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Abstract. The fast Gauss transform proposed by Greengard and Strain reduces the computational complexity
of the evaluation of the sum of N Gaussians at M points in d dimensions from O(MN) to O(M + N). However,
the constant factor in O(M +N) grows exponentially with increasing dimensionality d, which makes the algorithm
impractical in higher dimensions. In this paper we present an improved fast Gauss transform where the constant
factor is reduced to asymptotically polynomial order. The reduction is based on a new multivariate Taylor expansion
scheme combined with the space subdivision using the k-center algorithm. The complexity analysis and error bound
are presented which helps to determine parameters automatically given a desired precision to which the sum must
be evaluated. We present numerical results on the performance of our algorithm and provide numerical verification
of the corresponding error estimate.
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1. Introduction. Since the original work of Greengard and Strain [16], the fast Gauss
transform has proven to be a very efficient algorithm for solving many problems in applied
mathematics and physics, and nonparametric statistics [15, 18, 4, 10]. All these problems
require the evaluation of the discrete Gauss transform

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

, (1.1)

where qi are the weight coefficients, “source” points {xi}i=1,...,N are the centers of the Gaus-
sians, h is the bandwidth parameter of the Gaussians. The sum of the Gaussians is evaluated
at each of the “target” points {yj}j=1,...,M . Direct evaluation of the sum at M target points
due to N sources requires O(MN) operations, which makes the computation of large scale
problems prohibitively expensive.

To break through this computational barrier, Greengard and Strain [16] developed the fast
Gauss transform, which requires O(M + N) operations, with a constant factor depending on
the dimensionality d and the desired precision. The fast Gauss transform is an “analysis-
based” fast algorithm in the sense that it speeds up the computation by approximation of the
Gaussian function to achieve a desired precision. The sources and targets can be placed on
general positions. In contrast the most popular fast Fourier transform requires the point to
be on a regular mesh which is in general not available in the application of statistics and
pattern recognition. An implementation in two dimensions demonstrated the efficiency and
effectiveness of the fast Gauss transform [16].

Despite its success in lower dimensional applications in mathematics and physics, the
algorithm has not been used much in statistics, pattern recognition and machine learning
where higher dimensions occur commonly [9]. An important reason for the lack of use of the
algorithm in these areas is that the performance of fast Gauss transform degrades exponen-
tially with increasing dimensionality, which makes it impractical for the statistics and pattern
recognition applications.

There are two reasons contributing to the degradation of the fast Gauss transform in
higher dimensions: firstly, the number of the terms in the Hermite expansion grows expo-
nentially with dimensionality d, which makes the constant factor associated with the nominal
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complexity O(M + N) increases exponentially with dimensionality. So the total compu-
tations and the amount of memory required increases dramatically as the dimensionality in-
creases. Secondly, the space subdivision scheme used by the fast Gauss transform is a uniform
box subdivision scheme which is tolerable in lower dimensions but is extremely inefficient in
higher dimensions.

In this paper we present an improved fast Gauss transform which addresses the above
issues. In this scheme, a multivariate Taylor expansion is used to reduce the number of the
expansion terms to the polynomial order. The k-center algorithm is applied to subdivide the
space which is more efficient in higher dimensions.

The organization of the paper is as follows. In section 2 we briefly describe the fast
multipole method and the fast Gauss transform. In section 3 we describe our improved fast
Gauss transform and present computational complexity analysis and the error bounds. In
section 4 we present numerical results of our algorithm and verification of the corresponding
error estimate. We conclude the paper in section 5.

2. FMM and FGT. The fast Gauss transform (FGT) introduced by Greengard and
Strain [16, 24] is an important variant of the more general Fast Multipole Method (FMM)
[14]. Originally the FMM was developed for the fast summation of potential fields generated
by a large number of sources, such as those arising in gravitational or electrostatic potential
problems in two or three dimensions. Thereafter, this method was extended to other potential
problems, such as those arising in the solution of the Helmholtz [8, 7] and Maxwell equations
[6]. The FMM has also found application in many other problems, e.g. in chemistry [3],
interpolation of scattered data [5].

