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number of trips is assumed to be related to the population at origin and destination and to decrease with the dis-
tance. The mathematical expression of this law resembles Newton's law of gravity, which explains its name. An-
other popular approach is inspired by the theory of intervening opportunities which argues that the distance has
no effect on the destination choice, playing only the role of a surrogate for the number of intervening opportuni-
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Trip distribution ties between them. In this paper, we perform a thorough comparison between these two approaches in their abil-
Gravity law ity at estimating commuting flows by testing them against empirical trip data at different scales and coming from

different countries. Different versions of the gravity and the intervening opportunities laws, including the recent-
ly proposed radiation law, are used to estimate the probability that an individual has to commute from one unit to
another, called trip distribution law. Based on these probability distribution laws, the commuting networks are
simulated with different trip distribution models. We show that the gravity law performs better than the inter-
vening opportunities laws to estimate the commuting flows, to preserve the structure of the network and to fit
the commuting distance distribution although it fails at predicting commuting flows at large distances. Finally,
we show that the different approaches can be used in the absence of detailed data for calibration since their

Intervening opportunities law
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Commuting networks

only parameter depends only on the scale of the geographic unit.

© 2015 Published by Elsevier Ltd.

1. Introduction

Everyday, billions of individuals around the world travel. These
movements form a socio-economic complex network, backbone for
the transport of people, goods, money, information or even diseases at
different spatial scales. The study of such spatial networks is conse-
quently the subject of an intensive scientific activity (Barthelemy,
2011). Some examples include the estimation of population flows
(Murat, 2010; Gargiulo et al., 2012; Simini et al., 2012; Lenormand
et al., 2012; Thomas and Tutert, 2013; Lenormand et al., 2014; Yang
et al., 2014; Sagarra et al., 2015), transport planning and modeling
(Rouwendal and Nijkamp, 2004; Orttizar and Willumsen, 2011), spatial
network analysis (De Montis et al., 2007, 2010), study of urban traffic
(De Montis et al., 2007) and modeling of the spreading of infectious dis-
eases (Viboud et al.,, 2006; Balcan et al., 2009; Tizzoni et al.,, 2014).

Trip distribution modeling is thus crucial for the prediction of popu-
lation movements, but also for an explanatory purpose, in order to bet-
ter understand the mechanisms of human mobility. There are two
major approaches for the estimation of trip distribution at an aggregate
level. The traditional gravity approach, in analogy with the Newton's
law of gravitation, is based on the assumption that the amount of trips
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between two locations is related to their populations and decays with
a function of the distance (Carey, 1858; Zipf, 1946; Wilson, 1970;
Erlander and Stewart, 1990). In contrast to the gravity law, the Stouffer's
law of intervening opportunities (Stouffer, 1940) hinges on the assump-
tion that the number of opportunities plays a more important role in the
location choices than the distance, particularly in the case of migration
choices. The original law proposed by Stouffer has been reformulated
by Schneider (1959) and extensively studied since then (Heanus and
Pyers, 1966; Ruiter, 1967; Wilson, 1970; Haynes et al., 1973; Fik and
Mulligan, 1990; Akwawua and Poller, 2001). The two approaches have
been widely compared during the second half of the twentieth century
(David, 1961; Pyers, 1966; Lawson and Dearinger, 1967; Zhao et al.,
2001) showing that generally both approaches performed comparably.
However, the simplicity of the mathematical form of the gravity ap-
proach appears to have weighted in its favor (Orttzar and Willumsen,
2011). Indeed, the gravity approach has been extensively used in the
past few decades to model, for instance, flows of population (Viboud
et al., 2006; Griffith, 2009; Balcan et al., 2009; Murat, 2010; Gargiulo
et al,, 2012; Lenormand et al., 2012; Thomas and Tutert, 2013;
Masucci et al., 2013; Liang et al.,, 2013; Lenormand et al., 2014; Tizzoni
et al., 2014; Liu et al., 2014), spatial accessibility to health services
(Luo and Wang, 2003), volume of international trade (Anderson,
1979; Bergstrand, 1985), traffic in transport networks (Jung et al.,
2008; Kaluza et al., 2010) and phone communications (Krings et al.,
2009).
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However, the concept of intervening opportunities has recently
regained in popularity thanks to the recently proposed radiation ap-
proach (Simini et al., 2012, 2013; Ren et al., 2014; Yang et al., 2014).
This approach is inspired by a simple diffusion model where the amount
of trips between two locations depends on their populations and the
number of opportunities between them. The gravity law and the radia-
tion law have been compared several times during the last years giving
the superiority to either of the approaches depending on the study
(Simini et al., 2012; Lenormand et al., 2012; Masucci et al., 2013; Liang
et al,, 2013; Yang et al., 2014). Two main issues can be identified in
these comparisons. First, the inputs used to simulate the flows are not
always identical. For example, in the comparison proposed in Masucci
et al. (2013), the gravity law tested takes as input the population,
whereas the radiation law is based on the number of jobs. Second, in
all these studies, the models used to generate the trips from the radia-
tion and the gravity laws are not constrained in the same way. The radi-
ation models are always production constrained, this means that the
number of trips, or at least an estimation of the number of trips gener-
ated by census unit, is preserved. The models used to generate the
trips with the gravity laws can be either, unconstrained (Simini et al.,
2012; Masucci et al.,, 2013), only the total number of trips is preserved
or doubly constrained (Lenormand et al., 2012; Yang et al., 2014),
both the trips produced and attracted by a census unit are preserved.
Therefore, to fairly compare different approaches the same input data
must be used and, most importantly, we need to differentiate the law,
gravity or intervening opportunities, and the modeling framework
used to generate the trips from this law. Indeed, both the gravity laws
and the intervening opportunities laws can be expressed as a probabil-
ity to move from one place to another, called trip distribution law, and
based on these probability distributions, the total number of trips can
then be simulated using different trip distribution models including dif-
ferent level of constraints.

