
Dynamic Generation of Discrete Random Variates�

Yossi Matias�

Bell Laboratories

��� Mountain Avenue

Murray Hill� N�J� �����

Je�rey Scott Vitter�

Department of Computer Science

Duke University

Durham� N�C� ����	
����

Wen�Chun Ni�

Department of Computer Science

Brown University

Providence� R�I� �����
����

May ��� ����

�This paper is a combination of two independent works ���� and ���� and collaborative work� A summa�

rized version appears in �����
�Support was provided in part by National Science Foundation grants CCR	
������ and CCR	����
�
�

Part of the work was done while the author was at University of Maryland� Institute for Advanced Computer

Studies� and at Tel Aviv University� Email� matias�research�bell�labs�com�
�Support was provided in part by a National Science Foundation Presidential Young Investigator Award

with matching funds from IBM� by NSF research grants CCR	����
�� and CCR	�������� and by Army

Research O�ce grants DAAL�
	��	G	��
� and DAAH��	��	�	���
� Part of the work was done while

the author was at Brown University� Part of the revisions were done while the author was visiting Lucent

Technologies� Bell Laboratories� Murray Hill� NJ� Email� jsv�cs�duke�edu�
�Support was provided in part by the O�ce of Naval Research and the Defense Advanced Research

Projects Agency under contract N�����	��	J	����� ARPA order
���� Email� wcn�cs�brown�edu�

Abstract

We present and analyze e�cient new algorithms for generating a random variate distributed ac�

cording to a dynamically changing set of weights� The base version of each algorithm generates the

discrete random variate in O
log�N� expected time and updates a weight in O
�log
�N � expected

time in the worst case� We then show how to reduce the update time to O
log�N� amortized

expected time� The algorithms are simple� practical� and easy to implement� We show how to

apply our techniques to a recent lookup table technique in order to obtain expected constant time

in the worst case for generation and update� with no assumptions about the input being made� We

give parallel algorithms for parallel generation and update having optimal processor�time product�

We also apply our techniques to obtain an e�cient dynamic algorithm for maintaining ��heaps

of elements� each query is required to return an element whose value is within an � relative fac�

tor of the maximal element value� For � � 	�polylog
n�� each query� insertion� or deletion takes

O
log log logn� time�

Keywords� random number generator� random variate� alias� bucket� rejection� dynamic update�

approximate priority queue�

	

 Introduction

The generation of random variates based on arbitrary �nite� discrete distributions has long been a

key component of many computer simulations �	������ �	��� ����� Given the elements 	� �� � � � � N and

their respective weights w�� w�� � � � � wN � �� we want to design an algorithm to generate a random

variate that has value j with probability wj�
P

��i�N wi� In the static case� when the N weights

are �xed� we can utilize the clever optimal algorithm by Walker� commonly called the alias method �

the time to generate a random variate is constant and the preprocessing cost is O
N� �	��� �����

In this paper we consider the problem in the important and more challenging dynamic case� in

which the weights of the elements can be updated dynamically� The relevant measures of e�ciency

are the generation time and the update time� We can rerun Walker�s algorithm each time a weight

is updated� but the update cost O
N� is too high� Up until recently� the best known algorithm for

the dynamic problem was the binary tree�based scheme developed by Wong and Easton ����� whose

generation and update times are both O
logN�� Each generation requires one call to a random

number generator that provides a uniform random integer in the range ���
P

��i�N wi��

Recently� Rajasekaran and Ross ��	� and Greenberg and Vitter �	�� developed di�erent algo�

rithms for the dynamic case that do generation and update in constant expected time for various

restricted classes of updates� After the submission of the conference version of this paper �	���

the authors learned of an interesting recent algorithm due to Hagerup� Mehlhorn� and Munro �	��

that does generation and update in constant expected time and linear space when the weights are

nonnegative integers and the maximum weight is bounded by a polynomial in N �

In this paper� we introduce practical and e�cient randomized algorithms for the general dynamic

case that do generation in O
log�N� expected time and update in O
�log
�N� time�� Our algorithms�

presented in Sections � and �� are especially easy to implement� fast in practice� and recommended

for general use� In Section � we show how to use a more sophisticated approach to achieve O
log�N�

amortized expected update time� that is� if the total number of updates is t � �� the expected

total time to do all the updates is O
t log�N�� The ultimate theoretical improvement is constant

expected time per dynamic operation� which we show how to achieve in Section �� We use the

lookup table technique of �	�� to adapt our algorithms and obtain expected constant time for

generation and update� without the primary restrictions required in �	��� An application of our

method to the problem of constant�time prediction for prefetching appears in �	��� Dictionary issues

for e�cient space utilization are considered in Section �� In all our algorithms� no assumption is

being made about the distributions of the input values and operations� The expectations are over

the randomness in the algorithm itself� The implementations of the base algorithms are simple and

practical with small constant factors implicit in the big�oh terms�

We also consider the parallel version of the problem� where a batch of operations are given and

we would like to process them in parallel� In Section � we give parallel algorithms with optimal

processors�time product� In particular� a batch of m generations or updates can be processed

�We use the standard terminology that log� n is the smallest integer k such that k applications of the binary

logarithm function applied to n� namely� lg�lg�� � � lg�n���� is at most �� For N � ������ we have log�N � 	
 for

N � ������� we have log� N � ��

� � FIRST ALGORITHM

on an m�processor crcw pram with optimal speedup� with respect to the algorithms mentioned

above� The parallel update algorithm requires the
non�standard� Fetch�Add pram �		�� it can

be processed with a slow�down of t � "
logm� log logm�� with high probability� on a
standard�

crcw pram with m�t processors� yielding optimal speedup�

We conclude in Section � with an e�cient dynamic method for an �approximate� version of the

well�known priority queue data type� Priority queues support the operations of insert� delete� and

�ndmax� a �ndmax query returns an element having the maximum value of all the stored elements�

The operations can be implemented in O
logn� time on the standard heap
see� e�g�� �	���� in

O
logn� log logn� time when some of the time bounds are allowed to be amortized ���� in O

p
logn �

amortized expected time when randomization is allowed ���� and in O
log log u� time when the

element values are integers in the universe �	� u� ����� The ��heap we construct supports the more

relaxed query ���ndmax� in which the element returned must have a value within an � relative

factor of the maximum element value� For � � 	�polylog
n�� each query� insertion� or deletion

takes O
log log log n� time� for � � n�polylog�n�� each query� insertion� or deletion takes O
log logn�

time�

	 First Algorithm

In this section� we describe the basic idea of our �rst algorithm� the analysis and more subtle

aspects of it will be discussed in later sections� For completeness� we have included in Section B

of the Appendix background information on three important techniques used by our algorithm�

namely� the rejection method� table doubling� and dynamic hashing�

Let the initial total weight of the N elements be W �
P

��i�N wi� We assume the RAM model

of computation in which the standard arithmetic operations on integers of value O
W �� including

the discrete
truncated binary� logarithmic function and generating random integers� take constant

time�

Let us regard each of the N elements as a �zeroth�level� element� The idea of our algorithm

is to partition the zeroth�level elements by weight into ranges R
���
j � for j � lgW � such that R

���
j

is associated with the range ��j��� �j�� Note that j may be negative� since we do not restrict the

elements� weights to be integers� There may be more than one element falling into a range R
���
j �

and their total weight� written as weight
R
���
j � is in the range ��j

���� �j
�

�� for some j� � j� we can

treat the range R
���
j as a new ��rst�level� element with weight weight
R

���
j � and put it into the

second�level range R
���
j� � de�ned as ��j

���� �j
�

�� For those ranges containing only one element� we

put them into a level table T� rather than into a second�level range�

Given a list of ranges R
���
j�
� R

���
j�
� � � � � R

���
jn

each containing at least two elements� we repeat

the same partition process using R
���
j�
� R

���
j�
� � � � � R

���
jn

as second�level elements� More generally� by

applying the same process to each range R
���
j containing at least two elements� for j � lgW and

� � 	� we can build level�
�
 	� range R
�����
k � de�ned as ��k��� �k� for some k � lgW � The process

repeats until there is no range containing at least two elements�

The process is best viewed as a level�by�level� bottom�up construction of a forest of trees� The

