
A Better Algorithm for Random k-SAT

Amin Coja-Oghlan�

University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, UK
acoghlan@inf.ed.ac.uk

Abstract. Let Φ be a uniformly distributed random k-SAT formula
with n variables and m clauses. We present a polynomial time algorithm
that finds a satisfying assignment of Φ with high probability for con-
straint densities m/n < (1− εk)2k ln(k)/k, where εk → 0. Previously no
efficient algorithm was known to find solutions with non-vanishing proba-
bility beyond m/n = 1.817·2k/k [Frieze and Suen, Journal of Algorithms
1996].

1 Introduction

The k-SAT problem is well known to be NP-hard for k ≥ 3. But this merely
indicates that no algorithm can solve all possible inputs efficiently. Therefore,
a significant amount of research has been conducted on heuristics for k-SAT,
i.e., algorithms that solve ‘most’ inputs efficiently (where the meaning of ‘most’
depends on the scope of the respective paper). While some heuristics for k-SAT
are very sophisticated, virtually all of them are based on at least one of the
following basic paradigms.

Pure literal rule. If a variable x occurs only positively (resp. negatively) in
the formula, set it to true (resp. false). Simplify the formula by substituting
the newly assigned value for x and repeat.

Unit clause propagation. If the formula contains a clause that consists of
only a single literal (‘unit clause’), then set the underlying variable so as to
satisfy this clause. Simplify and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While
there is an unsatisfied clause, pick one at random, pick a variable occurring
in the chosen clause randomly, and flip its value.

Backtracking. Assign a variable x, simplify the formula, and recurse. If the
recursion fails to find a satisfying assignment, assign x the opposite value
and recurse.

Heuristics based on these paradigms can be surprisingly successful (given that
k-SAT is NP-hard) on certain types of inputs. However, it remains remarkably
simple to generate formulas that elude all known algorithms/heuristics. Indeed,
the simplest conceivable type of random instances does the trick: let Φ denote a

� Supported by EPSRC grant EP/G039070/1.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 292–303, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Better Algorithm for Random k-SAT 293

k-SAT formula over the variable set V = {x1, . . . , xn} that is obtained by choos-
ing m clauses uniformly at random and independently from the set of all (2n)k

possible clauses. Then for a large regime of densities m/n satisfying assignments
are known to exist due to non-constructive arguments, but no efficient algorithm
is known to find one.

To be precise, keeping k fixed and letting m = �rn� for a fixed r > 0, we say
that Φ has some property with high probability (‘w.h.p.’) if the probability of
the property tends to one as n → ∞. Via the (non-algorithmic) second moment
method [3,4] it can be shown that Φ has a satisfying assignment w.h.p. if m/n <
(1 − εk)2k ln 2. Here εk tends to 0 for large k. On the other hand, a simple first
moment argument shows that no satisfying assignment exists w.h.p. if m/n >
2k ln 2. In summary, the threshold for Φ being satisfiable is asymptotically 2k ln 2.

Yet for densities m/n beyond c·2k/k, where c is a constant (independent of k),
no algorithm has been known to find a satisfying assignment in polynomial time
with a probability that does not tend to zero. Using merely the Unit Clause rule
yields a linear time algorithm that succeeds up to m/n = c ·2k/k with c ∼ e/2 ≈
1.36. The best previous rigorous result, based on a somewhat more involved
algorithm, achieved c ∼ 1.817 (cf. Section 2). Conversely, many algorithms,
including Pure Literal, Unit Clause, and DPLL, are known to fail or exhibit an
exponential running time beyond c · 2k/k. There is experimental evidence that
the same is true of Walksat. In effect, devising an algorithm to solve random
formulas w.h.p. for densities m/n up to 2kω(k)/k for any (howsoever slowly
growing) ω(k) → ∞ has been a prominent open problem [3,4,8,15].

Theorem 1. There are a sequence εk → 0 and a polynomial time algorithm
Fix such that Fix applied to a random formula Φ with m/n ≤ (1−εk)2k ln(k)/k
outputs a satisfying assignment w.h.p.

Fix is a deterministic local search algorithm and runs in time O(n + m)3/2. The
recent paper [2] provides evidence that the density m/n = 2k ln(k)/k may be a
barrier for (at least) a large class of algorithms to find satisfying assignments in
polynomial time. Hence, Theorem 1 may mark, at least up to the precise second
order term hidden in the εks, the end of the algorithmic road for random k-SAT. To
explain this, we need to discuss a concept that originates from statistical physics.

A digression: replica symmetry breaking. For the last decade random k-SAT has
been studied by statistical physicists via sophisticated, insightful, but mathe-
matically non-rigorous techniques from the theory of spin glasses. Their results
suggest that below the threshold density 2k ln 2 for the existence of satisfying as-
signments various other phase transitions take place that affect the performance
of algorithms.

To us the most important one is the dynamic replica symmetry breaking
(dRSB) transition. Let S(Φ) ⊂ {0, 1}V be the set of all satisfying assignments
of the random formula Φ. Very roughly speaking, according to the dRSB hy-
pothesis there is a density rRSB such that for m/n < rRSB the correlations that
shape the set S(Φ) are purely local, whereas for densities m/n > rRSB long
range correlations occur. Furthermore, rRSB ∼ 2k ln(k)/k.

294 A. Coja-Oghlan

Confirming and elaborating on this hypothesis, we recently established a good
part of the dRSB phenomenon rigorously [2]. In particular, we proved that there
is a sequence εk → 0 such that for m/n > (1 + εk)2k ln(k)/k the values that
the solutions σ ∈ S(Φ) assign to the variables are mutually heavily correlated in
the following sense. Let us call a variable x frozen in a satisfying assignment σ
if any satisfying assignment τ such that σ(x) �= τ(x) is at Hamming distance at
least Ω(n) from σ. Then for m/n > (1 + εk)2k ln(k)/k in all but a o(1)-fraction
of all solutions σ ∈ S(Φ) all but an εk-fraction of the variables are frozen w.h.p.,
where εk → 0.

This suggests that on random formulas with density m/n > (1 + εk)2k ln(k)/k
local search algorithms (such as Pure Literal, Unit Clause, or Walksat) are un-
likely to succeed. For think of the factor graph, whose vertices are the variables
and the clauses, and where a variable is adjacent to all clauses in which it occurs.
Then a local search algorithm assigns a value to a variable x on the basis of the
values of variables that have distance O(1) from x in the factor graph. But in the
random formula Φ with m/n > (1+εk)2k ln(k)/k assigning one variable x is likely
to impose constraints on the values that can be assigned to variables at distance
Ω(ln n) from x in the factor graph (due to the occurrence of frozen variables).

The above discussion applies to ‘large’ values of k (say, k ≥ 8). In fact, non-
rigorous arguments as well as experimental evidence [5] suggest that the picture
is quite different and rather more complicated for ‘small’ k (say, k = 3, 4, 5). In
this case the various phenomena that occur at (or very near) the point 2k ln(k)/k
for k ≥ 8 appear to happen at vastly different points in the satisfiable regime,
and in a different order. To keep matters as simple as possible we focus on ‘large’
k in this paper.

Notation. We let V = Vn = {x1, . . . , xn} be a set of propositional variables. For a
set Z ⊂ V let Z̄ = {x̄ : x ∈ Z} contain the corresponding set of negative literals.
If l is a literal, then |l| signifies the underlying variable. Let [μ] = {1, 2, . . . , μ}
for integers μ.

Let Ωk(n, m) be the set of all k-SAT formulas over V . Throughout the paper
we denote a random element of Ωk(n, m) by Φ; unless otherwise specified, Φ is
uniformly distributed. We use the letter Φ to denote specific (i.e., non-random)
elements of Ωk(n, m). Further, Φi denotes the ith clause of Φ, and Φij is the jth
literal of Φi.

2 Related Work

Quite a few papers deal with efficient algorithms for random k-SAT, contribut-
ing either rigorous results, non-rigorous evidence based on physics arguments,
or experimental evidence. Table 1 summarizes the part of this work that is most
relevant to us. The best rigorous result prior to this work is due to Frieze and
Suen [11], who proved that ‘SCB’ succeeds for densities ηk2k/k, where ηk in-
creases to 1.817 as k → ∞. SCB combines the shortest clause rule, which is a
generalization of Unit Clause, with (very limited) backtracking.

A Better Algorithm for Random k-SAT 295

Table 1. Algorithms for random k-SAT

Algorithm Density m/n < · · · Success probability Ref., year

Pure Literal o(1) as k → ∞ w.h.p. [14], 2006

Walksat, rigorous 1
6
· 2k/k2 w.h.p. [9], 2009

Walksat, non-rigorous 2k/k w.h.p. [16], 2003

Unit Clause 1
2

(
k−1
k−2

)k−2

· 2k

k
Ω(1) [7], 1990

Shortest Clause 1
8

(
k−1
k−3

)k−3
k−1
k−2

· 2k

k
w.h.p. [8], 1992

SCB ∼ 1.817 · 2k

k
w.h.p. [11], 1996

BP+decimation e · 2k/k w.h.p. [15], 2007
(non-rigorous)

Montanari, Ricci-Tersenghi, and Semerjian [15] provide evidence that Belief
Propagation guided decimation may succeed up to density e · 2k/k. This algo-
rithm is based on a very different paradigm than the others mentioned in Table 1.
The basic idea is to run a message passing algorithm (‘Belief Propagation’) to
compute for each variable the marginal probability that this variable takes the
value true/false in a uniformly random satisfying assignment. Then, the decima-
tion step selects a variable, assigns it the value true/false with the corresponding
marginal probability, and simplifies the formula. Ideally, repeating this proce-
dure will lead to a satisfying assignment, provided that Belief Propagation keeps
yielding the correct marginals. Proving (or disproving) this remains a major
open problem.

