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We study constraint satisfaction problems on the so-called planted random ensemble. We show that for
a certain class of problems, e.g., graph coloring, many of the properties of the usual random ensemble are
quantitatively identical in the planted random ensemble. We study the structural phase transitions and the
easy-hard-easy pattern in the average computational complexity. We also discuss the finite temperature
phase diagram, finding a close connection with the liquid-glass-solid phenomenology.
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Constraint satisfaction problems (CSPs) stand at the root
of the theory of computational complexity [1] and arise in
computer science, physics, engineering, and many other
fields of science. Consider a set of N discrete variables and
M Boolean constraints; the problem consists in finding a
configuration of variables that satisfies all the constraints or
in proving that no such configuration exists. Algorithmical
approaches to intrinsically hard NP-complete CSPs [1] are
one of the biggest challenges in today’s science. Ensembles
of random CSPs, where the constraints are chosen uni-
formly at random from some prescribed distribution, are
being used to understand the average computational com-
plexity [2]. Statistical physics techniques have shed new
light on the problem and on the origin of the average
algorithmical hardness [3,4].

A major point in evaluating the performance of new
algorithms for hard CSPs is to be able to generate difficult
instances that are guaranteed to be satisfiable. Planting is
the most standard way to do so: one first chooses a con-
figuration of variables and then considers only constraints
which are compatible with this planted configuration.
Many planting protocols have been introduced [5—-7]; how-
ever, the understanding of when and why they provide a
difficult instance is still very poor compared to what is
known for the purely random ensemble [3,4]. This is
because planting a solution changes the properties of the
ensemble. It is moreover often anticipated that the planted
solution is easier to find than a random one, as has been
indeed proven for high density of constraints [8]. Hard
instances with a known solution are also appealing to
cryptographic application as they provide good one-way
functions. Planted instances may also result from applica-
tions where only constraints compatible with an initial
state of the system are added.

In this Letter we show that for a specific, yet large, class
of CSPs, one can easily generate planted instances by
hiding a quiet solution that does not have influence on
most of the characteristics of the ensemble. The canonical
example of a CSP where a solution can be planted in the
quiet way is the graph g-coloring problem on which we
shall illustrate our findings about the phase diagram and the
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average algorithmical hardness. In the conclusion, we dis-
cuss the class of problems that allow such a quiet hiding.

Hiding without changing.—The graph coloring problem
[9,10] consists in deciding if the N vertices of a graph can
be colored using only ¢ colors in such a way that every two
adjacent vertices have different colors. The control pa-
rameter is the average degree of variables ¢, and we con-
sider the thermodynamical limit N — oo.

The way to plant a quiet solution in the graph coloring
problem is actually the most natural one: One assigns a
random color with equal probability to each of the N
vertices, and then constructs the graph by randomly throw-
ing links between vertices of different colors. Using the
cavity method [11] we describe the phase diagram and the
structure of solutions in this planted ensemble. In the large
N limit, the degree distribution in the planted graphs is
Poissonian with mean ¢, and thus they are locally treelike
just as the standard random Erdos-Rényi graphs. Following
the cavity approach [10,11] the Belief-Propagation (BP)
equations can be written. Denote 5 * the probability that
the site i takes color s in the absence of the site j:
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The entropy per site s = S/N can thus be computed if the
distribution P(i) over the graph is known. Assuming the
absence of long range correlations, recursive equations on
this distribution can be written and solved via the popula-
tion dynamics technique [11]. In the planted ensemble one
needs to distinguish between the sites that were planted
with different colors; we thus consider ¢ distributions:
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where s is taking values 1,..., g, and function f(-) was
defined in Eq. (1). The fixed point of (3) may depend on the
initial conditions. One might initialize P,(¢s) randomly or
in the planted solution [where all the elements in P (i) are
vectors fully oriented in the direction of the color s]. The
dependence on initial conditions is a generic sign for the
appearance of different Gibbs states.