�

m

Level

Level

l+1

l

Figure 	� A range with degree m on level � and its parent range on level �
 	�

elements 	� �� � � � � N � are implicit leaves in the trees being built and can be regarded as comprising

the implicit level �� Any range
node� on some level � � 	 is called internal in the collection of

trees� More importantly� there is no distinction between the elements and the nonempty ranges

from this viewpoint� they are all treated as nodes in a tree or elements in a set� For � � 	� if

R
���
i has at least two children and its total weight is in the range R

�����
j � then R

���
i is a child of

range R
�����
j � conversely� R

�����
j is the parent of R

���
i � A range with only one child is said to be a

root range and has no parent� We de�ne the degree of range R
���
j to be the number of children it

has� the degree of a root range is 	� The relation between a range and its parent range is illustrated

by Figure 	�

Figure � gives a view of the trees built� Each level table T�� for � � 	� contains the nonempty

root ranges created during the �th iteration of the tree�building process� Each nonempty root

range R
���
j is stored in a dynamic hash table� indexed by j and �� so that the total space to store

all the root ranges is linear� When we insert the level�� roots into T�� we also compute the total

weight of these roots� denoted weight
T��� In general� we have a forest of trees whose roots may

be on di�erent levels� We denote by L the maximum level number of a root� The data structure

consists of levels 	� �� � � � � L�

The remaining question is how to store the children for a given internal range R
���
j � Within

each range R
���
j � for � � 	� we keep a dynamic table of buckets� Insertions and deletions of ranges

are handled by a worst�case adaptation of the well�known amortized table�doubling technique
see�

e�g�� Appendix B���� Each bucket contains one range R
�����
i such that weight
R

�����
i � � ��j��� �j��

� � FIRST ALGORITHM

1

2

3

4

5

Figure �� A forest of trees built� with L � � levels� The horizontal dashed lines mark the levels�

Root nodes are denoted by solid circles�

1

2

3

4

5

 wi

Figure �� Generating a random variate from level � � ��

The total weight weight
R
���
j � for � � 	 is de�ned to be

P
i weight
R

�����
i �� where the summation is

taken over the children R
�����
i of R

���
j �

The generation of a random variate according to the current distribution of weights w�� w��

� � � � wN is done as follows�

Step �� We choose some T�� where 	 � � � L� based on the weights of the level tables�

Step �� We choose one root range R
���
j on level � according to the weight distribution of the

ranges�

Step �� Within R
���
j � we use the rejection method
see� e�g�� Appendix B�	� to choose one of its

children according to their weight distribution� We repeat the process until we reach level 	�

where the chosen child is one of the N elements� We output the chosen element�

Steps � and � are explained pictorially in Figure ��

In Step 	 we choose one of the levels T� by generating a uniform random variate U � ��� 	� and

setting � to the minimum positive integer such that U �
P

��k�� weight
Tk�� The value of � is found

��
 Updating the Weights�Basic Approach �

by a sequential search using values � � 	� �� � � � � In Step � we choose a nonempty root range R
���
j

on level � by processing the nonempty root ranges R
���
j�
� R

���
j�
� � � � R

���
js

in sequence� where j� � j� �

� � � � js until we �nd the minimum value 	 � j � s such that U �P
��k�j weight
R

���
k �� The �rst

largest� index j� can be computed easily� for example� as blg roots
T��c
	� where roots
T�� �P
�ji �

with the summation taken over all nonempty root ranges ji on level �� The successive indices j��

j�� � � �can be obtained by iteratively subtracting �j� and taking the discrete log function again�

Alternatively� it su�ces to step down iteratively from j� until we �nd the values ji for which R
���
ji

is nonempty� Step � consists of descending level by level from R
���
j using the rejection method at

each step until an element at the bottom level is reached� which we output�

Theorem � The expected cost of the above algorithm for generating a random variate distributed

according to the current weights is O
log�N�� where N is the number of elements�

Proof � The cost of Step 	 is O
L�� since there are L levels to choose from� We show in Theorem �

that L � log�N
 	 in the worst case
although it is typically even smaller�� In Step �� generating

one root range R
���
j on level � may cost time linear in the number of nonempty root ranges on

level �� Fortunately� the expected time is constant� since the range weights decrease exponentially�

Let R
���
j�
� R

���
j�
� � � � � R

���
jn

be the set of nonempty root ranges on level �� where j� � j� � � � � � js�

The expected cost of Step �

X
��k�n

k � weight
R���
jk
��weight
T���

This expression can be simpli�ed using the facts that �jk�� � weight
R
���
jk
� � �jk and weight
T�� �P

��k�n �
jk�� � �j��� to yield the following upper bound on the expected Step � cost�

X
��k�n

k � �jk�j��� �
X

��k�n

k��k � ��

In Step � we walk down the levels from R
���
j in constant expected time per level� using the rejection

method� using a total of O
log�N� expected time�

The dynamic scheme of Wong and Easton ���� uses O
logN� time per generation� but it re�

quires only one call to a random number generator that outputs a uniform number in the range

���
P

��i�N wi�� Our algorithm uses an average of at most about �L calls to a uniform random

number generator� primarily due to Step �� It may be possible to use a faster uniform random

number generator or to �share� random numbers� The random numbers needed in Step � do not

usually require the precision of those needed for Wong and Easton�s algorithm� especially whenP
��i�N wi is large� the maximum precision needed is proportional to the degree of the current

node in the tree� which is at most N but is typically very small�

��� Updating the Weights�Basic Approach

The weights of any element may be modi�ed in an on�line manner� as follows� When the weight wi

in range R
���
j is changed to wi
!� we must move the corresponding element i to another range R

���
k

� � FIRST ALGORITHM

a�

v v

w
w’

b�

Figure �� Two views of the update operation�
a� Moving one bucket from one range to another�

b� The tree view� changing the parent of v from w to w��

if wi
 ! �� ��j��� �j�� in which case we say that element i �changes its parent�� A change of an

individual weight may thus cause the total weights of two level�	 ranges R
���
j and R

���
k to change�

which may cause further parent changes higher in the trees�

Coordinating the updates from the bottom up is achieved by associating to each level a queue�

as we do in the preprocessing stage� Once the weight of a range has been changed on level �� we

re�ect the required update to level �
	 by putting the value changed and the range into the queue�

We can view the e�ect by looking at Figure �� In Figure �b� the node v changes its parent node

from w to w� because of weight increase�
We can use the table doubling technique of Section B��

to organize the buckets in each range�� The paths upward from w and w� should be updated

accordingly�

The number of ranges a�ected on level � is no more than ��� since each update along an upward

path in the data structure spawns at most one new upward update path� In Theorem �� we show

that there are at most log�N
 	 levels� and hence the total number of ranges a�ected is bounded

by �log
�N��� By using dynamic hashing� we are able to insert new ranges and delete old ranges in

constant expected time� This means that each update takes O
�log
�N� expected time�

Theorem � Updating the weight of any element can be performed in O
�log
�N � expected time in

the worst case�

��� Properties of the Data Structure �

m

2 + 12
m−1

+ 1
m −2 2

Figure �� A typical tree built�

��� Properties of the Data Structure

In this section we derive some important invariants that are crucial to the analysis of the size and

height of the data structure�

Lemma � If the degree of range R
���
j is m � �� then weight
R

���
j � is in the range ��j

���� �j
�

�� where

lgm� 	 � j� � j � lgm
 	�

Proof � Since every bucket in R
���
j represents an element with weight in the range ��j��� �j�� we have

weight
R
���
j � � �m�j��� m�j�� If weight
R

���
j � falls into R

�����
j� � then �j

��� � weight
R
���
j � � m�j and

m�j�� � weight
R���
j � � �j

�

� The result follows by taking logarithms�

Lemma � For � � �� if the degree of range R
���
j is m � �� then one of its children has degree at

least �m��
 	� moreover� the number of R
���
j �s grandchildren is at least �m
m� 	�

Proof � Figure � demonstrates the relations between a degree�m node and its children and grand�

children� Let the children of R
���
j be R

�����
j�

� R
�����
j�

� � � � � R
�����
jm

� for j � j� � j� � � � � � jm� By

Lemma 	 and the fact that ji � j�i� it follows thatR�����
ji

has at least �j�ji��
	 � �i��
	 children�

The total number of grandchildren of R
���
j is thus at least

P
��i�m

�
�i��
 	

�
� �m
m� 	�

Lemma � For � � k � �� if the degree of range R
���
j is m � �� then the di�erence in range numbers

between the smallest�numbered range on level ��k and the smallest�numbered range on level ��k
	

among the descendants of R
���
j is at least

�
��
�
�
�m �

k

 	�
	�

which is ��
m

 	 and ��

�m

 	 for k � � and k � �� respectively� In addition� the number of

descendants of R
���
j on level �� k is at least ����

Proof � By induction on k� We shall demonstrate that the inductive hypothesis is true for either

k � � or k � �� Let us assume that the inductive hypothesis does not hold for the smaller value

k � �� Range R
���
j �s m children at level �� 	 occupy contiguous ranges R

�����
j�

� R
�����
j�

� � � � � R
�����
jm

�

where ji � j � i� otherwise� jm � j �m� 	 and the number of R
�����
jm

�s children on level �� � is at

least �m
 	� by Lemma 	� in which case the inductive hypothesis holds for k � ��

� � FIRST ALGORITHM

Now suppose that the inductive hypothesis does not hold for the value k � �� There are exactly

�m
m� 	 grandchildren of range R
���
j on level �� � occupying contiguous ranges R

�����
j�� � R

�����
j�� �

� � � � R
�����
j�m��m � otherwise by Lemma 	� the number of children of the smallest�numbered range on

level �� � is at least ��
m

 	� in which case the base case holds for k � ��

The number of ranges on level � � � can be minimized if the ranges on level �� � are ordered

by the numbers of their parents on level � � 	� so we assume that such an ordering occurs� The

�i��
 	 children of R
�����
j�i on level � � � occupy contiguous ranges R

�����
j��i���i

� � � � � R
�����
j��i�i

� By

Lemma 	� the number of R
�����
j�i �s grandchildren on level � � � is at least

�
��

i����
 	
�

 � � �

�
��

i��
 	
�
� ��

i � ��
i����
 �i��
 	�

Hence� the number of R
���
j �s great grandchildren on level �� � is at least

X
��i�m

�
��

i � ��
i����
 �i��
 	

�
� ��

m

	

�

X
��i�m

��
i

 �m
m� ��
��

The number of the smallest�numbered range on level �� � among the great grandchildren of R
���
j

is thus at most

j � ���
�
��

m

	

�

X
��i�m

��
i

 �m
m� �

�
� j �m� �m � ��

m � 	

�

X
��i�m

��
i

�

The resulting di�erence between the smallest range number on level � � � and the smallest range

number j �m� �m on level �� � among the descendants of R
���
j is at least

��
m

	

�

X
��i�m

��
i � ��

m

 ��

The inductive hypothesis therefore holds for the base case k � ��

For the inductive step� for k � �� suppose that the di�erence in range numbers between the

smallest�numbered range on level �� k and the smallest�numbered range on level �� k
 	 among

the descendants of R
���
j is at least

�
��
�
�
�m �

k

 	�

By Lemma 	� the smallest�numbered range on level �� k has at least

�
��
�
�
�m �

k��

 	

children� and the inductive hypothesis holds for k
 	�

Each range in the topmost level must be a root and can have degree 	� but all its descendants

must have degree � �� Let us choose � to be one less than the topmost level number� the degree

of each non�root range in level � is therefore � �� Since there are only N elements in the data

structure� Lemma � implies the following bound on the height of the data structure�

Theorem � The maximum number of levels L in the trees is � log�N
	� where N is the number

of elements�

�

The space requirement of the algorithm depends on the number of ranges actually put into the

table�

Lemma � The total number of nonempty ranges is O
N�� where N is the number of elements�

and the total storage space used by the data structure is O
N��

Proof � Each tree constructed by the algorithm is height�balanced� With the exception of root

ranges� every range in the trees has degree at least �� This means that the total number of nodes in

each height�balanced tree is of the same order as the number of the leaves of the tree� which is N �

The dynamic hash tables used to store the ranges for each level occupy O
N� space collectively�

The universal hashing schemes of Section B�� can be bypassed in favor of simple table lookup

at the cost of a super�linear bound on storage space�

� Second Algorithm

As in the algorithm of Section �� we regard the N elements as �zeroth�level� elements� and we

use a similar partitioning� The zeroth�level elements are partitioned by weight into ranges Rj�

such that Rj is associated with the range ��j��� �j�� we again denote by weight
Rj� the total

weight of elements in the range Rj � We can treat the range Rj as a new ��rst�level� element

with weight weight
Rj� � ��j
���� �j

�

�� for some j� � j� However� before putting the ranges Rj

into the next�level ranges we partition them into intervals� We consider the logN sized integer

intervals It � �tdlogNe� � � � �
t
 	�dlogNe � 	�� for each integer t� and we assign each range Rj to

the interval Itj that contains j� We continue constructing the data structure within each interval

separately� For each range Rj in Itj � we have

�tjdlogNe � weight
Rj� � N � ��tj���dlogNe���

We normalize the weights of all ranges in interval It by dividing their value by �tdlogNe� that

is� the weight of each range Rj is normalized to be weight �
Rj� � weight
Rj� � ��tjdlogNe� We now

have

	 � weight �
Rj� � N � �dlogNe�� � N��

Each element therefore belongs to some range Rj which belongs to an interval Itj and has

a normalized weight weight �
Rj�� The total weight of ranges in an interval It is denoted as the

interval�s weight weight
It�� The weight of each non�empty interval is kept as part of the data

structure�

For each interval It that contains at least two ranges� we can treat its ranges Rj� where

j � �tdlogNe� � � � �
t
 	�dlogNe � 	�� as new ��rst�level� elements with weights weight �
Rj� and

construct the data structure recursively� In the recursive data structure� the ranges of elements in

the �th level are the elements of the
�
 	�st level�

Lemma � The recursive data structure is of size O
N� and of depth at most log�N �

	� � SECOND ALGORITHM

Proof � Each element in the
�
 	�st recursive level contains
as a range� at least two elements

from the �th recursive level� Therefore� the number of elements in the
�
 	�st recursive level is

at most half the number of elements in the �th level� which implies a total of at most �N elements

at all levels of the data structure� The size of the data structure is clearly linear in the number of

elements it contains at all levels�

The number of ranges within an interval in the �rst level is at most logN � By induction� the

number of elements in an interval in the �th level is at most log���N � therefore� each interval in the

log�N�th level contains at most one element�

The data structure is stored in a similar manner as the data structure of the �rst algorithm�

using dynamic hashing�

We will use only a portion of the data structure for the generation procedure� More speci��

cally� in the recursive data structure at most four intervals are used� these intervals are called the

�signi�cant� intervals� Let Ir be the rightmost non�empty interval� and Ir�� and Ir�� be the two

smaller
possibly empty� intervals next to it� The four signi�cant intervals include Ir� Ir��� and

Ir��� the exact de�nition will be given later� The signi�cant intervals are so named because of the

following property�

Lemma � The total weight of the non�signi�cant intervals is at most a 	�N fraction of the total

weight of the signi�cant intervals�

Proof � Consider a range Rj that belongs to a non�signi�cant interval Itj � We have tj � r � � and

thus j � rdlogNe � �dlogNe� The total weight of the non�signi�cant intervals is therefore at most

N � ��r���dlogNe � 	

N
� �rdlogNe

while the total weight of the signi�cant intervals is at least �rdlogNe�

The generation of a random variate according to the current distribution of weights w�� w��

� � � � wN is done as follows�

Step �� We choose between the signi�cant intervals and the non�signi�cant intervals with the

appropriate probabilities�

Step �� If the non�signi�cant intervals are chosen� then we generate a random variate from the

elements in the non�signi�cant intervals by applying any linear time algorithm
e�g�� ������

and halt�

Step �� If the signi�cant intervals are chosen� we choose one of them� say� It� with the appropriate

probability� and proceed to the next step�

Step �� Within It� we choose a range Rj according to the weight distribution of the ranges by

applying the generation procedure recursively�

Step �� Within Rj � we use the rejection method
see� e�g�� Appendix B�	� to choose one of the

elements according to their weight distribution�

		

As mentioned above� the generation algorithm uses only the recursive data structures that are

constructed on the signi�cant intervals� The dynamic nature of the problem may cause a non�empty

interval to become empty at some future point� thereby causing a non�signi�cant interval to become

signi�cant� The complete construction guarantees that when this happens� the appropriate data

structure is available�

Step 	 takes constant expected time� given the total weight of the signi�cant intervals� By