Survey Propagation is a modification of Belief Propagation that aims to
approximate the marginal probabilities induced by a particular (non-uniform)
probability distribution on the set of satisfying assignments [6]. It can be com-
bined with a decimation procedure as well to obtain a heuristic for finding a
satisfying assignment. Analyzing Survey Propagation guided decimation is a
further outstanding open problem.

The discussion so far concerns the case of general k. In addition, a large num-
ber of papers deal with the case k = 3. Flaxman [10] provides a survey. Currently
the best rigorously analyzed algorithm for random 3-SAT is known to succeed
up to m/n = 3.52 [12,13]. This is also the best known lower bound on the 3-SAT
threshold. Non-rigorous arguments suggest the threshold to be ≈ 4.267 [6]. As
mentioned earlier, there is non-rigorous evidence that the structure of the set of
all satisfying assignment evolves differently in random 3-SAT than in random k-
SAT for ‘large’ k. This may be why experiments suggest that Survey Propagation
guided decimation for 3-SAT succeeds for densities m/n up to 4.2 [6].

3 The Algorithm Fix

In this section we present the algorithm Fix. To establish Theorem 1 we will
prove the following: for any 0 < ε < 0.1 there is k0 = k0(ε) > 3 such that for all
k ≥ k0 the algorithm Fix outputs a satisfying assignment w.h.p. when applied

296 A. Coja-Oghlan

to Φ with m = n ·(1−ε)2kk−1 ln k�. Thus, we assume that k exceeds some large
enough number k0 depending on ε only. In addition, we assume throughout that
n > n0 for some large n0 = n0(ε, k). We set ω = (1 − ε) ln k and k1 = �k/2�.

When applied to a k-SAT instance Φ the algorithm basically tries to ‘fix’ the
all-true assignment by setting ‘a few’ variables Z ⊂ V to false so as to satisfy all
clauses. Obviously, the set Z will have to contain one variable from each clause
consisting of negative literals only. The key issue is to pick ‘the right’ variables.
To this end, the algorithm goes over the all-negative clauses in the natural order.
If the present all-negative clause Φi does not contain a variable from Z yet, Fix
(tries to) identify a ‘safe’ variable in Φi, which it then adds to Z. Here ‘safe’
means that setting the variable to false does not create new unsatisfied clauses.
More precisely, we say that a clause Φi is Z-unique if Φi contains exactly one
positive literal from V \Z and no negative literal whose underlying variable is in
Z. Moreover, x ∈ V \ Z is Z-unsafe if it occurs positively in a Z-unique clause,
and Z-safe if this is not the case. Then in order to fix an all-negative clause Φi

we prefer Z-safe variables.
To implement this idea, Fix proceeds in three phases. Phase 1 performs the

operation described in the previous paragraph: try to identify a Z-safe variable
in each all-negative clause. Of course, not every all-negative clause will contain
one. In this case Fix just picks the variable in position k1. This entails that the
assignment constructed in Phase 1 will not satisfy all clauses. However, we will
prove that the number of unsatisfied clauses is very small, and the purpose of
Phases 2 and 3 is to deal with them. Before we come to this, let us describe
Phase 1 precisely.

Algorithm 2. Fix(Φ)
Input: A k-SAT formula Φ. Output: Either a satisfying assignment or ‘fail’.

1a. Let Z = ∅.
1b. For i = 1, . . . , m do

1c. If Φi is all-negative and contains no variable from Z

1d. If there is 1 ≤ j < k1 such that |Φij | is Z-safe, then pick the least such
j and add |Φij | to Z.

1e. Otherwise add |Φi k1 | to Z.

Let σZ be the assignment that sets all variables in V \ Z to true and all
variables in Z to false.

Proposition 3. At the end of the first phase of Fix(Φ) the following statements
are true w.h.p.

1. We have |Z| ≤ 4nk−1 ln ω.
2. At most (1 + ε/3)ωn clauses are Z-unique.
3. At most exp(−kε/8)n clauses are unsatisfied under σZ .

Since the probability that a random clause is all-negative is 2−k, under the all-
true assignment (1+o(1))2−km ∼ ωn/k clauses are unsatisfied w.h.p. Hence, the
outcome σZ of Phase 1 is already a lot better than the all-true assignment w.h.p.

A Better Algorithm for Random k-SAT 297

Phase 2 deals with the clauses that are unsatisfied under σZ . The general
plan is similar to Phase 1: we (try to) identify a set Z ′ of ‘safe’ variables that
can be used to satisfy the σZ -unsatisfied clauses without ‘endangering’ further
clauses. More precisely, we say that a clause Φi is (Z, Z ′)-endangered if there is
no 1 ≤ j ≤ k such that the literal Φij is true under σZ and |Φij | ∈ V \ Z ′. In
words, Φi is (Z, Z ′)-endangered if it is unsatisfied under σZ or it relies on one
of the variables in Z ′ to be satisfied. Call Φi (Z, Z ′)-secure if it is not (Z, Z ′)-
endangered. Phase 2 will construct a set Z ′ such that for all 1 ≤ i ≤ m either Φi

is (Z, Z ′)-secure, or there are at least three indices 1 ≤ j ≤ k such that |Φij | ∈ Z ′.
To achieve this, we say that a variable x is (Z, Z ′)-unsafe if x ∈ Z ∪Z ′ or there
are indices (i, l) ∈ [m] × [k] such that the following two conditions hold:

a. For all j �= l we have Φij ∈ Z ∪ Z ′ ∪ V \ Z.
b. Φil = x.

(In words, x occurs positively in Φi, and all other literals of Φi are either positive
but in Z ∪ Z ′ or negative but not in Z.) Otherwise we call x (Z, Z ′)-safe. Fix
greedily tries to add as few (Z, Z ′)-unsafe variables to Z ′ as possible.

2a. Let Q consist of all i ∈ [m] such that Φi is unsatisfied under σZ . Let Z′ = ∅.
2b. While Q �= ∅
2c. Let i = min Q.

2d. If there are indices k1 < j1 < j2 < j3 ≤ k − 5 such that |Φijl | is (Z, Z′)-safe
for l = 1, 2, 3,

pick the lexicographically first such sequence and add the variables
|Φij1 |, |Φij2 |, |Φij3 | to Z′.

2e. else

let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence such
that |Φijl | �∈ Z′ and add |Φijl | to Z′ (l = 1, 2, 3).

2f. Let Q be the set of all (Z, Z′)-endangered clauses that contain less than 3
variables from Z′.

Note that the While-loop gets executed at most n/3 times, because Z ′ gains
three new elements in each iteration. Actually the final set Z ′ is fairly small
w.h.p.:

Proposition 4. The set Z ′ obtained in Phase 2 of Fix(Φ) has size |Z ′| ≤ nk−12

w.h.p.

After completing Phase 2, Fix is going to set the variables in V \ (Z ∪ Z ′)
to true and the variables in Z \ Z ′ to false. This will satisfy all (Z, Z ′)-secure
clauses. In order to satisfy the (Z, Z ′)-endangered clauses as well, Fix needs
to set the variables in Z ′ appropriately. Since each (Z, Z ′)-endangered clause
contains three variables from Z ′, this is essentially equivalent to solving a 3-SAT
problem, in which Z ′ is the set of variables. As we shall see, w.h.p. the resulting
formula is sufficiently sparse for the following ‘matching heuristic’ to succeed:
set up a bipartite graph G(Φ, Z, Z ′) whose vertex set consists of the (Z, Z ′)-
endangered clauses and the set Z ′. Each (Z, Z ′)-endangered clause is adjacent
to the variables from Z ′ that occur in it. If M is a matching in G(Φ, Z, Z ′) that

298 A. Coja-Oghlan

covers all (Z, Z ′)-endangered clauses, we construct an assignment σZ,Z′,M as
follows: for each variable x ∈ V we define

σZ,Z′,M (x) =

⎧
⎨
⎩

false if x ∈ Z \ Z ′

false if {Φi, x} ∈ M for some i and x occurs negatively in Φi,
true otherwise.

To be precise, Phase 3 proceeds as follows.

3. If G(Φ, Z, Z′) has a matching that covers all (Z, Z′)-endangered clauses, then com-
pute an (arbitrary) such matching M and output σZ,Z′,M . If not, output ‘fail’.

Proposition 5. W.h.p. G(Φ, Z, Z ′) has a matching that covers all (Z, Z ′)-en-
dangered clauses.

Proof of Theorem 1. Fix is clearly a deterministic algorithm with running time
O(n + m)3/2 (if we use the Hopcroft-Karp algorithm to compute the matching
in Phase 3). It remains to show that Fix(Φ) outputs a satisfying assignment
w.h.p. By Proposition 5 Phase 3 will find a matching M that covers all (Z, Z ′)-
endangered clauses w.h.p., and thus the output will be the assignment σ =
σZ,Z′,M w.h.p. Assume that this is the case. Then σ sets all variables in Z \ Z ′

to false and all variables in V \ (Z ∪ Z ′) to true, thereby satisfying all (Z, Z ′)-
secure clauses. Furthermore, for each (Z, Z ′)-endangered clause Φi there is an
edge {Φi, |Φij |} in M . If Φij is negative, then σ(|Φij |) = false, and if if Φij is
positive, then σ(Φij) = true. In either case σ satisfies Φi. ��
In the next section we sketch the analysis of Phase 1, i.e., the proof of Propo-
sition 3. The analysis of Phase 2 (Proposition 4) is based on very similar ideas
(details omitted). Furthermore, the proof of Proposition 5 combines ideas from
the analysis of Phase 1 with a first moment argument.

4 Analyzing Phase 1

In this section we let 0 < ε < 0.1 and assume that k ≥ k0 for a sufficiently large
k0 = k0(ε). Moreover, we assume that m = (1 − ε)2kk−1 ln k� and that n > n0

for some large enough n0 = n0(ε, k). Let ω = (1 − ε) ln k and k1 = �k/2�.
It is worthwhile giving a brief intuitive explanation as to why Phase 1 ‘works’.

Namely, let us just consider the first all-negative clause Φi of the random input
formula. Assume that i = 1. If we condition on Φ1 being all-negative, the k-
tuple of variables (|Φ1j |)j∈[k] is uniformly distributed. Furthermore, at this point
Z = ∅. Hence, a variable x is Z-safe unless it occurs as the unique positive literal
in some clause. For any x the expected number of such clauses is k2−km/n ∼ ω
(for in each clause there are k slots where to put x, the probability that x
occurs in any slot is 1/n, and the probability that x occurs positively and all
other literals are negative is 2−k). In fact, for each variable the number of such
clauses is asymptotically Poisson. Consequently, the probability that x is Z-safe
is exp(−ω). Returning to the clause Φ1, we conclude that the expected number of

A Better Algorithm for Random k-SAT 299

indices 1 ≤ j ≤ k1 such that |Φ1j | is Z-safe is k1 exp(−ω). Since ω = (1− ε) ln k,
we have k1 exp(−ω) ≥ kε/3. Indeed, the number of indices 1 ≤ j ≤ k1 so that
|Φ1j | is Z-safe is binomially distributed, and hence the probability that there is
no Z-safe |Φ1j | is at most exp(−kε/3). Thinking of k ‘large’ (in terms of ε), we
see that there is a good chance that Φ1 can be satisfied by setting some variable
to false without creating any new unsatisfied clauses. Of course, this argument
only applies to the first all-negative clause, and the challenge lies in dealing
with the stochastic dependencies that arise in the course of the execution of the
algorithm.

To this end, we need to investigate how the set Z computed in Phase 1 evolves
over time. Thus, we will analyze the execution of Phase 1 as a stochastic process,
in which Z corresponds to a sequence (Zt)t≥0 of sets. The time parameter t is the
number of all-negative clauses for which either Step 1d or 1e has been executed.
We will represent the execution of Phase 1 on input Φ by a sequence of (random)
maps

πt : [m] × [k] → {−1, 1} ∪ V ∪ V̄ .

The map πt is meant to capture the information that has determined the first t
steps of the process. If πt(i, j) = 1 (resp. πt(i, j) = −1), then Fix has only taken
into account that Φij is a positive (negative) literal, but not what the underlying
variable is. If πt(i, j) ∈ V ∪ V̄ , then Fix has revealed the actual literal Φij .

Let us define the sequence πt(i, j) precisely. Let Z0 = ∅. Moreover, let U0 be
the set of all i such that there is exactly one j such that Φij is positive. Further,
define π0(i, j) for (i, j) ∈ [m] × [k] as follows. If i ∈ U0 and Φij is positive, then
let π0(i, j) = Φij . Otherwise, let π0(i, j) be 1 if Φij is a positive literal and −1
if Φij is a negative literal. In addition, for x ∈ V let U0(x) be the number of
i ∈ U0 such that x occurs positively in Φi. For t ≥ 1 we define πt as follows.

PI1. If there is no index i ∈ [m] such that Φi is all-negative but contains no
variable from Zt−1, the process stops. Otherwise let φt be the smallest
such index.