In nonparametric statistics, pattern recognition and computer vision [23, 9, 10], the most
widely used function is the Gaussian which is an infinitely differentiable and rapidly decaying
function, in contrast to the singular functions that arose in the sums of Green’s functions
in the original applications of the FMM. This property makes the FGT distinct from the
general FMM in the sense that the Gaussian function decays rapidly in space and has no
singular/multipole expansion. In the following sections, we briefly describe the FMM and
the FGT.

2.1. Fast Multipole Method. Consider the sum

v(yj) =
N∑

i=1

uiφi(yj), j = 1, . . . ,M, (2.1)

where {φi} are a family of functions corresponding to the source function φ at different
centers xi, yj is a point in d dimensions, and ui is the weight. Clearly a direct evaluation
requires O(MN) operations.

In the FMM, we assume that the functions φi can be expanded in multipole (singular)
series and local (regular) series that are centered at locations x∗ and y∗ as follows:

φ(y) =
p−1∑

n=0

bn(x∗)Sn (y − x∗) + ε (p) , (2.2)

φ(y) =
p−1∑

n=0

an(y∗)Rn (y − y∗) + ε (p) , (2.3)

where Sn and Rn respectively are multipole (singular) and local (regular) basis functions,
x∗ and y∗ are expansion centers, an, bn are the expansion coefficients, and ε is the error
introduced by truncating a possibly infinite series after p terms. The operation reduction trick
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of the FMM relies on expressing the sum (2.1) using the series expansions (2.2) and (2.3).
Then the reexpansion for (2.3) is:

v(yj) =
N∑

i=1

uiφi(yj) =
N∑

i=1

ui

p−1∑

n=0

cniRn (yj − x∗) , j = 1, . . . ,M, (2.4)

A similar expression can be obtained for (2.2). Consolidating the N series into one p term
series, by rearranging the order of summations, we get

v(yj) =
p−1∑

n=0

[
N∑

i=1

uicni

]
Rn (yj − x∗) =

p−1∑

n=0

CnRn (yj − x∗) . (2.5)

The single consolidated p term series (2.5) can be evaluated at all the M evaluation points.
The total number of operations required is then O(Mp + Np) � O(Np) for N ∼ M . The
truncation number p depends on the desired accuracy alone, and is independent of M , N .

For the singular functions φ, for which the FMM was originally developed, a single series
expansion will not be valid over the whole domain. This leads to the idea of the FMM. In
the FMM, singular expansions (2.2) are generated around clusters of sources. In a fine-to-
coarse pass, the generated coefficients are translated into coarser level singular expansions
through a tree data structure by “translation” operators. These translation operations convert
the original S expansion to S expansions centered at other points. The R expansions can
similarly also be translated to R expansions centered at other points. In a coarse-to-fine
pass, the coefficients of the singular expansions at coarser level are converted via a sequence
of translations to coefficients of regular expansions at finer levels, then evaluated at each
evaluation point. Based on a divide-and-conquer strategy, the tree data structures are used to
collect and distribute the influence of the sources hierarchically. The FMM is thus a method
of grouping and translation of functions generated by each source to reduce the asymptotic
complexity of approximating the sum (2.1).

2.2. Fast Gauss Transform. The original FGT directly applies the FMM idea by using
the following expansions for the Gaussian in one dimension:

e−‖y−xi‖2/h2
=

p−1∑

n=0

1
n!

(
xi − x∗

h

)n

hn

(
y − x∗

h

)
+ ε(p), (2.6)

e−‖y−xi‖2/h2
=

p−1∑

n=0

1
n!

hn

(
xi − y∗

h

)(
y − y∗

h

)n

+ ε(p), (2.7)

where the Hermite functions hn(x) are defined by

hn(x) = (−1)n dn

dxn

(
e−x2

)
.