Lemma �� the contribution of Step � to the expected generation time is O
	�� We will show in

Lemma � that the signi�cant intervals can be found in Step � in constant expected time� The

rejection method in Step � takes constant expected time� Let G
N� be the expected generation

time� Steps 	�� and � take constant expected time and Step � takes G
logN� expected time� Thus�

G
N� can be expressed by the relation G
N� � G
logN�
 O
	�� implying G
N� � O
log�N��

There is one issue still to be resolved� namely� to justify the assumption that the signi�cant

intervals can be found in Step � in constant expected time� It turns out that keeping the sum of

weights is su�cient to �nd the rightmost non�empty interval Ir and thereby the signi�cant interval�

This summation trick is also used in Step � of Section � and in Section � and is based on the

following observation�

Lemma � We have

rdlogNe � log
X

��i�N

wi �
r
 ��dlogNe�

Proof � Let j� be the maximum j so that Rj is a non�empty range� It is easy to verify that

�j� � P
��i�N wi � N � �j� � By taking logarithms we have j� � dlogP��i�N wie � j�
 dlogNe�

Since rdlogNe � j� �
r
 	�dlogNe � 	 the result follows�

Let t� � blogP��i�N wi�dlogNec� By Lemma � either t� � r or t� � r
 	� We de�ne

the signi�cant intervals as SI � fIt � t � t�
 	� t�� t� � 	� t� � �g� The intervals Ir� Ir�� and

Ir�� are in SI � as required�
Note that the forth signi�cant interval may be either Ir�� or Ir����

The summation trick lets us �nd SI in constant expected time� by only keeping track of the sumP
��i�N wi� and by computing t��

On�line update of the weight of any element is similar to what is done in the �rst algorithm�

An updated weight wi of an element in range Rj requires the updates of weight
Rj�� weight
�
Rj��

weight
Itj�� and the total weight
P

��i�N wi� If an update moves an element from one range to a

di�erent range� then it implies two updates in the next recursive level� implying a total of O
�log
�N�

updates� This gives us the following theorem�

Theorem � The expected cost for generating a random variate according to the current weights is

O
log�N�� where N is the number of elements� Updating the weight of any element can be done in

O
�log
�N� expected time in the worst case�

� Modi�cation to Achieve O�log�N � Update Time

In this section we show how to modify our basic algorithms in order to achieve the desired O
log�N�

expected update time when amortized over the sequence of updates� That is� if there are t updates�

	� � MODIFICATION TO ACHIEVE O
LOG�N� UPDATE TIME

for any t � �� the expected time to complete all t updates is O
t log�N�� In contrast� the expected

update time for the basic algorithms derived in Sections � and � is "
�log
�N � in the worst case�

The approach can be generalized to reduce the amortized expected update time from O
log�N� to

O
	� at the expense of increasing the expected generation time from O
log�N� to O
alog
�N�� for

some constant a � ��

For simplicity� we restrict our attention to the �rst algorithm� from Section �� the techniques

can be adapted equally well to the second algorithm� of Section ��

The key to achieving this better amortized bound is by considering the following parameters�

	� We introduce �tolerance� into the ranges to allow �lazy updating�� We choose a tolerance

factor � � b � 	� For convenience� we choose b so that ��b
��b is power of ��
Previously we used

b � ��� We relax the range of weights that can be stored in the range R
���
j associated with the

interval ��j��� �j� by tolerating weights in the interval �
	� b��j���
�
b��j���� We associate

range R
���
j with the tolerated interval �
	� b��j���
�
 b��j���� Note that the resulting set of

tolerated ranges overlap� However� when an element with weight w is inserted into a level��

range� it is inserted into the unique range R
���
j where �j�� � w � �j � The element must

change its weight by at least the tolerance b�j�� of range R
���
j before it is moved to another

range�

�� We modify the criteria de�ning roots and require that each non�root node have degree at least

d � �
�

��b
��b�

��c� where c is a nonnegative integer to be speci�ed later�
Previously we used

d � ��� The number d is the minimally allowable number of buckets in a non�root range� from

the graph�theoretic viewpoint� it is the minimal degree of the non�root nodes in the trees we

build�

��� Properties of the Modi�ed Data Structure

In this more general setting� we must modify Lemmas 	�� and Theorem � in order to take into

account the tolerance b and degree bound d� In this section we derive new versions� which we call

Lemmas 	���� and Theorem ��� Using a larger value of d slightly decreases the worst�case bound

on the number L of levels from that of Theorem �� For example� if we take b � ��� and c � 	�

Theorem �� shows that the maximum height L of the trees is � log�N � 	�

For conciseness� we refer to the expanded ranges in the modi�ed algorithm simply as ranges� they

have tolerance factor � � b � 	 and all ranges except the roots have degree at least d � �
�

��b
��b�

��c�

for nonnegative integer c� With these modi�cations� Lemma 	 takes the following form�

Lemma �� If the degree of range R
���
j is m � d� then weight
R

���
j � is in the range R

�����
j�

� where

lgm� lg
��b��b� � j� � j � lgm
 lg
��b��b��

Proof � Each of them children ofR
���
j has weight in the range �
	�b��j���
�
b��j���� so weight
R

���
j �

must be in the range �m
	�b��j��� m
�
b��j���� If weight
R
���
j � falls into �
	�b��j����
�
b��j

�����

then
	� b��j
��� � weight
R

���
j � � m
�
 b��j�� and m
	� b��j�� � weight
R

���
j � �
�
 b��j

����

The inequality follows by taking logarithms�

��� Amortized Analysis of the Modi	ed Algorithm 	�

We can use Lemma 	� to get the following modi�cation of Lemma ��

Lemma �� For � � �� if the degree of range R
���
j is m � d� then one of its children has degree at

least �m���c� moreover� the number of R
���
j �s grandchildren is at least �m�c � �c
m�

Proof � Let the children of a range R
���
j be R

�����
j�

� R
�����
j�

� � � � � R
�����
jm

� for j � j� � j� � � � � � jm�

By Lemma 	�� we have j� � j � lg
��b��b� � c� ji � j � i
 	 � lg
��b��b� � c� and the number of

children of R
�����
ji

is at least maxfd� �i���c
 	g� Thus� the total number of grandchildren of R
���
j

is �P
��i�m
�

i���c
 	� � �m�c � �c
m�

Lemma �� For � � k � �� if the degree of range R
���
j is m � d� then the di�erence in range

numbers between the smallest�numbered range on level � � k and the smallest�numbered range on

level �� k
 	 among the descendants of R
���
j is at least

�
��
�
�
�m �

k

 lg

�
�
 b

	� b

�

 	�

In addition� the number of descendants of R
���
j on level �� k is at least

�
��
�
�
�m
�
k

�

Proof � The full proof is similar to that of Lemma �� except that the minimum di�erence of range

numbers between a parent node and its largest�numbered child is c
 lg
��b��b� rather than 	� This

enlarges the di�erences between the smallest�numbered ranges on adjacent levels and introduces

the term lg
��b��b�� The details are suppressed for brevity�

Lemma �� can be strengthened substantially� but it su�ces for our purposes� As before� we

choose � to be one below the topmost level number� the degree of each non�root range in level �

is � d� Let us suppose that d � 	� � ��
�

� Since there are only N elements in the data structure�

Lemma �� implies the following improved bound on the height of the data structure
cf� Theorem ���

Theorem �� The maximum number of levels L of the trees is � log�N�	� where N is the number

of elements�

��� Amortized Analysis of the Modi�ed Algorithm

When a node w is made a child of range R
���
j represented by node x� node w must later change

its weight by at least x�s tolerance b�j�� in order for it to �change its parent�� This tolerance

prevents too many insertions and deletions from occurring� When w changes its parent� x loses

weight and w�s new parent gains weight� two paths of nodes need to be updated� the one upward

from node x and the one upward from w�s new parent� All the nodes on the two paths should

revise their weights to re�ect the changes�

To facilitate the amortized analysis� we use an accounting method ����� where we charge C�

units of cost to a level�� node w that changes its parent� Since we only change the weights of one