PI2. If there is 1 ≤ j < k1 such that Ut−1(|Φφtj |) = 0, then choose the smallest
such index; otherwise let j = k1. Let zt = Φφtj and Zt = Zt−1 ∪ {zt}.

PI3. Let Ut be the set of all i ∈ [m] such that Φi is Zt-unique. For x ∈ V let
Ut(x) be the number of indices i ∈ Ut such that x occurs positively in Φi.

PI4. For any (i, j) ∈ [m] × [k] let

πt(i, j) =

⎧
⎨
⎩

Φij if (i = φt ∧ j ≤ k1) ∨ |Φij | ∈ Zt

∨(i ∈ Ut ∧ π0(i, j) = 1),
πt−1(i, j) otherwise.

Let T be the total number of iterations before the process stops and define
πt = πT , Zt = ZT , Ut = UT , Ut(x) = UT (x), φt = zt = 0 for all t > T .

The process mirrors Phase 1 of Fix as follows. Step PI1 selects the least
index φt such that clause Φφt is all-negative but contains none of the variables
Zt−1 that have been selected to be set to false so far. In terms of Fix, this
corresponds to fast-forwarding to the next execution of Steps 1d–e. Since Ut−1(x)

300 A. Coja-Oghlan

is the number of Zt−1-unique clauses in which variable x occurs positively, PI2
applies the same rule as steps 1d–e of Fix to select the new element zt to be
included in the set Zt. Step PI3 then ‘updates’ the numbers Ut(x). Finally, step
PI4 sets up the map πt to represent the information that has guided the process
so far: we reveal the first k1 literals of the current clause Φφt , all occurrences of
the variable zt, and all positive literals of Zt-unique clauses.

The process PI1–PI4 can be applied to any concrete k-SAT formula Φ (rather
than the random Φ). It then yields a sequence πt [Φ] of maps, variables zt [Φ], etc.
For each integer t ≥ 0 we define an equivalence relation ≡t on the set Ωk(n, m)
of k-SAT formulas by letting Φ ≡t Ψ iff πs [Φ] = πs [Ψ] for all 0 ≤ s ≤ t. Let
Ft be the σ-algebra generated by the equivalence classes of ≡t. Then (loosely
speaking) a random variable X(Φ) is Ft-measurable if its value is determined
by time t.

Fact 6. For any t ≥ 0 the random map πt, the random variables φt+1, zt, the
random sets Ut and Zt, and the random variables Ut(x) for x ∈ V are Ft-
measurable.

The first t steps of the process PI1–PI4 are only driven by the information
encoded in the map πt, Hence, for (i, j) such that πt(i, j) = ±1 the process has
only taken into accout the sign of the literal Φij and the fact that |Φij | �∈ Zt.
But the process has been oblivious to the actual underlying variable |Φij |. This
implies the following.

Proposition 7. Let Et be the set of all pairs (i, j) such that πt(i, j) ∈ {−1, 1}.
The conditional joint distribution of the variables (|Φij |)(i,j)∈Et

given Ft is uni-
form over (V \ Zt)Et . That is, for any map f : Et → V \ Zt we have

P [∀(i, j) ∈ Et : |Φij | = f(i, j)|Ft] = |V \ Zt|−|Et|.

In each step of the process PI1–PI4 one variable zt is added to Zt. There is a
chance that this variable occurs in several other all-negative clauses. Hence, the
stopping time T should be smaller than the total number of all-negative clauses.
To prove this, we need the following lemma.

Lemma 8. W.h.p. the following is true for all 1 ≤ t ≤ min{T, n}: the num-
ber of indices i ∈ [m] such that πt(i, j) = −1 for all 1 ≤ j ≤ k is at most
2nω exp(−kt/n)/k.

Proof. The proof illustrates the use of Proposition 7. Let Ntij = 1 if πt(i, j) = −1
and t ≤ T , and let Ntij = 0 otherwise. Let t ≤ n, μ = �ln2 n�, and let I ⊂ [m]
be a set of size μ. Let Yi = 1 if t ≤ T and πt(i, j) = −1 for all j ∈ [k], and let
Yi = 0 otherwise. Set J = [t]×I × [k] . If Yi = 1 for all i ∈ I, then N0ij = 1 for
all (i, j) ∈ I × [k] and Nsij = 1 for all (s, i, j) ∈ J . We will prove below that

E

⎡
⎣ ∏

(i,j)∈I×[k]

N0ij ·
∏

(t,i,j)∈J
Ntij

⎤
⎦ ≤ 2−k|I|(1 − 1/n)|J |, whence (1)

E

[∏
i∈I

Yi

]
≤ λμ, where λ = 2−k exp(−kt/n). (2)

A Better Algorithm for Random k-SAT 301

Let Y =
∑

i∈[m] Yi. Then (2) entails that E [Y μ] ≤ (1 + o(1))(λm)μ. Therefore,
Markov’s inequality yields P [Y > 2nω exp(−kt/n) ≥ 1.9λm] ≤ 1.9−μ, and thus
the assertion follows from the union bound.

To complete the proof, we need to establish (1). Let

N0 =
∏

(i,j)∈I×[k]

N0ij , Js = {(i, j) : (s, i, j) ∈ J }, and Ns =
∏

(i,j)∈Js

Nsij .

Since the signs of the literals Φij are mutually independent, we have E [N0] =
2−k|I|. Furthermore, we will prove below that E [Ns|Fs−1] ≤ (1−1/n)|Js|. Since
Ns is Fs-measurable for any s, we obtain

E

[
t∏

s=0

Ns

]
= E

[
E

[Nt

∣∣Ft−1

] ·
t−1∏
s=0

Ns

]
≤ (1 − 1/n)|Jt| · E

[
t−1∏
s=0

Ns

]
.

Proceeding inductively, we obtain (1).
Finally, we bound E [Ns|Fs−1] for s ≥ 1. If T < s or πs−1(i, j) �= −1 for some

(i, j) ∈ Js, then Ns = Nsij = 0. Hence, suppose that T ≥ s and πs−1(i, j) = −1
for all (i, j) ∈ Js. Then at time s PI2 selects some variable zs ∈ V \ Zs−1, and
Nsij = 1 only if |Φij | �= zs. As πt−1(i, j) = −1 for all (i, j) ∈ Js, given Fs−1 the
variables (|Φij |)(i,j)∈Js

are independently uniformly distributed over V \Zs−1 by
Proposition 7. Therefore, for each (i, j) ∈ Js we have |Φij | = zs with probability
at least 1/n. Hence, E [Ns|Fs−1] ≤ (1 − 1/n)|Js|. ��
Corollary 9. W.h.p. we have T < 4nk−1 ln ω.

Proof. Let t0 = 2nk−1 ln ω and let It be the number of indices i such that
πt(i, j) = −1 for all 1 ≤ j ≤ k. By PI2 It ≤ It−1−1 for all t ≤ T . Consequently,
if T ≥ 2t0, then 0 ≤ IT ≤ It0 − t0, and thus It0 ≥ t0. But Lemma 8 entails that
It0 < t0 w.h.p. ��
Let θ = 4nk−1 ln ω�. The next goal is to estimate the number of Zt-unique
clauses, i.e., the size of the set Ut. Using a similar (if slightly more involved)
argument as in the proof of Lemma 8, we can infer the following.

Lemma 10. W.h.p. max0≤t≤T |Ut| ≤ (1 + ε/3)ωn.

Let us think of the variables x ∈ V \Zt as bins and of the clauses Φi with i ∈ Ut as
balls. If we place each ball i into the (unique) bin x such that x occurs positively
in Φi, then by Lemma 10 and Corollary 9 for t ≤ T the average number of balls
in a bin is ≤ (1+ε/3)ωn/|V \Zt| ≤ (1−0.6ε) lnk w.h.p. Hence, if the balls were
thrown uniformly at random into the bins, we would expect

|V \ Zt| exp(−|Ut|/|V \ Zt|) ≥ (n − t)k0.6ε−1 ≥ nkε/2−1

bins to be empty (i.e., Ut(x) = 0). The next corollary shows that this is accurate.

Corollary 11. Let Qt = |{x ∈ V \ Zt : Ut(x) = 0}|. W.h.p. we have

min
t≤T

Qt ≥ nkε/2−1.

302 A. Coja-Oghlan

Now that we know that w.h.p. there are ‘a lot’ of variables x ∈ V \ Zt−1 such
that Ut(x) = 0, we expect that it is quite likely for clause Φφt to contain one.
More precisely, we have the following.

Corollary 12. Let Bt = 1 if minj<k1 Ut−1(|Φφtj |) > 0, Qt−1 ≥ nkε/2−1, |Ut| ≤
(1 + ε/3)ωn, and T ≥ t. Let Bt = 0 otherwise. Then E [Bt|Ft−1] ≤ exp(−kε/6)
for all 1 ≤ t ≤ θ.

Proof of Proposition 3. The definition of the process PI1–PI4 mirrors the exe-
cution of the algorithm, i.e., the set Z obtained after Steps 1a–1d of Fix equals
the set ZT . Therefore, the first assertion is a consequence of Corollary 9 and
the fact that |Zt| = t for all t ≤ T . Furthermore, the second assertion follows
directly from Lemma 10.