In this work, we test and compare, in a systematic and rigorous way,
gravity and intervening opportunities laws against commuting census
data coming from six different countries using four different constrained
models to generate the networks: unconstrained model, single
constrained models (production or attraction) and the well-known dou-
bly constrained model. For the gravity law, since the form of the distance
decay functions may vary from one study to another (Fotheringham,
1981; Viboud et al., 2006; de Vries et al., 2009; Balcan et al., 2009;
Barthelemy, 2011; Lenormand et al., 2014; Chen, 2015) both the
power and the exponential forms are tested to model the impact of
the distance. The intervening opportunities law is given by the
Schneider's version of the Stouffer's original law as it is usually the
case. We also considered two versions of the radiation law, the original
free-parameter model (Simini et al., 2012) and the extended version
proposed in Yang et al. (2014). The simulated networks are compared
with the observed ones on different aspects showing that, globally, the
gravity law with an exponential distance decay function outperforms
the other laws in the estimation of commuting flows, the conservation
of the commuting network structure and the fit of the commuting dis-
tance distribution even if it fails at predicting commuting flows at
large distances. Finally, we show that the different laws can be used
in absence of detailed data for calibration since their only parameter
depends only on the scale of the geographic census unit.

2. Data

In this study, the trip distribution laws and models are tested against
census commuting data of six countries: England and Wales, France,
Italy, Mexico, Spain and the United States of America (hereafter called
E&W, FRA, ITA, MEX, SPA and USA, respectively) and two cities:
London and Paris (hereafter called LON and PAR, respectively).

» The England & Wales dataset comes from the 2001 Census in England
and Wales made available by the Office for National Statistics (data

Table 1
Presentation of the datasets.

Case study Number of units Number of links Number of Commuters
England & Wales 8846 wards 1,269,396 18,374,407

France 3645 cantons 462,838 12,193,058

Italy 7319 municipalities 419,556 8,973,671

Mexico 2456 municipalities 60,049 603,688

Spain 7950 municipalities 261,084 5,102,359

United State 3108 counties 161,522 34,097,929

London 4664 output areas 750,943 4,373,442

Paris 3185 municipalities 277,252 3,789,487

available online at https://www.nomisweb.co.uk/query/construct/
summary.asp?mode=construct&version=0&dataset=124).

The French dataset was measured for the 1999 French Census by the
French Statistical Institute (data available upon request at http://
www.cmbh.ens.fr/).

The Italian's commuting network was extracted from the 2001 Italian
Census by the National Institute for Statistics (data available upon re-
quest at http://www.istat.it/it/archivio/139381).

Data on commuting trips between Mexican's municipalities in 2011
are based on a microdata sample coming from the Mexican National
Institute for Statistics (data available online at http://www3.inegi.
org.mx/sistemas/microdatos/default2010.aspx).

The Spanish dataset comes from the 2001 Spanish Census made avail-
able by the Spanish National Statistics Institute (data available upon
request at http://www.ine.es/en/censo2001/index_en.html).

Data on commuting trips between United States counties in 2000
comes from the United State Census Bureau (data available online at
https://www.census.gov/population/www/cen2000/commuting/
index.html).

Each case study is divided into n census units of different spatial
scale: from the Output Area in London with an average surface of
1.68 km? to the counties in the United States with an average surface
0f 2596.8 km?. See Table 1 for a detailed description of the datasets.

Figs. 1 and 2 display the centroids of the census units for the eight
case studies. For each unit, the statistical offices provide the following
information:

* Ty, the number of trips between the census units i and j (i.e. number of
individuals living in i and working in j);

* dj, the great-circle distance between the uniti and the unitj computed
with the Haversine formula;

» m;, the number of inhabitants in unit i.