	� � MODIFICATION TO ACHIEVE O
LOG�N� UPDATE TIME

of the N bottom�level elements on level �� and in the worst case the element will change its parent�

we charge C� to each dynamic weight update operation� The credits accumulated at each node

must pay for the cost of a parent change for that node� when it occurs� plus the cost of processing

the resulting two upward update paths�

Suppose that node w changes its parent from x� to y� during an update� The update path

starting from w is de�ned to be w � x� � x� � � � � � xm� where xm is a root� and we call this

path the old ancestor path of w� The new ancestor path of w is w � y� � y� � � � � � yn� where

yn is a root�

Let us consider for reasons of brevity only the case in which w is decremented in weight by !

and changes its parent from x� to y�� and we restrict ourselves to the analysis of the old ancestor

path w � x� � x� � � � � � xm� Node w is on level �� and node xj is on level �
 j� Let node xj

correspond to the range R
���
ij��� for 	 � j � m�

Suppose that the nodes x�� x�� � � � xj�� do not change their parents or become roots as a

result of the parent change of w� The change of weight of node xj due to the update of w is

weight
w� �
�
 b��i� � Let us de�ne �
xj � xj��� � weight
xj� �
	 � b��ij to be the di�erence

between the weight of xj and the lower boundary of the range R
���
ij���� represented by xj�� at the

time when xj was last inserted into one of xj���s buckets
or� equivalently� when xj changed its

parent to xj���� We have �
xj � xj��� � b�ij�� � By Lemma 	�� we have �ij�� � �i�

��b��b��
c�j � which

gives us �
xj � xj��� � b

��b��b��
c�j�i� � Therefore� the ratio fj between xj �s weight change and the

tolerated weight change �
xj � xj��� satis�es

fj �
�
 b��i�

b
�

��b��b��

c
�j
�i�

�

�
�

b

 	

���
�
 b

	� b

�
�c
��j

�

Since the weight change of xj is at most fj of the total weight change needed to cause a parent

change� it su�ces to deposit fjC��j credits on node xj during the processing of w�s parent change�

Next let us consider the case in which nodes x�� x�� � � � xj�� do not change their parents� but

nodes x�� x�� � � � xk become roots� for k � j � 	� as a result of the parent change of w� Nodes

x�� x�� � � � xk do not need credits deposited on them� since they no longer have parents� and the

credits can be deferred instead to xk��� � � � � By similar reasoning to above� the ratio fj between

xj �s weight change and the tolerated weight change �
xj � xj��� satis�es

fj �
�
�

b

 	

���
�
 b

	� b

�
�c
��j�k

�

and it su�ces to deposit fjC��j credits on node xj during the processing of w�s parent change�

The number of credits deposited on node xj is at least C��j times the fraction of the tolerance

represented by xj �s weight change� Thus� at the future time when the weight of node xj is out of

the range of node xj�� and xj changes parent� there will be at least C��j credits on xj to pay for

the required updating�

The other cases to consider� such as consideration of the new update path and the case in which

w is incremented in weight� are analogous to the ones discussed above and are left to the reader�

This gives us the following lemma�

��� Tradeo�s between Update and Generation 	�

Lemma � The total number of credits allocated to a level�� node between two times it changes

parent is at least C��

By the above reasoning� we get the following recurrence on the number of credits C� needed to

perform a parent change of a node on level ��

C� � �
L� �
 	�
 �
X

��j�L��

�
�
b

 	

�
�

��b��b��

c
�jC��j

� �
L� �
 	�

�
�
�
b

 	

�

��b��b��
c � 	

C���
��

where CL � 	� The �rst term on the right�hand side corresponds to the minimum cost needed to

process the two update paths of length � L � �
 	 caused by the parent change� The jth term

in the summation represents the credits needed for the two level�
�
 j� nodes on the old ancestor

path and the new ancestor path� If �
�
b

 	� �
��b��b��

c � 	� the solution to
�� is C� � O
L� ���

Lemma � If c � lg

�
b

 	�
	� b��� then C� � O
L� ��� where L � log�N � 	 is the number of

levels in the trees�

We can choose the constants b and c
and thus d� so that the conditions of Theorem �� and

Lemma � are satis�ed� For example� we can choose b � ��� and d � ��� The number of credits we

need to allocate for the update of an element�s weight is thus C� � O
L� � O
log�N�� This gives

us our main result�

Theorem � The amortized expected cost for each update operation is O
log�N�� where N is the

number of input elements�

With the modi�cation discussed above� the time to implement Steps 	�� for generating a random

variate increases by a multiplicative factor of 	�b
because of the e�ect on the rejection method in

Step �� and an additive factor of log d
because of the e�ect on the the weights of the roots in the

level table in Step ��� Since 	�b and d can be chosen to be to be reasonably small constants� the

resulting increase in generation time is not much� A bene�cial e�ect of the modi�cation� which we

mentioned above� is that the worst�case bound on the number of levels L decreases slightly as d

gets larger� In practice� we can probably avoid this modi�cation and keep b � � and d � �� or else

use a partially modi�ed algorithm with a larger d� but for theoretical and worst�case purposes� the

full modi�cation is needed in order to get the O
log�N� time bound for generation and update�

��� Tradeo�s between Update and Generation

We can make the expected amortized update time O
k�� k � 	� by not propagating weight infor�

mation above the kth level� We instead assign the �approximate weight� degree
R
���
j ��
�
 b��j��

to range R
���
j � We modify Step � so that whenever a rejection test fails at level � � k� we restart

the entire process with Step 	� The resulting random variate is generated with the correct dis�

tribution� but in a backtracking manner� which results in an exponential increase in generation

	� � EXPECTED CONSTANT�TIME UPDATES AND GENERATION

time� Concerning update time� there is no propagation of weight information� The only extra time

needed is for changing parents� which happens at most a constant number of times per update� in

the amortized sense� because of the use of tolerance and the minimum degree bound�

Theorem � The amortized expected cost for update can be reduced to O
k�� 	 � k � log�N � at

the cost of O
k
 alog
�N�k� expected generation time� for some constant a � ��

� Expected Constant�Time Updates and Generation

A simple lookup table technique for dynamic random variate generation was recently developed by

Hagerup� Mehlhorn� and Munro �	��� Their use of the technique provides a constant�time algorithm

for generation and update� but only when the weights are integral and bounded by a polynomial

in N � In this section we show how to use table lookup with our algorithms to do generation and

updates in constant expected time� without any restrictions on the weights� We �rst give a brief

description of the lookup table technique and then show how to incorporate it with our algorithms�

A simple approach for the basic generation problem� already used in ����� is based on maintaining

an array of pre�x sums Wi of the weights wi� that is� Wi �
P

��j�i wj � for each 	 � i � N � A

random variate is generated by �rst selecting uniformly at random a number r � ���WN �� and then

choosing i � i
r� such that Wi�� � r � Wi� It is easy to verify that if the weights are non�negative

integers then r can be restricted to be an integer
within the same range�� When both N and WN

are su�ciently small� the outcomes for all possible values of r can be precomputed and stored in a

lookup table� Subsequently� for a given r the appropriate index i � i
r� can be found in constant

time� The size of the lookup table� as well as the time it takes to precompute it� are O
WN�� If

the weights wi are integers from the range �	� m�� then WN � mN �

To handle updates� we need to precompute a lookup table for each possible set of weights�

Since each of the N weights can have m possible values� there are at most mN lookup tables to

precompute� Each lookup table is of the type described above� and in addition it stores for each

possible update a pointer to the lookup table that corresponds to the updated set of weights� There

are mN possible updates� since each update involves selecting one of the N weights and changing

its value to one of at most m possible values� Hence� the extra pointers increase the size of each

lookup table by only a constant factor� to O
mN�� The total space S required for storing all the

lookup tables is therefore

S � O
NmN����
��

and it takes O
S� time to construct them� The full details of the construction appear in �	���

We apply the table lookup technique as follows� The idea is to use only two levels of recursion

of the data structure of Section �� After two levels of recursion we are left with subproblems

consisting of O
log logN� ranges Rj � and we have 	 � weight
Rj� � m� for m �
logN�O���� The

weight of each range at this level of recursion is rounded to the next larger integer� Let us refer to

subproblems with these parameters as compact�

We precompute lookup tables for all possible compact problems� By replacing N by log logN

and substituting m �
logN�O��� in
��� we �nd that the total space for the lookup tables of the

	�

compact subproblems is S �
logN�O�log logN�� which is o
N�� Thus� storage space remains linear�

and precomputation time is o
N��

The generation of a random variate is done as in Section �� except for the following modi�ca�

tion� The data structures for the intervals It after two levels of recursion correspond to compact

subproblems and are replaced by a pointer to the appropriate lookup table� Whenever we execute