The two expansions (2.6) and (2.7) are identical, except that the arguments of the Hermite
functions and the monomials (Taylor series) are flipped. The first is used as the counterpart
of the multipole S expansion (usually a singular series for an FMM, here a series of Hermite
functions, which decay), while the second is used as the local expansion. The FGT then uses
these expansions and applies the FMM mechanism to achieve its speedup. Conversion of a
Hermite series into a Taylor series is achieved via a translation operation. The error bound
estimate given by Greengard and Strain [16] was shown to be incorrect, and a new and more
complicated error bound estimate was presented in [1].
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The extension to higher dimensions was done by treating the multivariate Gaussian as
a product of univariate Gaussians, applying the series factorizations (2.6) and (2.7) to each
dimension. For convenience’s sake, we adopt, the multi-index notation of the original FGT
papers [16, 24]. A multi-index α = (α1, . . . , αd) is a d-tuple of nonnegative integers. For
any multi-index α ∈ Nd and any x ∈ Rd, we have the monomial

xα = xα1
1 xα2

2 · · ·xαd

d .

The length of the multi-index α is defined as

|α| = α1 + α2 + . . . + αd,

and the factorial of α

α! = α1!α2! · · ·αd!.

The multidimensional Hermite functions are defined by

hα(x) = hα1(x1)hα2(x2) · · ·hαd
(xd).

The sum (1.1) is then equal to the Hermite expansion about center x∗:

G(yj) =
∑

α≥0

Cαhα

(
yj − x∗

h

)
, (2.8)

where the coefficients Cα are given by

Cα =
1
α!

N∑

i=1

qi

(
xi − x∗

h

)α

. (2.9)

The FGT in higher dimensions is then just an accumulation of the product of the Hermite
expansions along each dimension. If we truncate each of the Hermite series after p terms (or
equivalently order p − 1), then each of the coefficients Cα is a d-dimensional matrix with pd

terms. The total computational complexity for a single Hermite expansion is O((M +N)pd).
The factor O(pd) grows exponentially as the dimensionality d increases. Despite this defect
in higher dimensions, the FGT is quite effective for two and three-dimensional problems,
and has already achieved success in some physics, computer vision and pattern recognition
problems [15, 18, 10, 19].

Another serious defect of the original FGT is the use of the box data structure. The
original FGT subdivides the space into boxes using a uniform mesh. However, such a simple
space subdivision scheme is not suitable in higher dimensions, especially in applications
where the data might be clustered on low dimensional manifolds. First of all, it may generate
too many boxes (largely empty) in higher dimensions to store and manipulate. Suppose the
unit box in 10 dimensional space is divided into tenths along each side, there are 1010 boxes
which may cause trouble in storage and waste time on processing empty boxes. Secondly,
and more importantly, having so many boxes makes it more difficult for searching nonempty
neighbor boxes. Finally, and most importantly the worst property of this scheme is that the
ratio of volume of the hypercube to that of the inscribed sphere grows exponentially with
dimension, and thus most points . Thus In other words, the points have a high probability of
falling into the area inside the box and outside the sphere. (see Figure xx) The truncation error
of the above Hermite expansions (2.6) and (2.7) are much larger near the boundary than near
the expansion center. These two factors bring large truncation errors on most of the points.

In brief, the defects of the original FGT that we seek to address in this paper are:
1. The exponential growth of complexity with dimensionality.
2. The use of the box data structure in the FMM is inefficient in higher dimensions.
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3. Improved Fast Gauss Transform.

3.1. A different factorization. The defects listed above can be thought as a result of
applying the FMM methodology to the FGT blindly. Here we seek to use the complexity im-
provement of Equation 2.5, using different expansions and data-structures. As we mentioned
earlier, the FMM was developed for singular potential functions whose forces are long-ranged
and nonsmooth (at least locally), hence it is necessary to make use of the tree data structures,
multipole expansions, local expansions and translation operators. In contrast, the Gaussian is
far from singular — it is infinitely differentiable! There is no need to perform the multipole
expansions which account for the far-field contributions. We present a simple new factoriza-
tion and space subdivision scheme for the FGT. The new approach is based on the fact that the
Gaussian, especially in higher dimensions, decays so rapidly that the contributions outside of
a certain radius can be safely ignored.

Assuming we have N sources {xi} centered at x∗ and M target points {yj}, we can
rewrite the exponential term as

e−‖yj−xi‖2/h2
= e−‖∆yj‖2/h2

e−‖∆xi‖2/h2
e2∆yj ·∆xi/h2

, (3.1)

where

∆yj = yj − x∗, ∆xi = xi − x∗.

In expression (3.1) the first two exponential terms can be evaluated individually at either the
source points or the target points. The only problem left is to evaluate the last term where
sources and target coordinates are entangled. One way of breaking the entanglement is to
expand it into the series

e2∆yj ·∆xi/h2
=

∞∑

n=0

Φn(∆yj)Ψn(∆xi), (3.2)

where Φn and Ψn are the expansion functions and will be defined in the next section. Denot-
ing φ(∆yj) = e−‖∆yj‖2/h2

, ψ(∆xi) = e−‖∆xi‖2/h2
, we can rewrite the sum (1.1) as

G(yj) =
N∑

i=1

qjφ(∆yj)ψ(∆xi)
∞∑

n=0

Φn(∆yj)Ψn(∆xi). (3.3)

If the infinite series (3.2) absolutely converges, we can truncate it after p terms so as to obtain
a desired precision. Exchanging the summations in (3.3), we obtain

G(yj) = φ(∆yj)
p−1∑

n=0

CnΦn(∆yj) + ε(p), (3.4)

Cn =
N∑

i=1

qiψ(∆xi)Ψn(∆xi). (3.5)

The factorization (3.4) is the basis of our algorithm. In the following sections, we will
discuss how to implement it in an efficient way.

3.2. Multivariate Taylor Expansions. The key issue to speed up the FGT is to reduce
the factor pd in the computational complexity. The factor pd arises from the way that the
multivariate Gaussian is treated as the product of univariate Gaussian functions and expanded
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along each dimension. To reduce this factor, we treat the dot product in (3.2) as a scalar vari-
able and expand it via the Taylor expansion. The expansion functions Φ and Ψ are expressed
as multivariate polynomials [25].

We denote by Πd
n the space of all real polynomials in d variables of total degree less

than or equal to n; its dimensionality is rnd =
(
n+d

d

)
. To store, manipulate and evaluate

the multivariate polynomials, we consider the monomial representation of polynomials. A
polynomial p ∈ Πd

n can be written as

p(x) =
∑

|α|≤n

Cαxα, Cα ∈ R. (3.6)

It is computationally convenient and efficient to stack all the coefficients into a vector. To
store all the rnd coefficients Cα in a vector of length rnd, we sort the coefficient terms ac-
cording to Graded lexicographic order. “Graded” refers to the fact that the total degree |α| is
the main criterion. Graded lexicographic ordering means that the multi-indices are arranged
as

(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1),
(2, 0, . . . , 0), (1, 1, . . . , 0), . . . , (0, 0, . . . , 2), . . . . . . , (0, 0, . . . , n).

If we expand the univariate Gaussian function ev into the Taylor series:

ev =
∞∑

n=0

vn

n!
, (3.7)

and let v = 2x · y = 2(x1y1 + · · · + xdyd), we have

vn =
∑

|α|=n

2n

(
n

α

)
xαyα, (3.8)

where
(

n
α

)
= n!

α1!···αd! are the multinomial coefficients, and the terms of xα and yα are sorted
in graded lexicographic order. So we have the following multivariate Taylor expansion of the
Gaussian functions

e2x·y =
∑

α≥0

2|α|

α!
xαyα. (3.9)

From Eqs.(3.1), (3.4) and (3.9), the weighted sum of Gaussians (1.1) can be expressed as a
multivariate Taylor expansions about center x∗:

G(yj) =
∑

α≥0

Cαe−‖yj−x∗‖2/h2
(

yj − x∗
h

)α

, (3.10)

where the coefficients Cα are given by

Cα =
2|α|

α!

N∑

i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

. (3.11)

If we truncate the series after total degree p−1, the number of the terms rp−1,d =
(
p+d−1

d

)
is

much less than pd in higher dimensions (as shown in Table 3.1). For instance, when d = 12
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TABLE 3.1
Number of terms in d-variate Taylor expansion truncated after order p − 1.

p\d 1 2 3 4 5 6 7 8 9 10 11 12

4 4 10 20 35 56 84 120 165 220 286 364 455
5 5 15 35 70 126 210 330 495 715 1001 1365 1820
6 6 21 56 126 252 462 792 1287 2002 3003 4368 6188
7 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564
8 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388
9 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970
10 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930

ab2 abc ac 2 b3 b2c c3

��

��

a

1

b c

ab ac b2 bc

a b c

a b c

a b c

a b c

a4 a3b a3c a2b2 a2bc a c 22 ab3 ab2c abc 2 ac 3 b4 b3c b2c2 bc3 c

2

4

ca2

bc23a a c2a b2 

FIG. 3.1. Efficient expansion of the multivariate polynomials.

and p = 10, the original FGT needs 1012 terms, the multivariate Taylor expansion needs only
293930. For d −→ ∞ and moderate p, the number of terms becomes O(dp), a substantial re-
duction. The reduction is based on the fact that there are many like terms which are combined
in the multivariate Taylor expansion (3.9).

One of the benefits of the graded lexicographic order is that the expansion of multivariate
polynomials can be performed efficiently. For a d-variate polynomial of order n, we can store
all terms in a vector of length rnd. Starting from the order zero term (constant 1), we take
the following approach. Assume we have already evaluated terms of order k − 1. We use
an array of size d to record the positions of the d leading terms (the simple terms such as
ak−1, bk−1, ck−1, . . . in Figure 3.1) in the terms of order k − 1. Then terms of order k can
be obtained by multiplying each of the d variables with all the terms between the variable’s
leading term and the end, as shown in the Figure 3.1. The positions of the d leading terms are
updated respectively. The required storage is rnd and the computations of the terms require
rnd − 1 multiplications.

3.3. Spatial Data Structures. As discussed above, we need to subdivide space into
cells and collect the influence of the sources within each cell. The influence on each target can
be summarized from its neighboring cells that lie within a certain radius from the target. To
efficiently subdivide the space, we must devise a scheme that adaptively subdivides the space
according to the distribution of points. It is also desirable to generate cells as compactly as
possible (the ideal compact cell is a sphere, though spheres cannot be used to partition space
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without overlap).
Based on these considerations, we model the space subdivision task as a k-center prob-

lem, which is defined as follows: given a set of n points and a predefined number of the
clusters k, find a partition of the points into clusters S1, . . . , Sk, and also the cluster centers
c1, . . . , ck, so as to minimize the cost function — the maximum radius of clusters

max
i

max
v∈Si

‖v − ci‖.

The k-center problem is known to be NP -hard [2]. Gonzalez [12] proposed a very
simple greedy algorithm, called farthest-point clustering, and proved that it gives an approx-
imation factor of 2. Initially pick an arbitrary point v0 as the center of the first cluster and
add it to the center set C. Then for i = 1 to k do the following: in iteration i, for every
point, compute its distance to the set C: di(v, C) = minc∈C ‖v − c‖. Let vi be a point that
is farthest away from C, i.e., a point for which di(vi, C) = maxv di(v, C). Add vi to set C.
Report the points v0, v1, . . . , vk−1 as the cluster centers. Each point is assigned to its nearest
center.

Gonzalez proved the following 2-approximation theorem for the farthest-point clustering
algorithm [12]:

THEOREM 3.1. For k-center clustering, the farthest-point clustering computes a parti-
tion with maximum radius at most twice the optimum.

Proof. For completeness, we restate a simple proof for the above theorem. First note that
the radius of the farthest-point clustering solution by definition is

dk(vk, C) = max
v

min
c∈C

‖v − c‖.

In the optimal k-centers, two of these k + 1 points, say vi and vj , must be in a same cluster
centered at c by the pigeon hole principle. Observe that the distance from each point to the
set C does not increase as the algorithm progresses. Therefore dk(vk, C) ≤ di(vk, C) and
dk(vk, C) ≤ dj(vk, C). Also by definition, we have di(vk, C) ≤ di(vi, C) and dj(vk, C) ≤
dj(vj , C). So we have

‖vi − c‖ + ‖vj − c‖ ≥ ‖vi − vj‖ ≥ dk(vk, C),

by the triangle inequality. Since ‖vi − c‖ and ‖vj − c‖ are both at most the optimal radius δ,
we have the radius of the farthest-point clustering solution dk(vk, C) ≤ 2δ.

The proof uses no geometry beyond the triangle inequity, so it holds for any metric
space. Hochbaum and Shmoys [17] proved that the factor 2 cannot be improved unless P =
NP . The direct implementation of farthest-point clustering has running time O(nk). Feder
and Greene [11] give a two-phase algorithm with optimal running time O(n log k). The
computational complexity of the above implementations is independent of the dimensionality.
This simple algorithm and its variants have been successfully embedded into many other
algorithms such as clustering and nearest-neighbor search [21, 13, 20].

The predefined number of clusters k can be determined as follows: run the farthest-point
algorithm until the maximum radius of clusters decreases to a given distance. The result is
bounded by twice the optimum. In practice, the initial point has little influence on the final
approximation radius, if number of the points n is sufficiently large. Figure 3.2 displays
the results of farthest-point algorithm. In two dimensions, the algorithm leads to a Voronoi
tessellation of the space. In three dimensions, the partition boundary resembles the surface of
a crystal.
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FIG. 3.2. The farthest-point algorithm divides 40000 points into 64 clusters (with the centers indicated by the
crosses) in 0.48 seconds on a 900MHZ PIII PC. Left: 2 normal distributions; Right: Uniform distribution.

3.4. The Algorithm. The improved fast Gauss transform consists of the following steps
(as shown in Figure 3.3):

Step 1: Assign the N sources into K clusters using the farthest-point clustering algorithm
such that the radius is less than hρx.

Step 2: Choose p sufficiently large such that the error estimate (3.14) below is less than the
desired precision ε.

Step 3: For each cluster Sk with center ck, compute the coefficients given by the expression
(3.11):

Ck
α =

2|α|

α!

∑

xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

.

Step 4: Repeat for each target yj , find its neighbor clusters whose centers lie within the range
hρy . Then the sum of Gaussians (1.1) can be evaluated by the expression (3.10):

G(yj) =
∑

‖yj−ck‖≤hρy

∑

|α|<p

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

.

3.5. Complexity and Error Bounds. The amount of work required in step 1 is O(NK)
(for large K, we can use Feder and Greene’s O(N log K) algorithm [11] instead). The
amount of work required in step 3 is of O(N rpd). The work required in step 4 is O(Mn rpd),
where n is the maximum number of the neighbor clusters for each target. For most nonpara-
metric statistics, computer vision and pattern recognition applications, the precision required
is moderate, we can get small K and small rpd. Since n ≤ K, the improved fast Gauss
transform achieves linear running time. The algorithm needs to store the K coefficients of
size rpd, so the storage complexity is reduced to O(Krpd).

The error in the above algorithm arises from two sources. The first is due to truncation
of the Taylor series in step 3, and the other due to cutoff of the far field contributions in step
4. The error ET (x, p) due to truncating the series at source point x after order p − 1 satisfies
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FIG. 3.3. The improved fast Gauss transform. The sources (red dots) are grouped into k clusters by the
farthest-point clustering algorithm. rx is the radius of the farthest-point clustering algorithm. The contributions on
the target (blue dot) outside of the cutoff radius ry are ignored.

the bound:

|ET (x, p)| ≤ e−(‖∆x‖2+‖∆y‖2)/h2 1
p!

e2∆x·∆y/h2
(

2∆x · ∆y

h2

)p

≤ e−(‖∆x‖2+‖∆y‖2)/h2 2p

p!
e2‖∆x‖‖∆y‖/h2

(‖∆x‖‖∆y‖
h2

)p

≤ 2p

p!

(rxry

h2

)p

=
2p

p!
ρp

xρp
y.

(3.12)

where ∆xi = xi − x∗ and ∆yj = yj − x∗, rx is the upper bound of ∆x, and ry is the upper
bound of ∆y. We also denote the ratios ρx = rx/h and ρy = ry/h. The Cauchy inequality

∆x · ∆y ≤ ‖∆x‖‖∆y‖,
and the inequality

2‖∆x‖‖∆y‖ ≤ ‖∆x‖2 + ‖∆y‖2,

were used in the above error bound analysis.
The cutoff error EC(ry) due to ignoring contributions outside of radius ry from target

point y satisfies the bound:

|EC(ry)| ≤ e−r2
y/h2

= e−ρ2
y . (3.13)

The total error at any target point y satisfies the bound:

|E(y)| ≤
∣∣∣
∑

qjET (x, p)
∣∣∣ +

∣∣∣
∑

qjEC(ry)
∣∣∣ ≤ Q

(
2p

p!
ρp

xρp
y + e−ρ2

y

)
. (3.14)
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TABLE 4.1
Running times in milliseconds for direct evaluation, fast Gauss transform and improved fast Gauss transform

in three dimensions.

Case N = M Direct FGT IFGT

1 100 2.9 5.5 4.6
2 200 11.4 13.0 12.5
3 400 46.1 37.0 21.1
4 800 184.2 121.8 33.2
5 1600 740.3 446.0 68.1
6 3200 2976.2 1693.8 132.8
7 6400 17421.4 6704.3 263.0
8 12800 68970.2 26138.6 580.2
9 25600 271517.9 103880.8 1422.0

where Q =
∑ |qj |.

From above error bound, we can see that p, ρx and ρy together control the convergence
rate. The larger p and ρy , the smaller ρx, the algorithm converges faster. But the cost of
computation and storage increases at the same time. There is always a tradeoff between the
speed and the precision. The above error bound is much simpler than the error estimate in [1].
Another interesting fact about the error bound is that it is independent of the dimensionality.

For bandwidth comparable to the range of the data, we can increase the steps of the
farthest-point algorithm to decrease the radius rx. As we seen in Figure 3.4, the radius of
farthest-point algorithm always decreases as the algorithm progresses. By this way, we can
make ρxρy < 1, so the error bound (3.14) always converges.

For very small bandwidth (for instance ρx > 10), the interaction between the sources
and targets are highly localized. We can set p = 0 which means we directly accumulate the
contributions of the neighboring sources and there is no series expansion. All we need is a
good nearest neighbor search algorithm [20, 22].

4. Numerical experiments. The first experiment compares the performance of our pro-
posed algorithm with the original fast Gauss transform. Since there is no practical fast Gauss
transform in higher dimensions available, we only make comparisons in three dimensions.
The sources and targets are uniformly distributed in a unit cube. The weights of the sources
are uniformly distributed between 0 and 1. The bandwidth of the Gaussian is h = 0.2. We set
the relative error bound to 2% which is reasonable for most kernel density estimation in non-
parametric statistics where Gauss transform plays an important role, because the estimated
density function itself is an approximation. Table 4.1 reports the CPU times using direct
evaluation, the original fast Gauss transform (FGT) and the improved fast Gauss transform
(IFGT). All the algorithms are programmed in C++ and were run on a 900MHz PIII PC. We
can find the running time of the IFGT grows linearly as the number of sources and targets
increases, while the direct evaluation and the original FGT grows quadratically, though the
original FGT is faster than the direct evaluation. The poor performance of the FGT in 3D
is also reported in [10]. This is probably due to the fact that the number of boxes increases
significantly by a uniform space subdivision in 3D. The cost to compute the interactions be-
tween the boxes grows quadratically. The farthest-point algorithm in the IFGT generates a
much better space subdivision and reduces the number of boxes greatly. The multivariate
Taylor expansion also reduces the computational cost by a factor 4.3 in 3D (the factor is for
order 7, and larger factors in higher dimensions).

The second experiment is to examine the performance of IFGT in higher dimensions. We
randomly generate the source and target points in a unit hypercube according to a uniform
distribution. The weights of the sources are uniformly distributed between 0 and 1. The
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FIG. 3.4. The radius of the farthest-point algorithm decreases as the algorithm progresses. (Left column)
points in 2D or 3D spaces. (Right column) the radius of farthest-point algorithm w.r.t. the steps of the algorithm.
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bandwidth is set to h = 1. The results are shown in Fig. 4.1. We compared the running
time of the direct evaluation to the IFGT with h = 1 and N = M = 100, . . . , 10000.
The comparisons are performed in dimensions from 4 to 10 and results in dimensions 4, 6,
8, 10 are reported in Figure 4.1. From the figure we notice that the running time of the
direct evaluation grows quadratically with the size of points. The running time of the IFGT
grows linearly with the size of the points. In 4, 6, 8, 10 dimensions, the IFGT takes 56ms,
406ms, 619 ms, 1568ms to evaluate the sums on 10000 points, while it takes 35 seconds
for a direct evaluation. The maximum relative absolute error as defined in [16] increases
with the dimensionality but not with the number of points. The worst relative error occurs in
dimension 10, and is below 10−3. We can see that for a 10D problem involving more than
700 Gaussians, the IFGT is faster than direct evaluation, while for a 4D problem the IFGT is
faster from almost the outset. We also tested our algorithm on the normal distributions with
mean zero, variance one of sources and targets. All data were scaled into unit hypercube. The
results are shown in Figure 4.1. We find that the running time is similar to the case of uniform
distribution, while the error is much less than the case of uniform distribution.
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FIG. 4.1. The running times in seconds (Left column) and maximum relative absolute errors (Right column)
of the IFGT (h = 1) v.s. direct evaluation in dimensions 4, 6, 8, 10 on uniform distribution (Top row) and normal
distribution (Bottom row).

The third experiment is to examine the error bounds of the IFGT. 1000 source points and
1000 target points in a unit hypercube are randomly generated from a uniform distribution.
The weights of the sources are uniformly distributed between 0 and 1. The bandwidth is
set to h = 0.5. We fix the order of the Taylor series p = 10, the radius of the farthest-
point clustering algorithm rx = 0.5h, and the cutoff radius ry = 6h, then we vary p, rx



14 Yang, Duraiswami & Gumerov

and ry , and repeat the experiments in 4 dimensions and 6 dimensions respectively. The
comparison between the real maximum absolute errors and the estimated error bounds is
shown in Figure 4.2. The estimated error bounds are almost optimal up to a constant factor.
The normalized error bounds w.r.t. the order p and the radius rx with the number of the
sources fit the curves of the real errors, which indicates the constant factor for them is roughly
the number of the sources. In the case of small cutoff radius, the constant factor is smaller
because influence on each target point is highly localized which seems the sources points far
away are vanished. The estimated error bounds are useful for choosing the parameters of the
IFGT.

5. Conclusions. We have proposed an improved fast Gauss transform that leads to a
significant speedup with a major reduction in the amount of the memory required in higher
dimensions. A multivariate Taylor expansion is applied to the improved fast Gauss transform
which substantially reduces the number of the expansion terms in higher dimensions. The
k-center algorithm is utilized to efficiently and adaptively subdivide the higher dimensional
space according to the distribution of the points. A simpler and more accurate error estimate
is reported, due to the simplification made by the new Taylor expansion and space subdivision
schemes. The improved fast Gauss transform is capable of computing the Gauss transform
in dimensions as high as tens which commonly occur in nonparametric statistics, pattern
recognition. The behaviors of the algorithm in very high dimensional space (such as up to
several hundreds) will be studied and reported.
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FIG. 4.2. The comparison between the real maximum absolute errors and the estimated error bounds w.r.t. the
order of the Taylor series p (Top row), the radius of the farthest-point clustering algorithm rx (Middle row), and the
cutoff radius ry (Bottom row). The uniformly distributed sources and target points are in 4 dimensions (Left column)
and in 6 dimensions (Right column).
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[20] L. MICÓ, J. ONCINA, AND E. VIDAL, A new version of the nearest-neighbour approximating and eliminating
search algorithm (AESA) with linear preprocessing-time and memory requirements, Pattern Recognition



16 Yang, Duraiswami & Gumerov

Letters, 15 (1994), pp. 9–17.
[21] A. MOORE, The anchors hierarchy: Using the triangle inequality to survive high-dimensional data, in Pro-

ceedings of the 12th Conference on Uncertainty in Artificial Intelligence, AAAI Press, 2000, pp. 397–
405.

[22] D. M. MOUNT AND S. ARYA, Ann: Library for approximate nearest neighbor searching, in Proc. Center for
Geometric Computing Second Ann. Fall Workshop Computational Geometry, 1997.

[23] D. W. SCOTT, Multivariate Density Estimation: Theory, Practical, and Visualization, Wiley, New York,
1992.

[24] J. STRAIN, The fast Gauss transform with variable scales, SIAM Journal on Scientific and Statistical Com-
puting, 12 (1991).

[25] J. VON ZUR GATHEN AND J. GERHARD, Modern Computer Algebra, Cambridge University Press, Cam-
bridge, UK, 1999.