In this work we consider only inter-unit flows (i.e. T;=0),
mainly because it is not possible to estimate intra-units flows with the

radiation laws.! We note N = >_{;_; T the total number of commuters,
0; = Z;l:] T;; the number of out-commuters (i.e. number of individuals
living in i and working in another census unit) and D; = >_i; T; the
number of in-commuters (i.e. number of individuals working in j and
living in another census unit).

3. Comparison of trip distribution laws and models

The purpose of the trip distribution models is to split the total num-
ber of trips N in order to generate a trip table T = (Ty), _; j<n Of the esti-
mated number of trips form each census area to every other. Note that

! Note that it is possible to estimate intra-unit flows with the gravity laws by approxi-
mating intra-unit distances with, for example, half the square root of the unit's area or half
the average distance to the nearest neighbors.
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Fig. 1. Position of the units' centroids for the six countries. (S) represents the average surface of the census units (i.e. municipalities, counties or wards).

by trip we are referring to commuting travels from home to work, there
is a return trip not considered in T and N is also equivalent to the number
of unique commuters. The trip distribution depends on, on one hand,
the characteristics of the census units and the way they are spatially dis-
tributed, and, on the other hand, the level of constraints required by the
model. Therefore, to fairly compare different trip distribution modeling
approaches we have to consider separately the law used to calculate the
probability to observe a trip between two census units, called trip distri-
bution law, and the trip distribution model used to generate the trip al-
location from this law.

3.1. Gravity and intervening opportunities laws

The purpose of this study is to test the capacity of both the gravity
and the intervening opportunities approaches to estimate the probabil-
ity pj; that out of all the possible travels in the system we have one be-
tween the census unit i and j. This probability is asymmetric in i and j
as the flows themselves, and, by convention, the self-loops are excluded
of the analysis p;; = 0. This probability is normalized to all possible cou-

ples of origins and destinations, f j—1Djj = 1. Note that p;; does not refer

London

Paris
N Pt T b
AR A

20 km

<S> = 9.93 km?

Coein o ® okm
2
<S> =1.68 km

Fig. 2. Position of the units' centroids around London (left) and Paris (right). The black

contours represent the boundaries of the Greater London Authority (left) and the french
département Tle de France (right). (S) represents the average unit surface.

to the conditional probability of a trip starting in i finishes in j P(1]i,j).
There exists a relation between both of them:
py = P(>i) P(1]i, j) (1
where P(i) stands for the probability of a trip starting in i. P(1]i,j) will
appear later for the intervening opportunities laws as a function of the

populations of origin m;, destination m; and the number of opportunities
between them s;;, P(1|m;m;,s;), but the basis of our analysis will be pj.

3.1.1. Gravity laws
In the simplest form of the gravity approach, the probability of com-
muting between two units i and j is proportional to the product of the
origin population m; and destination population m;, and inversely pro-
portional to the travel cost between the two units:
pioemm;f (dy), 1% (2)
The travel cost between i and j is usually modeled with an exponen-
tial distance decay function,

f(dy) =e P (3)
or a power distance decay function,
f(dy) =dy™" (4)

As mentioned in Barthelemy (2011), the form of the distance decay
function can change according to the dataset, therefore, both the expo-
nential and the power forms are considered in this study. In both cases,
the importance of the distance in commuting choices is adjusted with a
parameter (3 with observed data.

3.1.2. Intervening opportunities laws

In the intervening opportunity approach, the probability of commut-
ing between two units i and j is proportional to the origin population m;
and to the conditional probability that a commuter living in unit i with
population m; is attracted to unit j with population m;, given that
there are s;; job opportunities in between. The conditional probability
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P(1|m;m;,s;;) needs to be normalized to ensure that all the trips end in
the region of interest.

IP(1|m,»,mj,s,j)

pji < m; , %] 3)
T L PO my my s

In the Schneider's version of the intervening opportunities approach
the conditional probability is given by

IED(1|mivmj-,3ij) = e’stj_efv(s.,er,-) .

where s;; is the number of opportunities (approximated by the popula-
tion in this case) in a circle of radius d; centered in i (excluding the
source and destination). The parameter vy can be seen as a constant
probability of accepting an opportunity destination. Note that in this
version the number of opportunities m; at the origin is not taken into
account.