Let us first review the properties of the purely random
ensemble. The space of solutions in the coloring of random
graphs undergoes several transitions as average degree c is
increased [3,10]: For low degree ¢ < c¢,; almost all solu-
tions (proper colorings of the graph) belong to a single
Gibbs state and the problem can be studied using the BP
approach. For ¢ > ¢,, the space of solutions shatters into
exponentially many different clusters, each corresponding
to a different Gibbs state. In this case, a technique called
one-step replica symmetry breaking (1RSB) [3,11] is used
to describe the phase space. To focus on clusters of a given
size we introduce the Parisi IRSB parameter m, clusters
are then weighted by their size to the power of m [10,12].
For ¢ < ¢, a typical solution belongs to a cluster corre-
sponding to the value m = 1. For ¢ > ¢, although expo-
nentially many clusters exist, a random solution will with
high probability belong to one of the few largest clusters,
corresponding to 0 < m < 1, while the m = 1 clusters do
not exist anymore; this is called the condensed phase [3].
Finally for ¢ > ¢, the last cluster disappears and no solu-
tions exist anymore. On top of this geometrical behavior in
the space of solutions, a remarkable phenomenon appears
within the clusters themselves. In some of them a finite
fraction of variables are allowed only one color (a pheno-
menon call freezing) [10,13]. To the best of our knowledge,
no existing algorithm is able to find solutions in the frozen
clusters in polynomial time [4,10,14], and since in a region
near to the colorability threshold all clusters are frozen this
provides a bound on the algorithmically hard phase.

Coming back to the planted ensemble, notice that Eq. (3)
is nothing else but the 1RSB equation for the coloring of
purely random graphs at m = 1 [compare, e.g., with
Eq. (C4) in [10], or with the equations for the reconstruc-
tion on trees [15]]. It is known from [15] that if (3) is
initialized in the planted configuration then in the fixed
point the distribution P; is biased towards color s above the
reconstruction threshold, i.e., for average degree ¢ > ¢,
[15]. The value ¢, is then a spinodal point for the existence
of a planted Gibbs state containing the planted configura-
tion. From the equivalence of Eq. (3) with the 1RSB
equation at m = 1 for the purely random ensemble it
also follows that both the planted and the purely random
ensembles admit the so-called liquid solution where all
s = 1/q. A linear stability analysis shows that the liquid
solution is locally stable against small perturbations to-

wards the planted solution for ¢ < ¢, = (¢ — 1)> [16].
Above ¢; the only stable fixed point of (3) is strongly
biased towards the planted configuration and c; is therefore
a spinodal point for the liquid state. The fact that the liquid
solution is stable for ¢ < ¢; also means that the properties
of the phase space are not affected by the very existence of
the planted state. This leads us to the important conclu-
sion—which we call quiet planting—that in this region the
properties of the planted ensemble are exactly the same as
the properties of the purely random ensemble, up to the
existence of the planted state [17].

For completeness let us mention that, just as in the
purely random ensemble [10], the liquid solution in the
planted ensemble decomposes further into 1RSB states for
¢ > c,. Properties of these states can be obtained by solv-
ing the IRSB equations. In the planted ensemble, the IRSB
equations have only one nontrivial solution, independent
from the planted configuration, and identical to the 1RSB
solution in the purely random ensemble. Since the liquid
state is identical in the two ensembles, it is not so surpris-
ing that the glassy states are identical as well.

Phase diagram of planted coloring.—We now describe
the phase diagram of the planted ensemble (Fig. 1). Up to
the average degree c,; almost all solutions belong to one
single large cluster or state of entropy sgp = logg +
(c/2)1og(1 — 1/g). Above c, the space of solutions splits
into exponentially many clusters, as in the purely random
ensemble. As the planted cluster or state is described by the
solution of (3) it has all the properties of the m = 1 clusters
from the purely random ensemble. In particular, for c¢; <
¢ < ¢, the planted cluster is one of the exponentially many
equilibrium clusters and thus for ¢ < ¢, the purely random
and planted ensembles of random graphs are asymptoti-
cally equivalent. Interestingly, this equivalence has been
rigorously proven in [18], however only up to an average
degree ¢, < c. [19] with ¢, — ¢ as g — oo.

