1− η)p(reT − erT ) (53)

Next, one may decompose the given data matrix C as

C = EC +R (54)
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where R = C − EC is a random skew-symmetric matrix
whose elements have zero mean and are given by

Rij =


(ri − rj)[1− (1− η)p] w.p. (1− η)p
q − (ri − rj)(1− η)p w.p. ηp
−(ri − rj)(1− η)p w.p. 1− p,

(55)

whenever i 6= j and where q ∼ Unif.[−(n−1), n−1], which
renders the given data matrix C decomposable into a low-
rank (rank-2) perturbation of a random skew-symmetric
matrix. The case p = 1 which corresponds to the complete
graph G = Kn simplifies (55), and is perhaps a first step
towards a theoretical investigation.

D.2 Ranking with soft (edge) constraints as a general-
ized eigenvalue problem
We have seen in the previous Section 7 that adding hard
constraints to the ranking problem improves the end results.
A natural question to consider is how one may incorporate
soft constraints into the problem formulation. Let H denote
the Hermitian matrix of available pairwise cardinal rank-
offsets after embedding in the angular space, and similarly
let Q denote the Hermitian matrix of pairwise cardinal
rank-offset constraints the user wishes to enforce, also after
mapping to the angular embedding space. One possibility
is to incorporate weights into either the spectral or SDP
relaxation of the synchronization problem, in which case,
the input to the synchronization formulation will be given
by

H̃ = H + λQ

where Q is the matrix of rank-offset (soft) constraints. The
larger the parameter λ, the more weight is given to the
available pairwise constraints, and thus the more likely they
are to be satisfied in the final proposed solution. However, in
certain instances one may wish to enforce a lower bound on
how well the given constraints are satisfied, in which case
we adjust the optimization problem as follows. We maxi-
mize the same quadratic form z∗Hz as in (12), but subject
to the condition that the given constraints are satisfied well
enough, i.e., z∗Qz ≥ α, for a user specified α, and that the
sum of the absolute values of all complex numbers zi is n

max
z=(z1,...,zl)∈Cn

z∗Hz

subject to z∗Qz ≥ α
z∗z = n.

(56)

We remark that this approach is extremely similar to the one
considered in the constrained clustering algorithm proposed
in [34], where the goal is to cluster a given weighted graph
with adjacency matrixH , subject to soft constraints captured
in a sparse matrix Q, of the form Qij = 1 (respectively,
Qij = −1) if nodes i and j should be (respectively,
should not be) in the same cluster, and Qij = 0 if no
information is available. As shown in [34], one arrives at
a generalized eigenvalue problem based on the matrices
H and Q. However, instead of working with the above H
and Q matrices (which in our setting (56) are Hermitian
matrices) one could instead consider their corresponding
graph Connection Laplacians, and solve the resulting gen-
eralized eigenvalue problem where both matrices are now
symmetric diagonally dominant. We point out our recent

work [11], where we present a principled spectral approach
to the above well-studied constrained clustering problem,
and reduce it to a generalized eigenvalue problem involv-
ing Laplacian matrices that can be solved in nearly-linear
time due to recent progress in the area of Laplacian linear
systems solvers. In practice, this translates to a very fast
implementation that consistently outperforms the approach
in [34], both in terms of accuracy and running time. It would
be interesting to explore whether our approach in [11] can
be extended to the setting of constrained ranking.

D.3 (Signless) Ranking with Unsigned Cardinal Com-
parisons

Consider for example the scenario where one is given the
score sheet of all soccer games in the England Football Pre-
mier League, recording the goal difference for each game,
but without disclosing who won and who lost the game.
In other words, one wishes to reconstruct the underlying
rankings (up to a global reversal of the ordering) only using
information on the magnitude of the rank offsets

Cij = |ri − rj |. (57)

We remark that the resulting problem is nothing but an in-
stance of the graph realization problem on the line, with noisy
distances [12]. In practice, an instance of this problem arises
in shotgun genome sequencing experiments, where the goal
is to reorder substrings of cloned DNA strands (called reads)
using assembly algorithms that exploit the overlap between
the reads. We refer the reader to the recent work of Fogel et
al. on convex relaxations for the seriation problem [19], includ-
ing an application to the above shotgun gene sequencing
task. We remark that preliminary numerical results indicate
that SVD-based ranking performs remarkably well in this
setting of recovering the ordering (up to a global sign) using
information only on the magnitude of the rank offsets but
not their sign, and defer this investigation to future work.