To prove the third claim, we need to bound the number of clauses that are
unsatisfied under σZT . It is not difficult to see that the construction PI1–PI4
ensures that for any i ∈ [m] such that Φi is unsatisfied under σZT one of the
following is true.

a. There is t ≤ T such that i ∈ Ut−1 and zt occurs positively in Φi.
b. There are 1 ≤ j1 < j2 ≤ k such that Φij1 = Φij2 .

Let X be the number of indices i ∈ [m] such that a. occurs. We will show that

X ≤ n exp(−kε/7) w.h.p. (3)

Since the number of ‘degenerate’ i ∈ [m] for which b. occurs is O(ln n) w.h.p.
(by a simple first moment argument), (3) implies the third assertion.

To establish (3), let Bt be as in Corollary 12 and set Dt = Bt · Ut−1(zt).
Invoking Corollary 11 and Lemma 10, it is easy to show that X ≤ ∑

1≤t≤θ Dt

w.h.p. Further, the random variable Dt is Ft-measurable and Dt = 0 for all
t > θ. Let

D̄t = E [Dt|Ft−1] and Mt =
t∑

s=1

Ds − D̄s.

Then M1, . . . ,Mθ is a martingale with E [Mθ] = 0. Azuma’s inequality entails
that Mθ = o(n) w.h.p. Hence, w.h.p.

∑
1≤t≤θ Dt = o(n) +

∑
1≤t≤θ D̄t.

We claim that D̄t ≤ 2ω exp(−kε/6) for all 1 ≤ t ≤ θ. For by Corollary 12 we
have E [Bt|Ft−1] ≤ exp(−kε/6). Moreover, given Ft−1 we have πt−1(φt, k1) = −1,
whence zt is uniformly distributed over V \Zt−1 (by Proposition 7). Since Bt = 1
implies |Ut−1| ≤ (1 + ε/3)ωn, the conditional expectation of Ut−1(zt) is

≤ |Ut−1|/|V \ Zt−1| ≤ (1 + ε/3)ωn/(n− t) ≤ 2ω.

Combining these estimates, we obtain that w.h.p.
∑

1≤t≤θ

Dt ≤ 2ω exp(−kε/2/3)θ + o(n) ≤ n exp(−kε/7).

Thus, (3) follows from the fact that X ≤ ∑
1≤t≤θ Dt w.h.p. ��

A Better Algorithm for Random k-SAT 303

References

1. Achlioptas, D., Beame, P., Molloy, M.: Exponential bounds for DPLL below the
satisfiability threshold. In: Proc. 15th SODA, pp. 139–140 (2004)

2. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In:
Proc. 49th FOCS, pp. 793–802 (2008)

3. Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp
threshold. SIAM Journal on Computing 36, 740–762 (2006)

4. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2−O(k). Journal
of the AMS 17, 947–973 (2004)

5. Ardelius, J., Zdeborova, L.: Exhaustive enumeration unveils clustering and freezing
in random 3-SAT. Phys. Rev. E 78, 040101(R) (2008)

6. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms 27, 201–226 (2005)

7. Chao, M.-T., Franco, J.: Probabilistic analysis of a generalization of the unit-clause
literal selection heuristic for the k-satisfiability problem. Inform. Sci. 51, 289–314
(1990)

8. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proc. 33th
FOCS, pp. 620–627 (1992)

9. Coja-Oghlan, A., Feige, U., Frieze, A., Krivelevich, M., Vilenchik, D.: On smoothed
k-CNF formulas and the Walksat algorithm. In: Proc. 20th SODA, pp. 451–460
(2009)

10. Flaxman, A.: Algorithms for random 3-SAT. Encyclopedia of Algorithms (2008)
11. Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of

k-SAT. Journal of Algorithms 20, 312–355 (1996)
12. Hajiaghayi, M., Sorkin, G.: The satisfiability threshold of random 3-SAT is at least

3.52. IBM Research Report RC22942 (2003)
13. Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfia-

bility algorithm. Random Structures and Algorithms 28, 444–480 (2006)
14. Kim, J.H.: Poisson cloning model for random graph (preprint, 2006)
15. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction

problems through Belief Propagation-guided decimation. In: Proc. 45th Allerton
(2007)

16. Semerjian, G., Monasson, R.: A study of pure random walk on random satisfiability
problems with “Physical” methods. In: Giunchiglia, E., Tacchella, A. (eds.) SAT
2003. LNCS, vol. 2919, pp. 120–134. Springer, Heidelberg (2004)

	A Better Algorithm for Random k-SAT
	Introduction
	Related Work
	The Algorithm Fix
	Analyzing Phase 1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