For ¢ > c, all the nonplanted m = 1 clusters disappear
and the size of the planted cluster becomes larger than the
total size of the remaining clusters. A first order transition
happens and the planted state dominates the total number
of solution. The entropy is thus given by the “‘planted”
fixed point of (3) plugged into (2). Another transition ap-
pears at ¢ (the colorability threshold in the purely random
ensemble) beyond which all clusters disappears except the
planted one. The values of ¢y, c., and ¢, given g are
identical to those in the purely random ensemble (see [10]).

The properties of the planted cluster can be studied
numerically on a single graph (as was done for satisfiability
in [7]). We checked on many instances that the BP equa-
tions (1) initialized in the planted configuration converge to
the liquid fixed point for ¢ < ¢4, and to the planted one for
¢ > c,, while when initialized randomly they converge to
the planted fixed point only for ¢ > ¢;. We have checked
that the appearance of frozen variables [10,13] follows
exactly the theoretical prediction (see Fig. 2).

Easy-hard-easy pattern.—If one does not discover the
planted cluster, the planted and the purely random graphs
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FIG. 1 (color online). Phase diagram on the 5-coloring on the
planted ensemble. Bottom: Sketches of the clustering. At an
average degree ¢, the space of solutions shatters into exponen-
tially many clusters, the planted cluster being one of them.
Beyond c,. the planted cluster contains more solutions than all
the others together. At ¢, the last nonplanted cluster disappears.
Top: Total entropy s,; with the subdominant part (dashed). The
equilibrium complexity Zqyitibrium (l0garithm of the number of
dominant clusters), the entropy of the nonplanted clusters and
critical degrees are taken from [10].

are indistinguishable and we expect that they have compa-
rable algorithmic difficulty. This is indeed what we ob-
served in experiments with several solvers. Figure 2 shows
results of the Walk-COL algorithm [10] on both the planted
and purely random graphs. No difference is visible; thus
(unless the planted cluster intervenes), the easy-hard pat-
tern observed in the colorable phase ¢ < ¢, is the same in
both the ensembles. It has been empirically argued this
transition is related to the freezing of clusters [10].

On the other hand, for very large degree ¢ > c; it is
known that even simple message passing algorithms find a
solution near the planted one [8]; therefore, a second hard-
easy transition must exist. This is due to the aforemen-
tioned linear instability at c¢;: Since for ¢ > ¢; BP (1)
converges spontaneously towards the planted fixed point
(as shown in Fig. 2) it is easy to find solutions from the
planted cluster above ¢; (e.g., BP decimation algorithm
finds solutions in linear time). For ¢ < ¢;, however, without
prior knowledge of the planted configuration BP converges
to the uniform liquid fixed point. Applying the state of art
algorithms (BP decimation, BP reinforcement, Walk-COL,
simulated annealing, etc.) to planted instances for ¢, < ¢ <
c; we were indeed not able to find solutions in polynomial
time. This suggests that the hard-easy algorithmic transi-
tion in the planted ensemble arises exactly at ¢;. Note at
this point that since c; = ¢; for g =3, the planted
3-coloring is algorithmically easy for all degrees.

Phase diagram at finite temperature.—It is finally of
interest to consider the properties of the problem at finite
temperature 7, using a unit energy cost for every mono-

from the BP fixed point when initialized randomly (full tri-
angles) and in the planted configuration (also called the whiten-
ing [20], empty circles), compared to the theoretical predictions
[10,13] (full and dashed lines). For ¢ > ¢; = 16 BP converges
spontaneously to the planted fixed point. For ¢ < 14.04 [13]
there are no frozen variables in the planted cluster. Inset:
Fraction of monochromatic edges versus the number of sweeps
of the Walk-COL algorithm [10] in 5-coloring of a purely
random and a planted graph, N = 10°. Quiet planting does not
seem to affect the computational hardness in the region ¢ < c;.

chromatic edge. The BP and the 1RSB equations can be
easily extended to this situation as, e.g., in [10]. Note,
however, that at 7 > 0 the equations for the planted en-
semble do not correspond anymore to the 1RSB equations
at m = 1, making the finite temperature problem richer. In
fact, the system behaves just as a usual mean field glass
problem, with its liquid-glass transition, where the planted
state acts as a solidlike (or crystal) phase. This solid or
planted phase exists below an upper spinodal temperature
T, (that starts at ¢y, see Fig. 3), and the liquid solution
s = 1/q becomes unstable towards this solid state as it
encounters a spinodal point at

c—(q— 1)2]’

q—1+c @)

T, = —l/log[

which starts at ¢; at T = 0 (see Fig. 3). As usual in first
order phase transitions, the free energy of the liquid and
solid state have to be compared to draw the equilibrium
phase transition line, starting at ¢, at 7 = 0. As in the
purely random ensemble the liquid state undergoes a dy-
namical and Kauzmann glass transition (Fig. 3). The
3-coloring is particular: the two spinodals coincide, mak-
ing the equilibrium transition of a second order. A similar
phase diagram as in Fig. 3 was found in [21] for the
ferromagnetic p-spin model, in fact that model is just a
particular case of our quiet planting setting. In [21], how-
ever, the liquid state is always stable and finding the ground
state is polynomial due to the linearity of the problem.
The inset of Fig. 3 shows the behavior of Monte Carlo
annealing for ¢ > ¢; to illustrate the liquid-glass-solid
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FIG. 3 (color online). Finite temperature phase diagram of the
planted 5-coloring. At high temperature the liquid is the unique
Gibbs state. Below the higher spinodal line 7 a planted (solid)
Gibbs state appears, and becomes thermodynamically dominant
at the liquid-solid transition. The supercooled liquid state is
locally stable until the lower spinodal line 7,. The liquid under-
goes the usual dynamical and Kauzmann (ideal) glass transitions
(data from [10]). The thick line depicts the algorithmically hard
region, the left boundary being the freezing transition [10]. Inset:
Energy versus temperature in Monte Carlo annealing with rate
8T =1072,1073,107%, and 10> per sweep for N = 5 X 107 at
¢ = 20> c;. Above c; a slow enough annealing undergoes a
transition towards the planted state.

phenomenology: Upon lowering the temperature, the lig-
uid can be supercooled, the solid phase avoided, and a glass
transition observed. But with slow enough annealing the
system transits to the solid (planted) state at temperature
T,. In this case a simple simulated annealing is able to find
the ground state. If the system is initialized in the planted
solution and the temperature is increased, the solid will
melt to the liquid state at temperature 7. For connectivities
¢ = ¢, the absence of the liquid spinodal line and the mean
field nature of the model (barriers between states are ex-
tensive) makes algorithms based on local dynamics unable
to find the planted cluster. This gives a physical interpre-
tation behind the hard-easy transition at c;.

Conclusion.—We have discussed the graph coloring
problem on the planted ensemble and showed that quanti-
tative results, explicitly checked via numerical experi-
ments, can be readily deduced from what is known in the
purely random ensemble. In particular we showed that for
¢ < ¢, the planted ensemble is asymptotically equivalent
to the purely random ensemble. Several papers have estab-
lished the easiness of the planted ensemble at very large [§8]
or at very small average degree. Here we bridged the gap
and showed that while the easy-hard transition in the
planted ensemble is similar to the one in the usual random
ensemble, the hard-easy transition coincides with a local
instability of the liquid phase at ¢; = (¢ — 1)2. This leaves
a large region of very hard problems with a known hidden
solution. We also showed how to create mean field “glass”
models with a solidlike or planted state.

Let us finish by discussing the (large) class of CSPs
where the quiet planting is possible and where our phe-

nomenology readily applies. The crucial property that we
used when stating that the natural planting does not change
much of the structural properties was the uniformity of the
BP fixed point in the purely random ensemble [e.g., in
coloring s = (1/gq, ..., 1/q)]. Many other CSPs actually
share this property, e.g., all the problems without disor-
dered interactions on random regular graphs, the hyper-
graph bicoloring [14], or the balanced locked problems of
[4]. These last ones are particularly appealing as hard
satisfiable benchmarks. The random satisfiability problem,
however, is a canonical example where the fixed point of
the BP equation is not uniform and where our results do not
apply. It would be interesting to generalize our approach to
plant quiet solutions in such cases.
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