Step � after two levels of recursion� we generate the range Rj in constant time by lookup in the

table for It�
Because the range weights are rounded after two levels of recursion� we must use

the rejection method to determine whether to actually generate the range� acceptance occurs with

probability at least 	 ��� It is easy to verify that the generation takes expected constant time�

Inserts and deletes to the It data structures can be done by updating pointers in constant time�

We have proved the following theorem�

Theorem � The operations of update and generation can be done in expected constant time and

linear space� with no restriction made on the input weights�

� Dictionary Issues

In the algorithms described so far we have indicated that we use dynamic hashing for time and

space e�ciency� without elaborating� To be more speci�c� we use a dictionary data structure that

supports the operations of insert� delete� and lookup� We use dictionary algorithms that support

each of these operations in constant time� with high probability ��� ���

Because of the varying sizes of the weights� we may have to reinitialize dictionaries from time to

time when we need to insert a weight that is too large and does not belong to the universe handled

by the dictionary� We can do the reinitialization� assuming constant�time access to weights� by

maintaining a linked list of dictionaries in the order of increasing universe size U�� U�� � � � � Ut�

Insertions are always made into Ut for the current value of t� and when the universe size of Ut

is not large enough for an insertion� we set t �� t
 	 and append an empty dictionary with a

larger universe� This data structure supports constant�time operations� since lookup is not actually

required in our application� we have a direct pointer� when needed� to the location of the ith element

in the data structure� The only purpose of the dictionary is to limit the total storage required to

be linear�

The dictionary algorithms quoted above are based on polynomials over a �nite �eld Fp where

p is a prime� This imposes a problem of �nding a new prime that is su�ciently large when the

universe size increases� To get around it� we will reduce the universe size of each element to O
K��

�rst� where K is a tentative upper bound on the length of the future update sequence� and then

use a dictionary over Fp� where p � O
K�� is independent of the universe size�

To reduce the universe� it is su�cient to use a ��universal hash function ���� which will enable

injective universe reduction with high probability� We must �nd a family of classes of ��universal

hash functions that are easy to compute without a priori knowledge about the universe size�

Dietzfelbinger et al� ��� recently developed such a scheme that allows hash functions to be selected

	� � ��HEAP

in constant time� Using their scheme� we do not need to have any a priori knowledge about the

universe size� and we still obtain constant�time algorithms�

� Parallel Algorithms

In this section we parallelize the previous algorithms in order to performm updates orm generations

in parallel�

The generation procedures do not change the data structure� Therefore� m generations can be

done in parallel� if concurrent read is allowed� In the updating procedures� the e�ect of having

several updates in parallel is that several processors may want to update the weight of the same

element or range in parallel� Note that even if all parallel updates are assumed to be for distinct

elements� at higher levels in the data structure we may have concurrent updates for the same

range� In such case� we need to update the range by the sum of these updates� This can be done

in constant time on a Fetch�Add pram �		��� This model is a powerful and non�standard model

of crcw pram� However� each step of an m�processor Fetch�Add pram can be simulated on

standard crcw models
e�g�� on Arbitrary� Priority� Collision� or Tolerant� in O
logm� log logm�

time� O
m� space� and O
m� operations� with high probability ���� As in the sequential case� the

memory is managed through a dictionary algorithm� we use a parallel dictionary algorithm which

with linear space supports each instruction in O
log�m� time and O
m� operations� with high

probability �	�� 	���

Theorem � The expected cost for generatingm random variates according to the current weights is

O
log�N�� using m processors on a crcw pram� where N is the number of elements� Updating the

weight of m elements can be done in O
log�N� amortized expected time and in O
�log
�N� expected

time in the worst case� using m processors on a Fetch�Add pram� It can be done with a slow�down

of t � O
logm� log logm� on a �standard� crcw pram with m�t processors �optimal speedup��

� ��Heap

In this section we show how to apply our techniques to obtain an e�cient dynamic algorithm for

maintaining approximate priority queues� Given an arbitrary � � �� we construct an ��heap� so that

each query returns an element whose value is within an � relative factor of the current maximal

element value� In particular� if the maximal element has value x� the ��heap returns an ��maximum�

whose value is in the range �
	� ��x� x��

Our heap data structure is related to the data structure of Section �� For consistency we denote

the value of an element as its weight� The input elements are partitioned by weight into ranges Rj�

such that Rj is associated with the range �
	
 ��j���
	
 ��j�� Note that all elements in a range are

within an � relative factor from each other� The elements of each range are kept in an arbitrary data

�In this model� if two or more processors attempt to write to the same cell in a given step� then their values are

added to the value already written in the shared memory location and all pre�x sums obtained in the �virtual� serial

process are recorded�

	�

structure
e�g�� a list� an array�� To �nd an ��maximum� it su�ces to �nd the maximal non�empty

range� Then� an arbitrary element from the range can be taken to be an ��maximum�

Each range Rj is now represented by the weight w
Rj� � j� The ranges are partitioned into

integer intervals of size blogN� log
	
 ��c � O

	��� logN�� We consider the integer interval

It � �tblog���Nc� � � � �
t
 	�blog���N � 	�� for each integer t� and we assign each range Rj to the

interval Itj that contains j� The weights of each range Rj in interval It are now normalized to

�w
Rj� � j � tblog���Nc � �	� � � � � blog���Nc�� For each interval� we keep a separate priority queue

of van Emde Boas et al� ����� In addition to the data structure described above� we keep record ofP

	
 ��j � where the summation is over the non�empty ranges Rj �

To implement an update operation for an element of weight wi� we �rst compute its range Rj � by

j � dlog��� wie� The data structure for the elements of Rj is then updated� Now the interval Itj is

computed by tj � j div blog���Nc� and the update is done in the priority queue of the interval Itj �

To �nd the maximal non�empty range
and thereby an ��maximum� we �rst �nd the maximal

non�empty interval Ir� and then use the priority queue of Ir to �nd the maximal range in Ir� To

�nd the maximal interval we use a summation trick similar to the one used in Section �� based on

the following lemma�

Lemma � We have

r
�
log���N

� � log���
X

	
 ��j �
r
 ��
�
log���N

�
�

Proof � Let j� be the maximum j so thatRj is a non�empty range� It is easy to verify that
	
��j� �P

	
 ��j � N �
	
 ��j� � By taking logarithms we have j� � log���

P

	
 ��j � j�
 dlog���Ne�

Since rdlog���Ne � j� �
r
 	�dlog���Ne � 	 the result follows�

Let t� � blog���
P

	
 ��j�dlog���Nec� By Lemma � either t� � r or t� � r
	� In this analysis

we must relax our computational model to allow truncated logarithms to an arbitrary base� such

as 	
 �� to be done in constant time� this issue is discussed further in Section �� The only non�

constant time operations are therefore the operations on the priority queues on each interval� which

take O
log logblog���Nc� � O
log log
�
�
logN�� time� For � � n�polylog�n� we get O
log logn� time�

For � � 	�polylog
n� we get O
log log logn� time� Implementation in linear space can be done

using dynamic hashing� as for the generation algorithms�

� Conclusions

We have presented two practical and e�cient randomized algorithms for generating a random

variate according to a set of weights that can vary dynamically� For simplicity our algorithms are

expressed for the case in which the range of the random variate is the set S � f	� �� � � � � Ng for

some N � but a simple modi�cation allows S to be any dynamically varying set of cardinality N �

The two algorithms of Sections � and � use tree�based data structures of height O
log�N�� In

each case� the expected time to generate the random variate is O
log�N�� and the expected time to

update a weight value is O
�log
�N�� We have shown in Section � how to modify the algorithms by

�� � CONCLUSIONS

introducing the notion of tolerance and by requiring each non�root node in the trees to have degree

at least d� for some large enough d� in order to improve the expected update time from O
�log
�N�

to O
log�N�� The expectations in each algorithm are over the randomness in the algorithms� we

make no assumptions about the weight updates�

We have shown in Section � how to improve the running time to expected constant time by

using the elegant lookup table technique developed by Hagerup� Mehlhorn� and Munro �	��� The

table lookup method was used in �	�� to get an expected constant�time algorithm for the case when

the weights are integers and bounded by a polynomial of N � Our use of table lookup� however�

removes all assumptions about the weights� The variance of the running times of our algorithms

can also be made to be o
	� so as to get good tail bounds�

Our constant�time algorithm has been applied in �	�� to the universal prediction techniques

developed in �	��� the resulting prediction algorithm runs in constant expected time� In that ap�

plication� prediction is done by generating a random variate in which the weights are exponential

quantities of the form wi �
fi�
r� where fi is an integer frequency and r can be regarded as an