More recently, Simini et al. (2012) reformulated the Stouffer's inter-
vening opportunities law in terms of radiation and absorption process-
es. This model is inspired by a diffusion model where each individual
living in an unit i has a certain probability of being “absorbed” by anoth-
er unit j according to the spatial distribution of opportunities. The orig-
inal radiation model is free of parameters and, therefore, it does not
require calibration. The conditional probability P(1|m;,m;s;) is
expressed as:

m; m;
(mi +sy) (mi +mj +s)

P(l |mi,mj,sij) =

()

This conditional probability needs to be normalized because the
probability for an individual living in a census unit i of being absorbed
by another census unit is not equal to 1 in case of finite system but
equal to 1— % where M is the total population (Masucci et al., 2013).
Some recent works have shown that the model fails to describe
human mobility compared to more classic approaches particularly on
a small scale (Lenormand et al.,, 2012; Masucci et al.,, 2013; Liang et al,,
2013). To circumvent these limitations, an extended radiation model
has been proposed by Yang et al. (2014). In this extended version,
the probability P(1|m;,mj,s;;) is derived under the survival analysis
framework introducing a parameter a to control the effect of the num-
ber of job opportunities between the source and the destination on
the job selection,

[(mi 4+ 53) = (my +5)°] (i@ + 1)

P(1|m;, mj,s;) =

[(mi5) +1] [y -+ mj =+ 53)* 1] ®

3.2. Constrained models

After the description of the probabilistic laws, the next step is to ma-
terialize the people commuting. The purpose is to generate the com-
muting network T = (Tﬁ)lsi‘jsn by drawing at random N trips from
the trip distribution law (pj)1<i j<n respecting different level of con-
straints according to the model. We are going to consider four different
types of models:

1. Unconstrained model. The only constraint of this model is to
ensure that the total number of trips N generated by the model
is equal to the total number of trips N observed in the data. In
this model, the N trips are randomly sample from the multinomial
distribution

M<N" (pij)lsnjm) 9)

2. Production constrained model. This model ensures that the number of
trips “produced” by a census unit is preserved. For each unit i, O; trips
are produced from the multinomial distribution

P;
M| 0, | =— (10)
(ZZlP“‘) 1<j<n

3. Attraction constrained model. This model ensures that the number of
trips “attracted” by a unit is preserved. For each census unit j, D; trips
are attracted from the multinomial distribution

P::
M| D;, (7,1" ) ) (11)
( Z,<:1P1q 1<isn

4. Doubly constrained model. This model, also called production-attrac-
tion constrained model ensures that both the trips attracted and
generated by a census unit are preserved using two balancing factors
K; and K; calibrated with the Iterative Proportional Fitting procedure
(Deming and Stephan, 1940). The relation between K;, Kj, p; and
the trip flows is given by

Ty = KiKpy ) (12)
YiaTy=0i, 20Ty =D;

Unlike the unconstrained and single constrained models, the doubly
constrained model is a deterministic model. Therefore, the simulated
network T is a fully connected network in which the flows are real num-
bers instead of integers. This can be problematic since we want to study
the capacity of both the gravity and the radiation approaches to pre-
serve the topological structure of the original network. To bypass this
limitation N trips are randomly sample from the multinomial distribu-
tion,

T
M| N, ( . - ) (13)
Zkl:lTkl 1<ijsn

3.3. Goodness-of-fit measures

3.3.1. Common part of commuters

We calibrate the parameters 3, y and a using the common part of
commuters (CPC) introduced in (Gargiulo et al., 2012; Lenormand
etal, 2012):

CPC(T.T) = S m;: (74 75) _

. .
1_;2”31 |Ty—Tj| 14

N

This indicator is based on the Sgrensen index (Serensen, 1948). It
varies from 0, when no agreement is found, to 1, when the two net-
works are identical. In our case, the total number of commuters N is pre-
served, therefore the Eq. (14) can be simplified to

CPC(T, T) = i mzl: (T"f’ T"f) - 1_%221:1511_% |

(15)

which represents the percentage of good prediction as defined in
Lenormand and Deffuant (2013).

In order to assess the robustness of the results regarding the choice
of goodness-of-fit measures, we also test the results obtained with the
normalized root mean square error,

~\2
i (Ti=Ti)
n
Zi. j=1 T,-,-

NRMSE(T, T) - (16)
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3.3.2. Common part of links

M. Lenormand et al. / Journal of Transport Geography 51 (2016) 158-169

(17)

The ability of the models to recover the topological structure of the
original network can be assessed with the common part of links (CPL)

defined as

n
221‘.;‘:1 1T-y>0 ’ ]T,-,->0

CPL (T, T) -

n n
Zi, j=1 Irs0 + Zr j=1 1T,j>0

(18)

where 1, is equal to one if the condition X is fulfilled and zero otherwise.
The common part of links measures the proportion of links in common
between the simulated and the observed networks (i.e. links such as
T;>0 and T,-j>0). It is null if there is no link in common and one if both
networks are topologically equivalent.

3.3.3. Common part of commuters according to the distance

In order to measure the similarity between the observed commuting
distance distribution and the ones simulated with the models, we intro-
duce the common part of commuters according to the distance (CPCy).
Let us consider Nj the number of individuals having a commuting dis-
tance in the bin between 2k — 2 and 2k kms. The CPC, is equal to the

CPC based on Ny instead of Tj;

> pq min (Nk, Nk>

CPC, (T, T) - S

E&W
FRA
ITA
MEX
SPA
USA
LON
PAR

E&W

ITA
MEX
SPA
USA
LON
PAR

(19)

Unconstrained Model

4. Results

In this section, we compare the five laws: gravity with an exponen-
tial or a power distance decay function, the Schneider's intervening op-
portunities law and the original and the extended radiation laws. We
test these laws against empirical data coming from eight different case
studies using four constrained models to estimate the flows. For each
constrained model, the parameters 3, y and a are calibrated so as to
maximize the CPC. Since the models are stochastic, we consider an aver-
age CPC value measured over 100 replications of the trip distribution.
Similarly, all the goodness-of-fit measures are obtained by calculating
the average measured over 100 network replications. It is important
to note that the networks generated with the constrained models are
very stable, the stochasticity of the models does not affect the statistical
properties of the network. Therefore, the goodness-of-fit measures does
not vary much with the different realizations of the multinomial sam-
pling. For example, within the 100 network instances for all models
and case studies, the CPC varies, at most, by 0.09% around the average.

4.1. Estimation of commuting flows

Fig. 3 displays the common part of commuters obtained with the dif-
ferent laws and models for the eight case studies. Globally, the gravity
laws give better results than the intervening opportunities laws. For
the gravity laws, the results improve with the exponential rather than
with the power distance decay function. For the intervening opportuni-
ties laws, the extended radiation law outperforms the original one and
achieves slightly better results than the Schneider law. In the top left
panel, we observe the results for the unconstrained model. In this
case, the extended radiation law and the Schneider law give better re-
sults than the gravity ones for most case studies. However, these better

Production Constrained Model
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Fig. 3. Common part of commuters according to the unconstrained models, the gravity and intervening opportunities laws for the eight case studies. The circles represent the normalized
gravity law with the exponential distance decay function (the circles with a cross inside represent the original version); the squares represent the normalized gravity law with the power
distance decay function (the squares with a cross inside represent the original version); the point down triangles represent the Schneider's intervening opportunities law; the green
diamonds represent the extended radiation law; the purple triangles represent the original radiation law. Error bars represent the minimum and the maximum values observed in the
100 realizations but in most cases they are too close to the average to be seen.
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performances are due to the normalization factor used in Eq. (5). In-
deed, this normalization implies that the probability of having a trip
originating in a census unit i is proportional to the population of i,
which is not necessarily the case for the gravity laws. If we use the
same type of normalization for the gravity trip distribution law pj;
(Eq. (20)), we observe that the “normalized” gravity laws give better re-
sults than the intervening opportunities laws. In the following, we will
refer to the normalized version when mentioning the gravity law.

m;f (dy)

7 , i#] 20
D ™S (di) ! 20

pjj = m;

To compare the constrained model performances, we plot in Fig. 4a
the CPC obtained with the four models according to the laws averaged
over the eight case studies. As expected, more constrained the model
is, higher the CPC becomes. Unconstrained models are able to reproduce
on average around 45% of the observed commuting network against
65% for the doubly constrained model. It is interesting to note that, the
attraction constrained model gives better results than the production
constrained model. This can be explained by the fact that the job de-
mand is easier to estimate than the job offer, which can be related to
extra economic questions. This is in agreement with the results obtain-
ed with a uniform distribution (p;1) plotted in Fig. 3d.

Although the results obtained with the normalized root mean
square error and the information gain statistic are very similar to the
ones obtained with the CPC, it is worth noting that globally the extend-
ed radiation law gives smaller normalized root mean square error
values than the normalized gravity laws with the unconstrained

(a)
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model (see Table 2 for more details about the laws exhibiting the best
performances).

4.2. Structure of the commuting network

We consider next the capacity of the gravity and the intervening op-
portunities laws to recover the structure of the empirical commuting
networks. Fig. 4b shows the average common part of links obtained
with the different laws and models. We observe that the gravity law
with an exponential distance decay function outperforms the other
laws when the unconstrained and the single constrained models are
used to generate the flows. However, when the doubly constrained
models is considered, very similar results are obtained except for the
Schneider law and the original version of the radiation law. In any
case, the common part of links never exceed 0.55, this can be explained
by the fact that, globally, the different laws fail at reproducing the num-
ber of links. Indeed, as it can be seen in Fig. 5, which displays the ratio
between the number of links generated with the models and the ob-
served ones, the radiation law and the exponential gravity law tend to
underestimate the number of links whereas the extended radiation
law and the power gravity law overestimate it. The flow networks gen-
erated with the Schneider law have globally a number of links closer to
the observed values than the networks generated with the other laws.

4.3. Commuting distance distribution
Another important feature to study is the commuting distance distri-
bution. Fig. 4c shows the average common part of commuters according

to the distance obtained with the different models and laws. The results
obtained with the exponential gravity law are slightly better than the

(b)

0.55 -
0.50 1
|
0. 0.45 -
@]

0.40 -

0.35 1

UM PCM ACM DCM
Constrained Models

(d)

02519 cPC
-@- CPL L]
0.20--® CPCy -
50,15-
©
§0.104
go.
0.05 -
0.00 1

UM PCM ACM DCM
Constrained Models

Fig. 4. Performance of the unconstrained model (UM), the production constrained model (PCM), the attraction constrained model (ACM) and the doubly constrained model (DCM)
according to the gravity and the intervening opportunities laws (a)-(c) and a uniform distribution (d). (a) Average CPC. (b) Average CPL. (c) Average CPC,. The red circles represent
the normalized gravity law with the exponential distance decay function; the blue squares represent the normalized gravity law with the power distance decay function; the point
down triangles represent the Schneider's intervening opportunities law; the green diamonds represent the extended radiation law; the purple triangles represent the original
radiation law. The grey point down triangles represent the uniform distribution, form dark to light grey, the CPC, the CPL and the CPCj.
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Table 2
Law exhibiting the best performances according to the inputs, case studies, constrained models and goodness-of-fit measures.

Inputs Case study Model CPC CPL CPCy NRMSE I

Population E&QW UM NGrav (exp) NGrav (exp) 10 NGrav (exp) 10
Population FRA UM NGrav (exp) NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp)
Population ITA UM NGrav (exp) NGrav (exp) 10 Rad (ext) NGrav (exp)
Population MEX UM NGrav (pow) NGrav (exp) Rad Rad (ext) NGrav (exp)
Population SPA UM NGrav (pow) NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp)
Population USA UM NGrav (exp) NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp)
Population LON UM NGrav (exp) 10 NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (pow) NGrav (exp)
Population E&QW PCM NGrav (exp) NGrav (exp) 10 NGrav (exp) 10
Population FRA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA PCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
Population MEX PCM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
Population SPA PCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON PCM NGrav (exp) 10 NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population E&QW ACM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
Population FRA ACM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA ACM NGrav (exp) NGrav (exp) 10 NGrav (pow) NGrav (exp)
Population MEX ACM NGrav (exp) NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp)
Population SPA ACM NGrav (exp) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA ACM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR ACM NGrav (exp) NGrav (exp) NGrav (pow) 10 NGrav (exp)
Population E&QW DCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
Population FRA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population MEX DCM NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp) NGrav (exp)
Population SPA DCM NGrav (pow) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON DCM NGrav (exp) NGrav (exp) NGrav (exp NGrav (exp) NGrav (exp)
Population PAR DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&QW UM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows FRA UM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA UM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows MEX UM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA UM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows PAR UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&QW PCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows FRA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA PCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows MEX PCM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows USA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows PAR PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows E&QW ACM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows FRA ACM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA ACM NGrav (exp) NGrav (exp) 10 NGrav (pow) NGrav (exp)
In/out flows MEX ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows SPA ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA ACM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON ACM NGrav (exp) Rad (ext) 10 NGrav (exp) NGrav (exp)
In/out flows PAR ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&QW DCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows FRA DCM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA DCM NGrav (exp) NGrav (exp) 10 NGrav (exp) NGrav (exp)
In/out flows MEX DCM NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA DCM NGrav (pow) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON DCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows PAR DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)

ones obtained with the other laws. However, the results are globally
good, and except the original radiation law, the gravity and intervening
opportunities laws are able to reproduce more than 80% of the commut-
ing distances.

To go further, we plot in Fig. 6 the observed and the simulated com-
muting distance distributions obtained with the production constrained
model in France and United States. We can clearly see that the exponen-
tial gravity law is better for estimating commuting distances which are

below a certain threshold equal to 50 km in France and 150 km in
United States. After this threshold, it fails at estimating the commuting
flows as it is the case for the Schneider's intervening opportunities
law. On the contrary, the radiation laws and the gravity law with a
power distance decay function are able to estimate commuting flows
at large distances. However, we have to keep in mind that the propor-
tion of commuters traveling such long distances are less than 6% in
France and 5% in United States. Besides, one can legitimately wonder
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Fig. 5. Ratio between the simulated and the observed number of links according to the unconstrained models, the gravity and intervening opportunities laws for the eight case studies. The
red circles represent the normalized gravity law with the exponential distance decay function; the blue squares represent the normalized gravity law with the power distance decay
function; the point down triangles represent the Schneider's intervening opportunities law; the green diamonds represent the extended radiation law; the purple triangles represent
the original radiation law. Error bars represent the minimum and the maximum but in most cases they are too close to the average to be seen.

whether these long travels are repeated twice per day or if they may be
an artifact of the way in which the census information is collected.

4.4. Robustness against changes in the inputs
In Egs. (2) and (5), the population is used as input instead of the out-

flows O; and the inflows Dj, which are usually preferred since they are a
more faithful reflection of the job demand and offer. The job demand
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and offer are considered to be related to the population but the propor-
tion is rarely direct (it needs to be adjusted with an exponent) and
according to the case study, the fit can be bad. In order to assess the
robustness of the results to changes in the input data, we consider the
results obtained with the gravity law (Eq. (21)) and the general inter-
vening opportunities law (Eq. (22)) based on the in and out flows. In
the case of the intervening opportunities laws, s;; is the number of in-
commuters in a circle of radius d;; centered in i (excluding the source
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Fig. 6. Probability density function of the commuting distance distribution observed in the data and simulated with the production constrained model. (a) France and (b) United States. The
red circles represent the normalized gravity law with the exponential distance decay function; the blue squares represent the normalized gravity law with the power distance decay func-
tion; the point down triangles represent the Schneider's intervening opportunities law; the green diamonds represent the extended radiation law; the purple triangles represent the orig-

inal radiation law. The black stars represent the census data.
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and destination) and the role of the populations in the gravity law is
taken by O; and D;. To be more specific, the gravity law becomes:

D;f(d; L
pye Oy 1)
> i Def (di)
while the intervening opportunities law can be written as
P(1|D;,Dj, s;;
( | b JrsU) , l*] (22)

p.,« P S
S i P(11Dy, Dy, i)

Fig. 7 displays the average CPC, CPL and CPC,4 obtained with the four
models according to the laws averaged over the eight case studies. As it
can be seen on these plots the results observed in Fig. 4 are quite stable
to changes in the input data.
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4.5. Parameter calibration in the absence of detailed data

An important issue with the estimation of commuting flows is the
calibration of the parameters. Indeed, how to calibrate the parameters
B, v and a in the absence of detailed data? This problem has already
been tackled in previous studies (Balcan et al., 2009; Lenormand et al.,
2012; Yang et al., 2014). In Lenormand et al. (2012), the authors have
shown that, in the case of the exponential form of the gravity law, the
value of 3 can be directly inferred from the average census unit surface
with the relationship 8= 0.3<S>~°18 Similarly, Yang et al. (2014) pro-
posed to estimate the value of a in the extended radiation law with the
average spatial scale | = v/<S> using the functional relationship &=
0.0085 I3,

In Fig. 8, we plot the calibrated value of 3, y and a obtained with
the laws based on the population as a function of the average census
unit surface <S> for the four constrained models. Fig. 8a shows the
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Fig. 8. Parameter value as a function of the average unit surface. (a) Normalized gravity laws with an exponential distance decay function. (b) Normalized gravity laws with a power
distance decay function. (c) Schneider's intervening opportunities law. (d) Extended radiation law.
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relationship obtained with the gravity law with an exponential distance
decay function. We observe that the coefficients of the relationship are
the same than the ones obtained in Lenormand et al. (2012). This is
not surprising since three datasets out of the six used here coincide. In
this case, the value of 3 decreases with larger spatial scales. This can
be explained by the fact that 3 in the exponential form of the gravity
law is inversely proportional to the average commuting distance and
such distance increases with the average unit surface since the shorter
distance trips are excluded (Fig. 9b). Fig. 8b displays the same relation-
ship for the power form of the gravity law, in this case the value of 8
increases with the scale to fit the tail of the commuting distance distri-
bution. In fact, we observe in the data that, globally, the steepness of the
curve (measured with the Pearson's Kurtosis) increases with the scale
(Fig. 9¢). Fig. 8c shows the results obtained with the parameter 7y of
the Schneider intervening opportunities law. The value of ©y seems to
decrease slightly with the scale but the existence of a relationship be-
tween the two variables is not significant. Finally, we plot in Fig. 8d
the relationship between the parameter a of the extended radiation
law and the average unit surface, the exponent obtained is similar to
the one reported in Yang et al. (2014). In the extended version of the ra-
diation law, the parameter a controls the effect of the number of job op-
portunities between home and work on the job selection. In particular,

for a given number of job opportunities, higher the value of g, higher the
probability of not accepting a job among these opportunities. This im-
plies that a is directly proportional to the average commuting distance
and, by extension, to the average unit surface (Fig. 9b). As mentioned
in Yang et al. (2014), the value of a is also influenced by the heterogene-
ity of the distribution of opportunities. As it can be seen in Fig. 8d, the
three case studies presenting the largest deviation from the regression
line are also the most heterogeneous ones (Paris, Spain and Italy
which have the second, fourth and fifth smallest average unit surface,
respectively).

As in Lenormand et al. (2012), it is possible to assess the quality of
the parameter estimation by measuring its impact on the CPC. The
idea is to measure for each law, model and case study, the difference
between the CPC obtained with the calibrated value of the parameter
and the CPC obtained with the estimated one. The parameter value is
estimated with the regression model obtained with the laws based
on the population and the difference between the original CPC and
the “estimated” one is measured with the absolute percentage error
(i.e. absolute error as a percent of the original CPC value). In order to as-
sess the robustness of the estimation in changes in the input we have
also measured the CPC percentage error obtained with an estimation
of the parameters for the laws based on the in/out flows. Note that in
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Fig. 9. Observed commuting distance distributions. (a) Probability density function of the commuting distance distribution according to the case study. (b) Average commuting distance as
a function of the average unit surface. (c) Pearson's measure of Kurtosis as a function of the average unit surface.
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this case the parameters' estimation come also from regression models
obtained with the laws based on the population. The results are present-
ed in Fig. 10. The CPC percentage errors obtained with the gravity laws
are globally small and robust to the change of inputs. They vary at most
by 4% of the original CPC values for the exponential form and 10% for the
power form. Similar results are obtained for the extended radiation law
where the majority of the errors are below 10% and vary at most by 22%
of the original CPC values. This means that for these laws the parameter
value can be directly inferred from the scale, and thus, commuting net-
works at different scales can be generated without requiring detailed
data for calibration. The situation is different for the Schneider's inter-
vening opportunities law very sensible to change in inputs. For
the law based on the population, the errors obtained for the CPC are rea-
sonable, the majority of them are below 10%. However when we try to
estimate the value of vy for the law based on in/out flows with a regres-
sion model obtained with the law based on the population the CPC
percentage error increases dramatically, meaning that the value of 1y is
highly dependent on the variable uses as a surrogate measure of the
number of “real” opportunities.

5. Discussion

In summary, we have compared different versions of the gravity and
the intervening opportunities laws. These two approaches have already
been compared in the past but using different inputs, number of param-
eters and/or type of constraints. For this reason, the aim of this work has
been to bring some light into the discussion by systematically compar-
ing the intervening opportunities and the gravity laws taking care of
dissociating the probabilistic laws and the constrained models used to
generate the trip networks. We have shown that, globally, the gravity
approach outperforms the intervening opportunities approach to esti-
mate the commuting flows but also to preserve the commuting network
structure and to fit of the commuting distance distribution. More partic-
ularly the gravity law with the exponential distance decay function give
better results than the other laws even if it fails at estimating commut-
ing flows at large distances. The reason for this is that most of the travels
are short-range, which are better captured by the gravity law with ex-
ponential decay in the distance. The large distance commuting trips

are few and probably associated with weekly rather than daily commut-
ing. To handle these different types of mobility, it may be necessary to
investigate further the nature of the trips and to consider even mixed
models for different displacement lengths. The superiority of the gravity
law is very robust to the choice of goodness-of-fit measure and to the
change of input. Regarding a more practical issue which is the calibra-
tion of the parameters without detailed data, we have shown that the
parameter values can be estimated with the average unit surface. We
also demonstrated that, except for the Schneider's intervening opportu-
nities law, this estimation is robust to changes in input data. This allows
for a direct estimation of the commuting flows even in the absence of
detailed data for calibration.

Although more research is needed to investigate the link between
mobility, distances and intervening opportunities for other types of
movements such as migrations, tourism or freight distribution, the
distance seems to play a more important role than the number of inter-
vening opportunities in work location choices. More specifically, the su-
periority of the gravity approach seems to be due to its flexibility, and,
what was considered as a weakness by Simini et al. (2012), the lack of
theoretical guidance to choose the distance-decay function, emerges
as a strength. Indeed, people do not choose their place of work as they
choose their new place of residence, therefore, having the possibility
of adjusting the effect of the distance in the decision process is clearly
an advantage which does not apply to the intervening opportunities ap-
proach in its present form.

The objective of this work has been to establish the basis for a fair
and systematic comparison separating probabilistic laws and different
degrees of constraint trip generation models. Our results emphasize
the importance of identifying and separating the different processes in-
volved in the estimation of flows between locations for the comparison
of spatial interaction models. Indeed, the use of these models in contexts
such as urban and infrastructure planning, where large investments
are at stake, imposes the need for the selection of the aptest model
before taking decisions based on its results. The software package to
generate spatial networks using the approach described in the paper
can be downloaded from https://github.com/maximelenormand/Trip-
distribution-laws-and-models.
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