D.4 Ranking both items and raters

Another possible direction concerns the detection of outlier
voters, in the setting when there are multiple voting systems
providing pairwise comparisons on the same set of players.
For example, in Section 6 we considered the problem of rank
aggregation, of combining information from multiple voters
or rating systems, which provide incomplete and inconsis-
tent rankings or pairwise comparisons between the same
set of players or items. A natural question asks whether it is
possible to derive a reputation for both raters and items, and
identify outlier voters of low credibility. Furthermore, one
can incorporate the credibility of the voters when estimating
the reputation of the objects, as considered in the recent
work of de Kerchove and Van Dooren [14], who introduce a
class of iterative voting systems that assign a reputation to
both voters and items, by applying a filter to the votes. An-
other potential application is to crowdsourcing [23], where
crowd workers have different levels of competencies and
are likely to produce noisy judgments regarding ranking of
items.



JOURNAL OF LATEX CLASS FILES, 2016 21

D.5 Ranking via l1 Angular Synchronization

Singer [30] and Yu [38] observe that embedding in the
angular space is significantly more robust to outliers when
compared to l1 or l2 based embeddings in the linear space.
Since the existing spectral and SDP relaxations for the
angular synchronization problem [30] approximate a least
squares solution in the angular space, a natural question
to ask is whether an l1-based formulation of the angular
synchronization problem could further improve the robust-
ness to noise or sparsity of the measurement graph. A
preliminary investigation of such an l1 based approach for
angular synchronization (which we did not further apply to
the ranking problem) using the splitting orthogonality con-
straints approach of Lai and Osher [24] based on Bregman
iterations, suggests that it often yields more accurate results
than the existing spectral relaxation of its least-squares solu-
tion only for favorable noise regimes. At high levels of noise,
the spectral relaxation performs better, and does so at a
much lower computational cost. On a related note, we point
out the SDP relaxation of the Least Unsquared Deviation
(LUD) formulation [33], for which the authors give exact
recovery guarantees under the Erdős-Rényi Outliers model.

D.6 Ranking over the Sphere and Synchronization over
SO(3)

Another research direction we find interesting concerns the
possibility of casting the ranking problem as a synchroniza-
tion problem over the group SO(3), as opposed to SO(2)
which we considered in this paper. Consider for example
a sphere centered at the origin, with points on the sphere
corresponding to the players and the z-axis to their ranks,
such that the closer a player is to the South Pole, the higher
her or his ranking is. The extra dimension would facilitate
the extraction of partial rankings, which one can collect
by traversing along longitudinal lines and their immediate
neighborhoods. In addition, one can also extract sets of
players which are about the same rank (roughly speaking,
they have about the same latitude), but cannot be positioned
accurately with respect to each other (for example, a set of 10
players out of 100, are ranked in positions 81−90, but based
on the data, their relative ordering cannot be established). In
other words, if one considers a slice of the sphere (parallel
to the xy-plane) all the players on or nearby it would have
about the same rank. Perhaps most important, it would
also be interesting to investigate the extent to which the
extra dimension increases the overall robustness to noise
of the algorithm. Note that, while for SO(2), finding an
optimal circular permutation was required to eliminate the
additional degree of freedom, for the case of SO(3) one could
search for the best rotation around the origin of the sphere,
such that the resulting rank offsets agree with the initial data
as best as possible.

D.7 Robustness to noise

Another future direction would be to aim for guarantees in
terms of robustness to noise. We remark that existing theo-
retical guarantees from the recent literature on the group
synchronization problem by various works of Bandeira,
Boumal, Charikar, Singer and Spielman [4], [5], [30], trivially

translate to lower bounds on the largest amount of noise
permissible in the cardinal comparisons for an Erdős-Rényi
outliers noise model, while still achieving an approximate
solution that correlates well with the underlying ground
truth ranking. However, note that a perfect or close-to-
perfect recovery of the angles in the angular synchronization
problem is not a necessary condition for a similar recovery
of the underlying ground truth ranking, since it is enough
that only the relative ordering of the angles is preserved.
Furthermore, the main theorem of [4] provides an l∞ error
on the MLE estimator for angular synchronization, which,
when compared to the minimal distance between two con-
secutive angles, could lead to theoretical bounds for exact
recovery of the rankings11.