�xed integer� both of size O
N�� The generation and updates can be done in constant time even

when arithmetic operations must be done on �nite�precision O
logN��sized arguments� Element i�s

weight wi is approximated from above by �dr lg fie� and the �rst level of the algorithm in Section �

is applied to these approximated weights� using �nite�precision arithmetic on the exponents� The

resulting subproblems have polynomially sized weights� and the construction continues as in Sec�

tion �� Because of the initial approximation by a power of �� if element i is selected for generation�

a �nal acceptance�rejection test must be done before actually generating element i� in the test�

element i is accepted with probability
fi�
r��dr lgfie � 	��� That test can be done in constant

expected time using �nite precision by generating an exponentially distributed random variate �	���

All our algorithms are implemented in linear space� by using dynamic hashing algorithms� In

the course of this application we were led to consider the di�culty of having varying universe� and as

a result de�ned the abstract dictionary problem of supporting the operations of insert� delete� and

lookup for the case in which there is no a priori known bound on the universe size� The di�culty

is how to �nd quickly the hashing parameters needed for the dynamic hashing� We have assumed

that standard operations take constant time on arguments proportional to the maximum weight

encountered so far� In our applications for dynamically generating random variates� a simpler

version of the dictionary problem arose in Section �� in which lookup operations are not required

by the data structure� and we have an expected constant�time solution� using a new class of hash

functions of Dietzfelbinger et al� ���� the main purpose of the dictionary is merely to obtain linear

storage space�

The basic algorithms we have developed may be preferable to the modi�ed algorithms for normal

use in practice� especially if there are a priori upper and lower bounds on the weights� and if the

dynamic hashing technique is removed in favor of simple table lookup� However� it may be better

to use degree bound d � � because of its e�ect on lessening the height of the data structure�

Experimentation is needed�

In Section � we have considered the problem of generating random variates in parallel and

�	

have given parallel algorithms with optimal processor�time product� In particular� a batch of m

generations can be processed on an m�processor crcw pram in O
log�m� expected time� or in

constant expected time using the improved algorithms� A batch of m updates can be processed

in O
logm log�m� log logm� expected time and O
m� expected number of operations on a crcw

pram�

In Section � we have presented the ��heap data structure�an approximating alternative to the

classic heap�that uses O
log log logn� time per operation for � � 	�polylog
n�� Recently ����

several improvements were obtained� including the presentation of other ��data structures with

operations such as ���ndmin and ��successor� and an algorithm that maintains an ��heap in O
	�

time per operation� for � � 	�polylog
n�� and whose use of truncated logarithms is restricted to

the reasonable class of binary logarithms�

Acknowledgments

We would like to thank Kurt Mehlhorn for helpful comments and Albert Greenberg and Sanguthevar

Rajasekaran for bringing the problem to our attention and for helpful discussions�

�� � CONCLUSIONS

References

�	� P� Bratley and B� L� Fox and L� E� Schrage� A Guide to Simulation� Springer�Verlag� Second

Edition� 	����

��� J� L� Carter and M� N� Wegman� Universal Classes of Hash Functions� Journal of Computer

and System Sciences� 	�� 	���	��� April 	����

��� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms� McGraw�Hill�

New York� NY� 	����

��� M� Dietzfelbinger� J� Gil� Y� Matias� and N� Pippenger� Polynomial Hash Functions are Reli�

able� Proceedings of the �	th Annual International Colloquium on Automata� Languages� and

Programming� Springer LNCS ���� �������� 	����

��� M� Dietzfelbinger� T� Hagerup� J� Katajainen� and M� Penttonen� A Reliable Randomized

Algorithm for the Closest�Pair Problem� Manuscript� Nov� 	����

��� M� Dietzfelbinger and F� Meyer auf der Heide� A New Universal Class of Hash Functions and

Dynamic Hashing in Real Time� Proceedings of the �
th Annual International Colloquium on

Automata� Languages� and Programming� Springer LNCS ���� ��	�� July 	����

��� B� L� Fox� Simulated Annealing� Folklore� Facts� and Directions� Monte Carlo and Quasi�

Monte Carlo Methods in Scienti�c Computing �H� Niederreiter and P�J��S� Shiue� eds��� Lec�

ture Notes in Statistics� Springer�Verlag� 	����

��� M� L� Fredman and D� E� Willard� Trans�Dichotomous Algorithms for Minimum Spanning

Trees and Shortest Paths� Proceedings of the ��st Annual IEEE Symposium on Foundations

of Computer Science� �	������ 	����

��� J� Gil and Y� Matias� Fast and E�cient Simulations among CRCW PRAMs� J� of Parallel

and Distributed Computing� ��
���	���	��� 	����

�	�� J� Gil� Y� Matias� and U� Vishkin� Towards a Theory of Nearly Constant Time Parallel

Algorithms� Proceedings of the ��nd Annual IEEE Symposium on Foundations of Computer

Science� �����	�� October 	��	�

�		� A� Gottlieb� R� Grishman� C� P� Kruskal� K� P� McAulife� L� Rudolph� and M� Snir� The

NYU Ultracomputer�Designing an MIMD Shared Memory Parallel Machine� IEEE Trans�

on Comp� C����	���	��� 	����

�	�� A� Greenberg and J� S� Vitter� Constant�TimeGeneration of Dynamic Random Variates� Notes�

June 	����

�	�� T� Hagerup� K� Mehlhorn� and I� Munro� Optimal Algorithms for Generating Time�Varying

Discrete Random Variates� Proceedings of the �
th Annual International Colloquium on Au�

tomata� Languages� and Programming� Springer LNCS ���� �������� July 	����

��

�	�� D� E� Knuth� The Art of Computer Programming� Volume �� Seminumerical Algorithms� Ad�

dison Wesley� Reading� MA� 	��	�

�	�� D� E� Knuth� The Art of Computer Programming� Volume �� Sorting and Searching� Addison

Wesley� Reading� MA� 	����

�	�� P� Krishnan and J� S� Vitter� Optimal Prediction for Prefetching in the Worst Case� Proceedings

of the Fifth Annual SIAM�ACM Symposium on Discrete Algorithms� ������	� January 	����

�	�� Y� Matias� Rolling a Dice with Varying Biases� Manuscript� July 	����

�	�� Y� Matias and U� Vishkin� Converting High Probability into Nearly�Constant Time�with

Applications to Parallel Hashing� Proceedings of the ��rd Annual ACM Symposium on Theory

of Computing� �����	�� 	��	�

�	�� Y� Matias� J� Vitter� and W� C� Ni� Dynamic Generation of Discrete Random Variates�

Proceedings of the �th Annual ACM�SIAM Symposium on Discrete Algorithms� Austin� TX�

January 	���� ��	�����

���� Y� Matias� J� Vitter� and N� Young� Approximate Data Structures with Applications� Pro�

ceedings of the �th Annual ACM�SIAM Symposium on Discrete Algorithms� Alexandria� VA�

January 	���� 	���	���

��	� S� Rajasekaran and K� W� Ross� Fast Algorithms for Generating Discrete Random Variates

with Changing Distributions� ACM Transactions on Modeling and Computer Simulation�

�
	��	�	�� 	����

���� R� E� Tarjan� Amortized Computational Complexity� SIAM Journal on Algebraic and Discrete

Methods� �
��� �����	�� 	����

���� P� van Emde Boas� R� Kaas� and E� Zijlstra� Design and Implementation of an E�cient Priority

Queue� Math� Systems Theory� 	�����	��� 	����

���� J� S� Vitter and W��C� Ni� Dynamic Generation of Discrete Random Variates� Brown University

Technical Report CS������� August 	����

���� A� J� Walker� New Fast Method for Generating Discrete Random Numbers with Arbitrary

Distributions� Electronic Letters� 	�
���	���	��� 	����

���� C� K� Wong and M� C� Easton� An E�cient Method for Weighted Sampling without Replace�

ment� SIAM Journal on Computing� �
	��			�		�� 	����

�� A PREPROCESSING

Appendix

In the Appendix we give describe the preprocessing algorithm and give some background on the

rejection method� table doubling� and universal hashing� which are used by our algorithm�

A Preprocessing

In this section we give a detailed description of the preprocessing stage for the �rst algorithm�

described in Section ��� which is used if some of the N weights are initially nonzero� Algorithm

preprocess partitions the elements into ranges R
���
j � ��j��� �j�� for integer j� and calls algorithm

construct level to build the trees from the �rst level constructed� We use a list of queues to

coordinate the events like insertions and deletions� The function �nd range
i� �� is used to search

for the range R
���
i in the level�� hash table organized using universal hashing� as mentioned in

Section B��� If it does not exist� we create one and make R
���
i an empty range� Only level�� ranges

containing at least one element are created and put into a level�� hash table� We prove later

that the number of ranges created during the execution of the algorithm is O
N�� The algorithm

insert bucket
source� destination� is used to insert a range or element called source into the range

de�ned by destination� It also updates the current total weight in the range destination� Since we

use an array of buckets in each range to hold the children of the range� generation of one bucket

in the range is done by indexing into the array� The insertion and deletion of buckets can be

handled by table doubling techniques mentioned in Section B��� The use of queues Q� is to avoid

the searching of nonempty ranges on the next level�

algorithm preprocess�

input weights w�� w�� � � � � wN �

begin

Q� �� ��
for i �� 	 to N do

begin

j �� blgwic
 	� f wi � ��j��� �j� g
R
���
j �� �nd range
j� 	��

insert bucket
i� R
���
j ��

if R
���
j �� Q� then insert queue
R

���
j � Q��

end�

construct level
	�

end�

We construct a level structure recursively until there are only one�element ranges left� The

level weight weight
T�� is the summation of weights of the root ranges on level �� The method of

algorithm construct level is basically the same as that of algorithm preprocess� We use the queue Q�

passed from the previous level � to construct the new level �
	� For any range R
���
i in Q� containing

more than one element� we insert R
���
i into the appropriate range R

�����
j on level �
 	 by calling

��

insert bucket
R
���
i � R

�����
j �� which also deletes R

���
i from the level table T�� For any range in Q� that

has only one element left� we put it into the level table T�� We also maintain a variable roots
T��
whose bit positions indicate the existence of these root ranges� For example� if the range R

���
i is

a root� we just add �i to roots
T��� The procedures insert queue and delete queue are trivial to

implement such that the cost per call is constant�

algorithm construct level
��

begin

weight
T�� �� ��

roots
T�� �� ��

Q��� �� ��
more than one �� false�

while Q� �� � do
begin

R
���
i �� delete queue
Q���

w�
i �� weight
R

���
i ��

if there are more than one element in R
���
i then

begin

Let j be the integer such that w�
i � ��j��� �j��

R
�����
j �� �nd range
j� �
 	��

if R
�����
j �� Q��� then insert queue
R

�����
j � Q�����

insert bucket
R
���
i � R

�����
j ��

delete range
R
���
i ��

more than one �� true

end

else begin

weight
T�� �� weight
T��
 w�
i �

roots
T�� �� roots
T��
 �i

end

end�

if more than one then construct level
�
 	�

end�

After we construct each level� the total weight of each range is known� Moreover� those ranges

containing more than one element will be deleted from the current level� the remaining elements in

the table T� should be the roots of the trees rooted at that level�

Theorem � The preprocessing requires O
N� expected time�

Proof � We put each range into a queue when it needs to be inserted into the level table T�� When

we process ranges on level �� we just pick the elements from the queue and insert them in constant

time using dynamic hashing� So the cost is proportional to the number of nonempty ranges on the

level� rather than the number of entries on each level�

�� B THREE BACKGROUND TECHNIQUES

In the next section we show that the resulting trees share a common property that they are

very �shallow��

B Three Background Techniques

To make the paper self�contained� we review three important techniques whose ideas come into

play in our algorithm� the rejection method� table doubling� and dynamic hashing�

B�� Rejection Method�

The rejectioni method is described in� e�g�� �	��� If we want to generate a random variate X with

density f
t�� we can �nd another density function g
t� such that f
t� � cg
t� for all t� where c is

a constant� The function g is selected so that it is relatively easy to compute g
t� and to generate

a random variate with density g
t�� and the selected constant c is small� The algorithm works as

follows�

algorithm rejection method

begin

repeat

Generate uniform random number U � ��� 	��

Generate X according to density g
t�

until U � f
X��cg
X��

return
X�

end�

Proposition � The expected number of iterations to generate X by the rejection method shown

above is c�

We specialize the algorithm to handle the case in which f
t� corresponds to discrete weights

w�� w�� � � � � wn� where 	�� � f
i� � wi � 	 and cg
i� � 	� for all 	 � i � n� The probability of

generating value j equals wj�
P

��i�n wi�

algorithm bucket rejection
T �

begin

repeat

Generate uniform random number U � ��� 	��

I � bUnc
until Un� I � w�I
 	��

return
I
 	�

end�

Figure � gives a graphical view of the rejection method� First we randomly select the table

entry and then randomly select a real number between � and 	� If the selected number lies in the

shaded area� we mark it a �hit�� otherwise� we repeat the process�

B�� Table Doubling Technique� ��

1/2

Figure �� Rejection Method

Corollary � The expected number of iterations in algorithm bucket rejection is ��

B�� Table Doubling Technique�

A comprehensive treatment of table doubling can be found in ���� Suppose we want to implement

a dynamic table that supports insertion and deletion� In order to use the power of the random�

access model� the table is implemented as an array� The size of the table cannot be determined

in advance� so dynamic allocation and deallocation of the array is necessary� A trivial algorithm

allocates an
n
 	��element array when an element is inserted into an n�element array� but this

causes worst�case update cost proportional to the size of the array� Since the number of elements

in the table is not necessarily the same as the size of the table� let us use � to denote the load

factor of the table� or its fraction of occupancy� Initially� the table T has size zero� The size of the

empty table T becomes 	 when we insert an element into it� Inserting an element into a nonempty

table T results in two cases�

	� If � � 	� we just insert the new element into one of the free slots�

�� If � � 	� the table is full� and we expand the size of the table to twice its original size�

Deleting an element from the table is handled in an analogous way� except that we do not contract

the table until � � 	��� The cost for either table expansion or contraction is linear in the size of

the table� but the amortized cost for each insertion or deletion is constant�

Proposition � A sequence of m insertion and deletion operations on a dynamic table using the

table�doubling method requires O
m� time�

This algorithm can be modi�ed to run in constant time per operation in the worst case� as

follows� In addition to the current table of size n� we also maintain two tables T� of size �n

and T� of size n��� If the table T over�ows because of insertions� we just reassign T� to T � make

T the new T�� and deallocate the old T�� The new T� is initially empty� but is �lled up twice

as fast as T � so that if T over�ows again� T� is once again consistent� Deletion is handled in an

analogous way�

�� B THREE BACKGROUND TECHNIQUES

B�� Dynamic Hashing

Any single hash function chosen can encounter some bad worst�case inputs that cause linear�time

rather than constant�time performance� The remedy devised by Carter and Wegman ��� is to choose

a hash function randomly from a good collection H of hash functions and get constant expected

performance independent of any particular input sequence�

Let H � fh�� h�� � � � � hmg be a set of hash functions� each hi is a mapping from f�� � � � � n� 	g
to f�� � � � � m� 	g� We say that H is c�universal if for every pair of inputs x �� y in f	� �� � � � � n� 	g
the total number of h � H such that h
x� � h
y� is no more than c � jH j �m� that is� only a fraction

of c�m of the hash functions in H cause a collision on any pair of inputs�

Proposition � Let H be a c�universal class of hash functions� the expected cost of an insert�

delete� or access operation is O
	
 c��� where � is the load factor of the table�

We can use the c�universal class of hash functions

H � fha�b j ha�b
x� �

ax
 b� mod n� modm� a� b � f�� � � � � n� 	gg �

where
dn�me�
n�m��� � O
	�� When the number of elements changes dynamically� the table

may have to be expanded or contracted from time to time� but the cost of the rebuilding can be

amortized so that the operations still run in amortized constant expected time�

More complicated techniques for implementing the table lookup method in constant expected

time are dynamic perfect hashing and its variants ��� �� ���

