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1. Introduction

Much of the work on networks is from a vertex centric viewpoint. We talk about
distributions of vertex degree, the clustering coefficient of vertices, and vertex partitions
as communities. For instance, consider table 1, which shows the frequency of words in a
review of networks [1]. If we ignore stop words such as ‘the’ and ‘a’, and use the stems of
words (so ‘edg’ represents ‘edge’, ‘edges’, ‘edged’, etc) then, as table 1 shows, the second
most popular stem after ‘network’ is ‘vertic’ followed by ‘edg’. Taking synonyms into
account reinforces this picture. Further, edges may often be referred to in the context of
the calculation of some vertex property, such as degree.

In some cases this focus on vertices is appropriate. Perhaps, on the other hand,
this predominance of vertex concepts reflects an inherent bias in the way we humans
conceptualize networks. One way to compensate for our vertex centric view of the original
network is to represent other structures of a network, here cliques, in terms of the vertices
of a new derived graph. We may then exploit our natural bias in the analysis of the new
derived graph while at the same time avoiding our propensity for vertices in the original
network.

Cliques—complete subgraphs—are an important structure in graph theory. The name
originates from the representation of cliques of people in social networks [2]. They have
since been used for many purposes in social networks [2]–[17]. Triads, cliques of order
three, are of particular interest. One example is the idea that the most important
strong ties (in the language of Granovetter [18, 19]) need to be defined in terms of their
membership of triads [3, 9, 10, 12, 16].

Cliques are also at the centre of some interesting graph theoretical and algorithmic
problems. Finding the set of all ‘maximal’ cliques (a clique is maximal only if it is not a
subgraph of another clique) is a good example for which the Bron–Kerbosch algorithm [20]
is the classic solution.

Cliques are often used to analyse the general structure of a network, for example
see [21, 22]. A particular application is to use cliques in the search for communities, as
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Table 1. Table showing the frequencies of the main network related words in a
review of networks [1]. In calculating the frequencies, ‘stop words’ (such as ‘the’)
were removed and then the remaining words were stemmed (so the stem ‘edg’
counts both ‘edge’ and ‘edges’). The rank is by the number of occurrences of
each word.
Stem Rank Count Stem Rank Count

Network 1 254 Number 11 58
Vertic 2 107 Distanc 12 48
Edg 3 86 Model 13 47
Random 3 86 Connect 14 46
Graph 5 81 Data 15 40
Degre 6 78 Link 16 38
Power 7 68 World 16 38
Lattic 8 67 Hub 33 25
Law 9 65 Point 38 23
Vertex 10 61 Site 40 22

in [23]–[25] for example, or equivalently what are called cohesive groups in social network
analysis [5, 11, 14]. Alternatively they have been used to produce a model of growing
networks [26, 27].

Given the importance of cliques we ask if we can shift our focus away from vertices
and onto the cliques of our graph of interest, G, by constructing a ‘clique graph’ in which
the vertices of the clique graph represent the cliques of the original graph and the way they
overlap. Once this has been done, one can use the standard tools to analyse the properties
of the vertices of the clique graph in order to derive information about the cliques in the
original graph G. There are many such vertex centred tools but to illustrate the principle
we shall look at one complex example, that of finding communities in networks, the topic
of cohesion in the social networks literature, clustering in the language of data mining.

The vast majority of community detection algorithms produce a partition of the set
of vertices [28, 29]. That is, each vertex is assigned to one and only one community.
These may be appropriate for many examples, such as those used to illustrate or test
vertex partition algorithms. However it is an undesirable constraint for networks made of
highly overlapping communities, with social networks being an obvious case. There one
envisages that the strong ties are formed between friends where there is a high probability
of forming triads through different types of relationship [30, 31]. However friendships may
be of different types, family relationships, work collaborations, or links formed through a
common sport or hobby. In this case it makes no sense to try to assign a single community
to each individual but it does make sense to hypothesize that each triad can be given a
single characterization, here a single community label. To find such communities, we will
construct the clique graph and then apply a good vertex partitioning algorithm to the
clique graph. Thus we will illustrate the general central principle of this paper, namely
that a clique graph enables one to avoid the bias of a vertex centric world to study networks
in terms of their cliques while at the same time exploiting the very same widely available
vertex based analysis techniques to do the analysis at no extra cost.

In section 2 we will look at why it is important to construct clique graphs with weights
and how this may be done. As an example of how to use vertex based measures on a
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clique graph to study cliques in the original graph, in section 3 we will construct various
overlapping communities. Finally in section 4 we will consider how this approach can be
generalized and how it fits in with clique overlap in the literature.

2. Clique graphs

2.1. Incidence graph projections

Let us consider a simple graph G with vertices drawn from a vertex set V and which we
will label using mid-Latin characters, i, j, etc. Now let us consider the set of all possible
order n cliques1, C(n), for a single value of n ≥ 2. That is, C(n) is the set of complete
subgraphs of G with n distinct vertices. We will use early Greek letters, α, β, etc to
index these order n cliques. For instance in the graph G shown in figure 1 there are three
triangles or order three cliques. For n = 2 the order two cliques are just the edges of the
original graph G.

The relationship between the order n cliques and the vertices of G can be recorded in

an order n clique incidence matrix B
(n)
iα . The entries of this |V| × |C(n)| matrix are equal

to 1 if clique α ∈ C(n) contains vertex i ∈ V, otherwise they are equal to 0:

B
(n)
iα =

{
1 if i ∈ α ∈ C(n)

0 if i �∈ α ∈ C(n).
(1)

It is useful to define the degree of each vertex i in this bipartite graph as k
(n)
i where

k
(n)
i =

∑
α

B
(n)
iα . (2)

This is simply the number of order n cliques which contain vertex i, so k
(2)
i is simply the

usual definition of the degree of vertex i. This order n clique incidence matrix of G may
be seen as the adjacency matrix of a bipartite network, B(n)(G), where the two types of
vertices correspond to the vertices and the order n cliques of the original graph G. This
is shown for the example graph in figure 1.

We can construct a new weighted graph A(n)(G) which is a subgraph of the original
graph G by defining its adjacency matrix A as follows:

A
(n)
ij =

∑
α∈C(n)

B
(n)
iα B

(n)
jα (1 − δij), ∀ i, j ∈ V. (3)

Equation (3) is the projection of the bipartite incidence graph B(n)(G) onto a unipartite
graph A(n)(G). The vertex set of A(n)(G) is identical to the original graph G. The weight
of edge (i, j) is the number of order n cliques containing that edge. However, A(n)(G) is
not in general the same as G as any edge not in an order n clique in the original graph will

not be in the A(n)(G) graph. Each vertex has degree k
(n)
i which can be less than the degree

of the same vertex i in the original graph. In particular any vertex of degree less than n
in G will be isolated in A(n)(G), and any edges in G incident to such a vertex will not

1 These are distinct from what are referred to as ‘n cliques’ in the social networks literature which are not complete
subgraphs [5, 11]. However sometimes ‘n cliques’ has also been used to refer to the order n cliques of interest here,
e.g. see [22].
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Figure 1. An example of the various graphs defined in this paper for the case of
n = 3. Here the original graph G shown has three order three cliques, and two
vertices in no cliques at all. The order three clique incidence matrix B(3)(G) is a
bipartite network whose circle vertices are vertices of G while the three triangle
vertices come from the three order three cliques of G. The incidence matrix can
be used to define another graph A(3)(G) whose unweighted form is isomorphic
to a 3-uniform hypergraph but which is distinct from the original graph G. The
clique graphs denoted C(3)(G), D(3)(G) and D̃(3)(G) correspond to the adjacency
matrices defined in (4), (6) and (7) respectively. The unweighted versions of these
clique graphs are identical to the standard line graph of the 3-uniform hypergraph
isomorphic to A(3)(G). The thresholding of the weighted clique graph C(3)(G),
retaining only edges of weight (n−1) = 2, produces P (3)(G). It is the components
of this graph which are used in the clique percolation method [23] to define the
communities of G.

appear in A(n)(G). In the example of figure 1, the only differences between A(3)(G) and
G are the two edges on the extreme left and right, neither of which are in any triangles.

In passing we also note that the unweighted version of the graph A(n)(G) is isomorphic
to an n-uniform hypergraph [33]–[35]. Strictly, A(n)(G) has bipartite relationships between
the vertices, something not explicitly part of a hypergraph definition. However, our
restriction to cliques means that the edges of the cliques can be deduced from the vertex
set of each clique.

More interestingly we could project the bipartite incidence graph B(n)(G) onto the
order n cliques to produce a new graph C(n)(G). I will call these ‘clique graphs’2 since each
vertex in these new graphs C(n)(G) corresponds to a clique in the original graph G. We will

2 A better term might be ‘n-regular clique graphs’ or ‘order n clique graphs’ since, in the graph theory literature,
the overlap between the set of all cliques, not just those of order n, is used to define what are also called clique
graphs [4, 71]. The latter are invariably unweighted whereas weighted edges will be central in the discussion here.
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label the vertices of our clique graphs using the same label α we used for the cliques of G.
We could define an edge in a new simple graph L(n)(G) between vertices α and β (α �= β)
to exist if there is at least one vertex of the original graph, say i ∈ V, which is common
to both the order n cliques α and β. This defines an unweighted simple clique graph,
L(n)(G), which is equivalent to the line graph of the n-uniform hypergraph associated
with A(n)(G) [34, 35]. This unweighted clique graph L(n)(G) captures the topology of the
clique structure of G but loses a lot of other useful information.

To retain this information it makes sense to define a weighted clique graph. The
simplest assignment is to set the weight of an edge between clique graph vertices α and β
to be the number of vertices of G which are common to both α and β order n cliques of G.
Thus our first weighted clique graph, which we will denote as C(n)(G), has the adjacency
matrix given by

C
(n)
αβ =

∑
i

B
(n)
iα B

(n)
iβ (1 − δαβ). (4)

Note that we have also chosen to exclude self-loops, Cαα = 0, as for our order n clique
construction the α = β case would always lead to a trivial value of n. The entries Cαβ

are therefore integers between zero and (n − 1) inclusive. The graph is undirected since
Cαβ = Cβα. The C(3)(G) clique graph for our example G is shown in figure 1.

At this point we note that the clique percolation method for finding communities [23]
may be viewed as counting the connected components of an unweighted projection of this
weighted clique graph C(n)(G) defined by using a threshold of t = (n− 1) on the weights.
That is, an unweighted graph P (n)(G) with adjacency matrix

P
(n)
αβ =

{
1 if C

(n)
αβ ≥ (n − 1)

0 if C
(n)
αβ < (n − 1).

(5)

So in [23] only maximal links in C(n)(G) are retained and the communities are then the
connected communities of the resulting simple graph. This seems over restrictive since
little of the information in the weights of C(n)(G) has been used yet many methods exist
to partition weighted graphs quickly and more effectively.

However this weighted clique graph construction C(n)(G) appears to have a severe
limitation. Each vertex i ∈ V of the original graph G contributes a total weight of

k
(n)
i (k

(n)
i − 1)/2 to the edges of C(n)(G). Those which are a member of a large number of

cliques (such as vertices in higher order cliques) will be giving a dominant contribution.
If we want C(n)(G) to be a useful representation of the order n clique structure of G then
it seems much better if we define a clique graph with different weights on the edges. So
we could consider the following two projections of the incidence matrix onto the cliques
of G:

D
(n)
αβ =

∑
i,k

(n)
i >1

B
(n)
iα B

(n)
iβ

k
(n)
i − 1

(1 − δαβ). (6)

D̃
(n)
αβ =

∑
i,k

(n)
i >0

B
(n)
iα B

(n)
iβ

k
(n)
i

. (7)

doi:10.1088/1742-5468/2010/12/P12037 6
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These adjacency matrices define weighted but undirected clique graphs, D(n)(G) and

D̃(n)(G) respectively, with each vertex i in the original graph G contributing O(k
(n)
i ) to

the weight of these graphs. These weighted line graphs have the intuitive property that
the strength of a vertex α in these graphs is an integer between 1 and n, the order of
the cliques being considered. For D(n)(G) the strength of vertex α, sα =

∑
β Dαβ, is the

number of vertices of G which are in clique α and at least one other clique. For D̃(n)(G)
the strength is always n, reflecting the fact that each clique has n vertices. These confirm
that we are not giving any one clique too much emphasis. Figure 1 shows the three
weighted clique graphs, C(3)(G), D(3)(G) and D̃(3)(G), for our example graph.

2.2. Random walk motivation

There are many other definitions one might try for the weights of edges in weighted clique
graphs, and as with generic bipartite graph projections, different problems may call for
different definitions [36]–[39]. However there is another way to motivate the definitions
for D(n)(G) and D̃(n)(G) which suggests these are often going to be the most useful
constructions.

Consider an unbiased random walk on the original graph G which takes place in
two stages. First the walker moves from vertex i to any clique α for which the vertex
i is a member, that is Biα = 1. All cliques attached to i are considered equally likely

in an unbiased walk so this is done with probability B
(n)
iα /k

(n)
i . Then the walker moves

from clique α to any vertex j contained in that clique. Again all vertices in a clique

are considered equally likely so this step is made with probability proportional to B
(n)
jα .

The process would be identical on the graph A(n)(G). It also corresponds to the natural
definition of an unbiased walk on the n-regular hypergraph isomorphic to the unweighted
A(n)(G) in which walkers move from vertex to hyperedge (the cliques here) to vertex.
Finally it is the natural unbiased walk on the bipartite incidence graph B(n)(G). The
point about the construction of D̃(n)(G) is that an unbiased walk on its vertices (which
are the cliques of G) preserves the dynamics of the vertex–clique–vertex walk on the
original graph G. Thus any analysis of the clique graph D̃(n)(G) using a random walk
inspired measure, for example PageRank or modularity optimization, will be equivalent
to applying these measures to the order n cliques of the original graph without any bias.

By way of comparison, any vertex–vertex random walk done on C(n)(g) will be
equivalent to a biased vertex–clique–vertex walk on the original graph G where vertices

in many order n cliques (high k
(n)
i ) will be preferred by the random walker.

The one unusual point about the walk described for D̃(n)(G) is that it allows processes
where walkers can return to the same point i → α → i and α → i → α. For this two-step
process on an undirected graph it is in some senses natural to allow these. However,
should one wish to exclude them, as is common in many cases, the definition of D(n)(G)
corresponds to such a process.

Finally, this interpretation suggests that a factor of 1/n should be added to (6) and (7)
to reflect the probability of moving from a clique to one of its n vertices. It is an irrelevant
constant here but it will be important if one studies generalizations where cliques of
different orders are considered.

doi:10.1088/1742-5468/2010/12/P12037 7
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3. Overlapping communities

One can apply any of the many vertex based analysis tools to clique graphs to get non-
trivial information on the cliques in the original graph. In this section we look at just one
such example—the application of vertex partition methods to a clique graph.

This process assigns a unique community label to each clique in the original graph. As
the first two examples are usually discussed in terms of vertices, it is natural to associate a
membership function to each vertex. That is, the membership of a vertex i in a community
c, say fic, is given by the fraction of order n cliques containing i which are assigned to
community c. That is,

fic =
∑

α

B
(n)
iα

k
(n)
i

Fαc (8)

where Fαc is the membership fraction for clique α in community c. Here we have a
partition of the set of n cliques so Fαc = δc,d if clique α is assigned to community d. For

simplicity, vertices which are not in any order n cliques, k
(n)
i = 0, are assigned to their

own unique community. Thus vertices may be members of more than one community
and the communities are generally a cover, not a simple partition of the set of vertices.
Note that unlike the edge partition method of [39, 40], where edges were always assigned
a unique community, here edges also have a natural membership function, but we will not
focus on this aspect.

There are many vertex partition methods one can use. For personal convenience, the
method used in the following examples is the Louvain algorithm [41] which gives values
for modularity, Q(A; γ), which are close to the maximal value. We modify the original
form of modularity found in [42] and use [43]

Q(A; γ) =
1

W

∑
C∈P

∑
i,j∈C

[
Aij − γ

kikj

W

]
(9)

where W =
∑

i,j Aij and ki =
∑

j Aij is the degree of vertex i. The indices i and j run
over the N vertices of the graph G whose adjacency matrix is Aij. The index C runs over
the communities of the partition P. The parameter γ may be used to control the number
of communities found [43].

For instance applying the Louvain method to the original karate club graph with
γ = 0.3 usually produces the same binary split found by Zachary. With γ = 0.5 the
instructor’s faction is split into two with the vertices {1, 2, 3, 7, 13} assigned to their own
community.

One of the big advantages of using modularity is that this may be interpreted in
terms of the behaviour of random walks on the vertices [44, 45]. In this language, when
we maximize modularity for the vertices of a clique graph, we can interpret this as random
walkers on the original graph moving from vertex to order to vertex and so on. However
if we want unbiased walks on both the original and clique graphs, it is the D(n) and D̃(n)

forms which retain a close relationship.
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Figure 2. Zachary’s karate club graph [46]. The colour and shape of vertices
indicates the partition of the vertex set which optimizes modularity Q for
γ = 1.0 [48]. The number assigned to a vertex is one less than the index used
by Zachary so 0 is the chief instructor, 33 the chief officer. The union of the two
subsets on the left (triangles and squares), and the union of the remaining two
subsets (circles and hexagons) form the two communities found by Zachary [46]
using the Ford–Fulkerson binary community algorithm [47].

3.1. Karate club

Zachary [46] gave an unweighted, undirected graph of thirty four vertices, members of a
karate club. In this paper, the index of a vertex is one less than that used by Zachary [46].
Using the Ford–Fulkerson binary community algorithm [47], Zachary split this network
into two factions: the instructors faction centred on vertex 0, and the officers faction,
centred on the vertex numbered 33. This is shown in figure 2. Historically the club split
into two distinct factions which were identical to Zachary’s artificial partition except for
the vertex numbered 8 here. This is identical to the actual split in the karate club except
for vertex 8.

Community algorithms which produce a partition of the vertices into two sets usually
find a split similar to that of Zachary, suggesting it is an intrinsic feature of the topology
of the network. Subdivisions of these sets to produce three or four communities are also
often found with vertex partition methods, for example see [48, 49].

Order three cliques play a pivotal role in social network analysis (see discussion on
triads in [5] and the examples of overlapping cliques in [3, 14]), so it seems logical to
consider the case of n = 3 for the karate club. For n = 2 we would be constructing the
line graphs of the karate club which were considered in [39]. As shown in figure 3, all but
two of the thirty four vertices and all but eleven of the seventy eight edges are in order
three cliques. In terms of the clique percolation protocol of [23], the order three cliques
split into three clusters. Equivalently if we remove edges of weight 1 in the C(3)(G)
graph, we are left with three components. There is one isolated order three clique,

doi:10.1088/1742-5468/2010/12/P12037 9
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Figure 3. The karate club of Zachary [46]. Vertices 9 and 11 (grey trapeziums)
are not in an order three clique, nor are the eleven edges (0, 11), (0, 31), (1, 30),
(2, 9), (2, 27), (2, 28), (9, 33), (13, 33), (19, 33), (23, 25) and (24, 27) (grey lines).
All other vertices and edges are part of some order three clique. Two vertices,
0 and 31 (shown as red circles), are the only elements in common between
the three percolating order three clique clusters. These clusters are: the three
clique {24, 25, 31} (diamond shaped vertices, blue), the cluster of {0, 4, 5, 6, 10, 16}
(triangles, green), the remaining vertices and edges (square, pink) along with
vertices 0 and 31. The rectangular box A contains the vertices of the two
overlapping order five cliques (that is {0, 1, 2, 3} plus either 7 or 13). Boxes
B and C indicate the two other non-percolating order four cliques, {8, 30, 32, 33}
and {23, 29, 32, 33}.

{24, 25, 31}, a second small group involving {0, 4, 5, 6, 10, 16}, and finally one massive
community consisting of all the other vertices plus 0 and 31 again. These three clusters
are connected in terms of all our weighted clique graphs C(3)(G), D(3)(G) and D̃(3)(G)
but they have just one vertex in common, either 0 or 31. Thus removing the weight one
edges in C(3)(g) is equivalent to ignoring this weak overlap, that is, P (3)(G) has three
disconnected components. Unfortunately this means that the clique percolation method
of [23] fails to detect the primary binary division in this graph, one which almost all other
methods successfully detect. Its only success in this context is to identify the community
{0, 4, 5, 6, 10, 16} which is often found if a community detection method can be set to find
more than two communities.

The higher order cliques of the karate club graph are centred in the two main factions,
the two percolating order five cliques in {0, 1, 2, 3, 7, 13} lie in the instructor’s cluster, while
the two non-percolating order four cliques, (8, 30, 32, 33) and (23, 29, 32, 33), are entirely
within the officers’ cluster. However the simple identification of these higher order cliques
has achieved the identification of the core of the two main factions. The percolation
feature of the algorithm in [23] adds nothing. Overall, we conclude that the karate club
graph highlights the weakness of the clique percolation method [23].

doi:10.1088/1742-5468/2010/12/P12037 10
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Figure 4. The karate club shown with the partition of the order three cliques
obtained by optimizing modularity with γ = 0.5 on the weighted clique graph to
D(3)(G). Three communities of order three cliques are found. Where a vertex
or edge is a member of order three cliques from only one community, it is given
a unique colour and vertex shape. Vertices 0, 2 and 8 (circles) and edge (2, 8)
are members of order three cliques in different communities and are coloured red.
Finally vertices 9 and 11 (trapeziums) and edges (0, 11), (0, 31), (1, 30), (2, 9),
(2, 27), (2, 28), (9, 33), (13, 33), (19, 33), (23, 25) and (24, 27) are shown in grey
as they are not part of any order three clique.

However, even though the order three cliques are all pervasive in this example, the
basic idea of [23] and this paper that cliques can be very informative about community
structure is a good one. One just needs to retain more information than is done in clique
percolation and this is what the weighted clique graphs achieve.

In terms of our order three clique graphs of the karate club, applying a vertex partition
algorithm to a clique graph assigns to each vertex a fractional membership of a community,
fic of (8), equal to the fraction of cliques assigned to that community and which contain
the given vertex.

The partition of the order three cliques into three communities found can be
interpreted as overlapping communities of vertices and edges in the original karate club
graph, as shown in figure 4. For the vertices the community membership is summarized
in table 2.

The vertices placed in the officers part of the club are placed completely in one
community with the exception of vertices 2 and 8. Vertex 8 is given only 80% membership
of this faction. Interestingly, although most partitioning methods put this individual in
the officers club, this is the one person who joined the rival faction in reality. Though
Zachary cites special circumstances to explain this difference, he also notes that this person
had only a weak affiliation to the officers faction. It is therefore not too surprising that
our method does not place this vertex in a unique community. Vertex 2 on the other
hand is assigned only a 9% membership of the officers club. This individual was a strong
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Table 2. Overlapping community structure of the karate club found by
partitioning the vertices of D(3)(G) using the Louvain method with γ = 0.5.
If the membership fraction, fic, of equation (8) is non-trivial the value is given
in brackets after the index of the vertex.
Community Vertices

Instructors 1 0 (78%), 1, 2 (91%), 3, 7, 8 (20%), 12, 13, 17, 19, 21
Instructors 2 0 (22%), 4, 5, 6, 10, 16
Officers 2 (9%), 8 (80%), 14, 15, 18, 20, 22–33

Table 3. Overlapping community structure of the karate club found by
partitioning the vertices of C(3)(G) using the Louvain method with γ = 0.5.
If the membership fraction, fic, is non-trivial the value is given in brackets after
the index of the vertex. The binary partition found by Zachary [46] using the
Ford–Fulkerson method [47] is identical if we assign vertices 2 and 8 completely
to the community with which they have the largest overlap, the instructors and
the officers respectively.

Community Vertices

Instructors 0, 1, 2 (91%), 3–7, 8 (20%), 10, 12, 13, 16, 17, 19, 21
Officers 2 (9%), 8 (80%), 14, 15, 18, 20, 22–33

supporter of the instructor faction but has significant ties with members of the officers
faction. Again this does not seem an unreasonable assignment.

The instructor faction is split into two with vertices 4, 5, 6, 10 and 16 assigned to one
community while vertex 0 is given just a 22% membership of the this group. Vertex 0
has 78% of its order three cliques in the second instructors faction which also contains all
the remaining vertices with 100% membership except for vertex 2 (91%) and 8 (20%) as
already discussed.

Overall the community structure found by partitioning the clique graph D(3)(G)
reflects the true nature of the karate club extremely well.

In the same way we can also study the vertex partitioning of the clique graph C(3)(G)
for the karate club. We expected this weighted clique graph to give too much emphasis to
vertices which are members of many cliques, typically the high degree vertices. However
we find that applying the Louvain method with γ = 0.5 to partition the vertices of C(3)(G)
we end up with two communities. In terms of the original vertices of the karate club, these
are exactly the same as found with D(3)(G) but where the two instructors communities
have been merged. Thus, although this is still an overlapping community structure, the
overlap (vertices 2 and 8 again) is weak as indicated in table 3. So the community structure
derived from C(3)(G) is also consistent with the binary split of Zachary.

3.2. American College Football network

Another example that has been used elsewhere [42] is the network formed by teams in a
league with each vertex representing one team with two teams linked if they have played
each other that season. For instance of the 115 teams in the American College Football
Division 1-A in the 2000 season, all but eight are organized into eleven conferences of
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various sizes3. As teams played between 7 and 13 games with an average of 10.7 games,
most teams do not play each other. However if a team is in a conference then they play
the majority of their games against other teams in the same conference. For this reason
the eleven conferences are readily apparent as eleven tightly knit subgraphs, each of which
contains cliques of order five or higher making them a useful test for community detection
methods.

The results using order four cliques are very good. Using percolation, shown in
figure 5, or vertex partitioning of either the C(4) or D(4) clique graphs (optimizing
modularity with γ = 1) gives almost the same results, namely that each conference
corresponds to one, or in one case, two communities. There is a little overlap, almost
all teams are part of four cliques which involve only teams in their conference. The
exception is that two independents are deemed part of the community centred on one of
the conferences. A final community is an isolated clique of four independents. The only
difference between the approaches is that one conference (the seventh counting clockwise
from the conference at 3 o’clock) is split into its two divisions with percolation and D(4)

but not with C(4).
Looking at order five clique results, vertex partitioning of the C(5) and D(5) clique

graphs with γ = 1.0 gives the same structure, putting all but one team into the correct
conference though now two conferences are split into their divisions. Percolation does
almost as well but one of the conferences is split into three parts. However as n is raised
further, the results get rapidly worse and whole conferences fail to be identified. This is
simply because these higher order cliques are much rarer in this data set.

The real test comes when we consider three cliques for this American College Football
network. This is a disaster for the percolation approach as only four communities are
identified, two correspond to one conference each, one is based on the clique of four
independents and all the remaining conference teams are in one giant community. However
vertex partitioning of both the C(3) and D(3) clique graphs still works, see figure 6. About
two-thirds of the conference teams are placed in a unique community containing only
teams from their conference and perhaps some independents. For the other third, it is
still true that the vast majority of triangles (at least 79%) containing these conference
teams contain only other teams in the same conference. That is, it is easy to classify
the overlap as weak and accurate conference identification remains simple. Even the
associations seen between some of the independents remain clear at the 75% level.

3.3. Benchmark graph

The previous examples have shown that community detection based on the vertex
partitioning of a clique graph can be very successful, much more so than simple clique
percolation. However all the examples above are well known from the literature which is
dominated by successful methods for finding vertex partitions of graphs. This means that
exemplary networks drawn from the literature are likely to have an inherent bias towards
those that give ‘good’ results for most vertex partitioning schemes such as the Louvain
method used here.

3 The conference assignment used in [42] appears to be for the 2001 season. The data used here for the games
played between two teams are based on the file football.gml downloaded from Newman’s website which is
associated with [42]. However the conference assignments used here have been derived from other sources.
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Figure 5. Network based on games played in 2000 between teams of the Division
1-A American College Football league. The community structure is found using
order four clique percolation. Edges and vertices in a unique community are
shown in a colour unique to that community. Vertices in the same community
are also shown using the same shape (some shapes are used for two distinct
communities). Vertices and links not in an order four clique are shown in grey.
Vertices and edges in more than one community are shown in red and using circles
for the vertices. The teams of each conference are placed in a small circle which
are in turn located around a large circle. The eight independents appear as single
vertices around the large circle. The community structure detected by order four
clique percolation matches the conference structure almost perfectly. Note that
the conference at about 7 o’clock is split into its two divisions.

In fact the situation with these standard examples may be even more complicated.
The definition of a ‘good’ community is usually taken to be in terms of some reference
vertex partition, Zachary’s original split [46] into two vertex sets using the Ford–Fulkerson
binary community algorithm [47], or the association of American College Football teams
with their conferences. A ‘good’ method is defined to be one which obtains results close
to these externally specified partitions. Indeed this is what has been done to judge the
clique graph method a success on the previous examples. However one might argue that
a good overlapping community structure might reveal subtleties missed by simple vertex
partitions. For instance, it is clear that the instructor in the karate club example (vertex
0) is a member of two distinct communities, and indeed is the only connection between
the two. In this sense the reference partition of the vertices may well not be the ‘best’ way
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Figure 6. Network based on games played in 2000 between teams of the Division
1-A American College Football league. The vertices are placed in the same
locations as figure 5. The community structure detected by vertex partitioning
of the order three clique graph, C(3)(G), clearly identifies the teams in each
conference. About one-third of conference teams are members of communities
containing teams from other conferences. However the majority of triangles
containing conference teams contain only other teams in the same conference
and so conference identification is simple.

to describe the community structure in a network. Unfortunately, it is often not possible
to produce a ‘better’ reference community structure. Either the data to do this are not
available or there is still a subjective element to any definition of a better community
structure.

Therefore the final example is an artificial benchmark graph constructed to reflect
the overlapping community structures expected in many situations. Thirty six vertices
are placed on a square grid. Each vertex is visited in turn and two more vertices are
chosen at random, subject to the constraints that the vertices are distinct, and that all
three vertices are either all in the same row or they are all in the same column. The three
vertices are then connected to form a triangle, using any existing edge or adding more if
needed. Once all thirty six vertices have been visited we repeat until the desired number
of triangles has been added. This produces a simple graph, where every edge and every
vertex is part of at least one triangle.

This benchmark graph can be thought of as a group of thirty six individuals who work
in six different firms and are members of one of six different social groups (e.g. common
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Figure 7. A vertex partition and an edge partition of the benchmark graph in
which 72 triangles are placed. The edge partition is found by finding a vertex
partition of D(2)(G)—the weighted line graph D(G) described in [39]. Both
partitions are found using the Louvain algorithm to maximize modularity (9)
with γ = 1.2. On this run, the vertex partition finds the six communities
associated with the rows, indicated by the vertex shapes and colours, but the row
communities are completely missed. The edge partition finds eleven communities.
The edges in each column and those in each of two of the six rows are each
correctly assigned to a single community, as indicated by the edge colours.

sports team, extended family group) outside work. No two individuals both work at the
same firm and have the same social interests. Of course this last restraint is somewhat
artificial and the square grid is too simplistic, imposed purely for visualization purposes.
Nevertheless it does try to capture the idea that people are members of more than one
community and their social interactions, here represented by the triangles, may take place
in different communities. These communities may not be obvious if one studies just the
existence of bilinear relationships (e.g. edges only indicate that phone calls were made
or emails were sent) rather than analysing the nature of each contact. The aim for a
community detection method is to find the twelve communities, one for every row and
one for every column.

Any vertex partition method will fail to find at least half of the structure. In the
example we have used (the Louvain algorithm applied directly to the vertices) it does seem
to be relatively successful, usually finding six or seven communities, a good approximation
to either the rows or the columns, for γ = 0.6–2.0 in (9). One good example is shown in
figure 7.
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Figure 8. The community structure based on the partition of order three cliques
of the same benchmark graph as in figure 7, produced by applying the Louvain
algorithm to the C(3) clique graph, and maximizing modularity with γ = 3.0.
Twelve communities associated with the columns are found matching the column
and row communities perfectly. This is indicated by the edges in each row having
a unique colour, and similarly for the columns.

Perhaps surprisingly, partitioning the edges by making a partition of the vertices in
the graph D(2)(G) (the weighted line graph D(G) in [39]) is not much more successful.
In principle this should also be able to detect the overlapping communities. The problem
here may be that there are also many rectangles in this artificial benchmark and these
are important when optimizing modularity in the weighted line graph.

On the other hand, the clique detection method is almost perfect. Looking at the
three cliques, and applying the Louvain method to both C(3) and D(3) clique graphs, both
the column and vertex structure is found almost perfectly, as shown in figure 8. The clique
percolation method is also perfect on this benchmark graph.

4. Discussion

The aim of this paper has been to show that if one wishes to focus on the role of cliques
in a graph G, one may encode this information as a graph, a clique graph whose vertices
represent the cliques in the original graph G. The advantage is that there are many well
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established methods for analysing the properties of vertices of a graph and, for the price
of a simple transformation, these can be applied to obtain the same information about
the cliques. It avoids the natural bias towards vertices found in network analysis while
exploiting the same bias by working with clique graphs in order to move the focus onto
the cliques of the original graph G.

One of the most important differences between this work and previous research is
that the emphasis here is on the cliques. Other studies of clique overlap usually retain the

focus on the original vertices and use constructions similar to the A
(n)
ij of equation (3).

That is, the vertices are still the same as the original graph but now the edge weights
carry the information about clique overlap. The emphasis here and in [23] (and indeed
in the clique graphs of [4, 71]) is on exploiting our vertex centric view of graphs and on
using a new graph where the vertices represent the cliques of the original graph.

The construction of a clique graph is not unique. Several definitions of weighted clique
graphs are suggested here, motivated by work on useful projections of bipartite graphs
(for example see [36]–[38]) and on the case of order two cliques, the line graphs of [39, 40].
As emphasized in [39, 40], the construction of D(n) (6) has the advantage that a random
walk on its vertices retains the dynamical structure of random walks on the vertices of
either the bipartite graph B or the original graph G.

The most obvious limitation so far is that our original graph G must be simple.
However it is straightforward to define a second weighted bipartite graph where the entry
in the adjacency matrix B̄iα is the weight of the clique α. There are many ways to define
the weight of a clique based on the weights of the edge, for example see [21, 50, 51]. We
would consider replacing our definition of the adjacency matrix of the weighted clique
graph D(n) of (6) by

D
(n)
αβ =

∑
i,k

(n)
i >1

B̄
(n)
iα B

(n)
iβ

s
(n)
i − B̄

(n)
iα

(1 − δαβ). (10)

Here s
(n)
i =

∑
i B̄iα and Biα is equal to one (is zero) only if B̄iα is non-zero (is zero). This

form is again motivated by considering a random walk that moves from vertex i to clique
α to vertex, etc. This approach was used for line graphs (n = 2) in [40].

An important difference between this work and much of the literature is that I have
focused on all cliques of a fixed order n. This can reflect the importance of one particular
clique in a given context. For instance the triad plays an important role in social network
analysis [3, 5], [9]–[12], [14, 16]. In other circumstances choosing the order of cliques
used may just be a useful computational freedom, as here and in [23]. However it is
straightforward to generalize all the constructions to a situation where the cliques are
drawn from a different set of cliques C, containing cliques of different orders. We just
define a new bipartite incidence matrix Biα which is one (zero) if vertex i ∈ V is in clique
α ∈ C which is now drawn from some more general set of cliques C. The clique overlap
graph A(n)(G) defined in (3) is replaced by

Aij(G, C) =
∑
α∈C

BiαBjα(1 − δij), ∀ i, j ∈ V. (11)

In fact most work on the overlap of cliques in a graph is based on A(G, C(max,n)), where
C(max,n) is the set of all maximal cliques whose order is at least n, for instance see [4], [6]–[8],
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[13, 15]. In principle we could generalize C(n)(G), D(n)(G) and D̃(n)(G) of equations (4),
(6) and (7) in the same way, e.g. the ‘co-clique’ graph defined in [8] would be C(G, C(max,n)).
However the random walk argument suggests that the definition of D(n)(G) should now
be

Dαβ(G, C) =
∑

i,k
(n)
i >1

Biα

(k
(n)
i − 1)

Biβ

nβ

(1 − δαβ), α, β ∈ C (12)

where nβ =
∑

i Biβ is the order of the clique β.
It has been argued that considering only complete subgraphs is too ‘stingy’ [52]. So

we may be interested in the case where α is a subgraph of G isomorphic to one of a small
set of more general motifs, subgraphs which are not necessarily regular graphs. Interesting
examples would be those representing cohesion, such as the n cliques, n-clans, n-clubs, k-
plex and k-core structures used in social networks and elsewhere [5, 11, 14]. The incidence
matrix Biα may be defined as before but for this new set of subgraphs, and it can be
projected onto vertices or motifs to capture motif overlap. For instance the generalization
of A and C graphs from a set of maximal cliques of minimum order as used in [6] to
equivalents for a set of motifs was given in [32]. By the time we have reached this level
of complexity we are essentially defining hypergraph structures on the set of vertices. On
the other hand, such motif graph constructions are still useful ways to convey the motif
overlap information and, by using a graph to do so, standard tools may be used to analyse
this information.

Such generalizations also suggest how these clique graph constructions could be
adapted for directed or signed graphs. In these cases there are many different ways of
having connections between, say, three vertices but we can just keep the relevant motifs,
e.g. using the set of triangles regarded as being balanced in balance theory [5, 72].

In all this work we have always considered the overlap of vertices and motifs. If the
fundamental structure is a graph G then, in the spirit of [39, 40], we may want to define
overlap in terms of the edges of G. Thus Beα is one if edge e is part of motif α. As an
example consider a regular square lattice as the original graph G and suppose we take
a unit square as the motif of interest. It is simple to see that the motif graphs formed
using the edge overlap,

∑
e BeαBeβ(1 − δαβ), etc, are also square lattices, i.e. in terms of

topology these edge–motif graphs are just the dual lattice.
Finally we have illustrated one use for clique graphs, that of detection of overlapping

communities, a cover and not a partition of the original vertices. There has been a recent
surge in interest in this problem, for instance see [23], [53]–[59], [39, 25, 60, 61, 35, 69],
[62]–[66], [40, 67]. By way of contrast, the literature on social network analysis, where
clique overlap is better known, is almost entirely focused on cohesive subgroups which are
partitions of the original vertices, for instance in [46, 3, 6, 10, 32, 17, 13]. This follows in
part because of the focus in this area on the graphs which retain the original vertices such
as the As of (3) and (11). Since most algorithms produce a partition of the vertices, such as
the Johnson Hierarchical Clustering Scheme [70] (as used in UCInet [13]), non-overlapping
vertex communities are the norm in this area.

The approach suggested here has the advantage that, for the price of a simple
transformation to produce a clique graph C(G, C) or D(G, C), the much more extensive
work on vertex partition of a graph may be applied to produce an overlapping community
structure without additional work. This may reduce the development time for a project.
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In terms of computational efficiency, the clique graphs are generally bigger but by how
much depends on the detailed structure of the graph. The speed savings of a good fast
vertex partitioning algorithm, such as [41, 68], may compensate for the larger size of the
clique graph. The most important feature though is that this method puts the emphasis
on cliques. It is likely that this approach will be better than other methods when cliques
play a key role. For instance, it was noticeable that in the benchmark network created
out of triangles, edge partitioning, an alternative overlapping community technique, was
not nearly as effective as the vertex partitioning of clique graphs.
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