Another interesting possible direction is to investigate
the robustness to noise of Sync-Rank in the setting of the,
perhaps more realistic, multiplicative uniform noise model
(28) and explain the empirical findings in Figure 4 (a) and
(b). Finally, the surprising performance (relative to other
methods) of Sync-Rank based on rank offsets given by (24)
and illustrated in Figure 8 of Section 5.4 across 30 years of
data, raises the question of how does a disc measurement
graph affect the performance of the algorithms, i.e., in the
(often very realistic) setting where nodes (players) lie on a
one-dimensional line, and there exists an edge (i.e., match)
between two nodes if and only if they are at most r units
(ranks) apart.

D.8 The Minimum Linear Arrangement Problem

One could also investigate any potential connections be-
tween synchronization and SVD-based ranking using only
magnitude information (as detailed in Section D.3) and the
Minimum Linear Arrangement (MLA) problem, which is
defined as follows. Given a graph G = (V,E) and positive
edge weights w : E 7→ R+, a linear arrangement is a permu-
tation π : V 7→ {1, 2, . . . , n}. The cost of the arrangement is
given by ∑

ij∈E
w(u, v)|π(u)− π(v)| (58)

In the MLA problem, the goal is to find a linear arrangement
of minimum cost a task known to be NP-complete. In the
approximation theory literature, the work of Feige and Lee
[15] provides an O(

√
log n log log n)-approximation SDP-

based algorithm for the MLA problem.

APPENDIX E
ENGLISH PREMIER LEAGUE STANDINGS

In Table 2 we show the rankings obtained by each algorithm
for the English Premier League 2013-2014 data set, based on
the input matrix Cnw which counts the number of net wins
between a pair of teams. We also present the final official
ranking at the end of the season, which are denoted by GT.

11. We thank one of the referees for pointing out this connection.
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Team SVD LS SER SYNC SER-
GLM

SYNC
SUP

SYNC
SDP RC GT

Arsenal 1 4 5 4 4 5 4 4 4
Aston Villa 19 16 18 16 20 19 16 16 15

Cardiff 17 20 16 20 15 20 20 20 20
Chelsea 8 1 1 1 2 1 1 1 3

Crystal Palace 14 12 14 12 16 13 12 13 11
Everton 5 5 4 5 5 6 5 5 5
Fulham 15 17 17 17 17 16 17 17 19

Hull 13 14 13 14 13 14 14 14 16
Liverpool 3 3 3 3 3 3 3 3 2
Man City 2 2 2 2 1 2 2 2 1

Man United 4 7 7 7 8 7 7 7 7
Newcastle 10 11 10 11 11 10 11 11 10
Norwich 18 15 19 15 18 18 15 15 18

Southampton 7 8 8 8 7 8 8 8 8
Stoke 11 9 9 9 9 9 9 9 9

Sunderland 20 18 20 18 19 17 18 18 14
Swansea 9 10 11 10 10 12 10 10 12

Tottenham 6 6 6 6 6 4 6 6 6
West Brom 16 19 15 19 12 15 19 19 17
West Ham 12 13 12 13 14 11 13 12 13

Nr. upsets Q(u) 66 44 44 44 52 48 44 46 54
Corr w. GT 0.69 0.87 0.80 0.87 0.75 0.84 0.87 0.86 1.00

TABLE 2
English Premier League Standings 2013-2014, based on the input matrix Cnw (which counts the number of net wins between a pair of teams). GT

denotes the final official ranking at the end of the season.

The bottom row shows the correlation of the result obtained
by each algorithm with the ground truth ranking 12.

12. We do not believe that correlation with the official standings is a
good measure of success, simply because they are based on different
rules, i.e., on accumulation of points for each win, tie, or loss. One can
think of the four different types of pre-processing criteria as different
input data sets of pairwise comparisons, and the goal is to propose a
solution that best agrees with the input data, whatever that is.
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