
CO
M

PU
TE

R
SC

IE
N

CE
S

Simplicial closure and higher-order link prediction
Austin R. Bensona, Rediet Abebea, Michael T. Schaubb,c, Ali Jadbabaieb,d, and Jon Kleinberga,1

aDepartment of Computer Science, Cornell University, Ithaca, NY 14853; bInstitute for Data, Systems, and Society, Massachusetts Institute of Technology,
Cambridge, MA 02139; cDepartment of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom; and dLaboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Duncan J. Watts, Microsoft Research, New York, NY, and accepted by Editorial Board Member Donald J. Geman October 12, 2018 (received for
review January 13, 2018)

Networks provide a powerful formalism for modeling complex
systems by using a model of pairwise interactions. But much
of the structure within these systems involves interactions that
take place among more than two nodes at once—for example,
communication within a group rather than person to person, col-
laboration among a team rather than a pair of coauthors, or
biological interaction between a set of molecules rather than
just two. Such higher-order interactions are ubiquitous, but their
empirical study has received limited attention, and little is known
about possible organizational principles of such structures. Here
we study the temporal evolution of 19 datasets with explicit
accounting for higher-order interactions. We show that there is
a rich variety of structure in our datasets but datasets from the
same system types have consistent patterns of higher-order struc-
ture. Furthermore, we find that tie strength and edge density are
competing positive indicators of higher-order organization, and
these trends are consistent across interactions involving differing
numbers of nodes. To systematically further the study of theories
for such higher-order structures, we propose higher-order link pre-
diction as a benchmark problem to assess models and algorithms
that predict higher-order structure. We find a fundamental dif-
ference from traditional pairwise link prediction, with a greater
role for local rather than long-range information in predicting the
appearance of new interactions.

network theory | simplicial complex | algebraic topology | higher-order |
link prediction

Networks are a fundamental abstraction for complex systems
and relational data throughout the sciences (1–3). The basic

premise of network models is to represent the elements of the
underlying system as nodes and to use the links of the network to
capture pairwise relationships. In this way, a social network can
represent the friendships between pairs of people, a web graph
can encode links among web pages or topic categories, and a
biological network can represent the interactions among pairs of
biological molecules or components (3–6). But much of the struc-
ture in these systems involves higher-order interactions between
more than two entities at once (7–11): People often communi-
cate or interact in social groups, not just in pairs; associative
relations among ideas or topics often involve the intersection
of multiple concepts; and joint protein interactions in biological
networks are associated with important phenomena (12).

These types of higher-order, group-based interactions are
apparent even in the standard genres of datasets used for net-
work analysis. For example, coauthorship networks are built
from data in which larger groups write papers together, and sim-
ilarly, email networks are based on messages that often have
multiple recipients. While such higher-order structure is not
captured by the topology of a graph, it may be modeled via a
collection of formalisms that include set systems (13), hyper-
graphs (14), simplicial complexes (15), and bipartite affiliation
graphs (7, 16). Despite the existence of mathematical formalisms
for higher-order structure, there is no unifying study that ana-
lyzes the basic higher-order structure of such datasets. This is
in sharp contrast to other notions of “higher-order models”
generalizing graph data, such as multiplex networks (17) and
higher-order Markov chain models (18, 19), which are successful
but still rooted in a pairwise representation paradigm. We study

the complementary direction of group interactions, as outlined
in the examples above, and use the term higher-order model in
this sense.

A key reason for the lack of large-scale studies in higher-order
models is that data are often collected directly in a network for-
mat, thus eliminating higher-order interactions already at the
data-collection stage. Another reason is that analyzing higher-
order interactions can be computationally challenging for large
datasets. Consequently, despite their potential importance, little
is known about organizational principles of higher-order struc-
tures within real-world datasets. For instance, one question that
remains to be answered is whether higher-order interactions
enable us to differentiate different kinds of datasets or whether
higher-order properties are universal across datasets.

Here, we provide steps in the direction of promoting a broad,
rigorous study of higher-order topological interactions across
domains. To this end, we study the structure and temporal evo-
lution of 19 datasets from a variety of domains that have higher-
order interactions. We find that distinct patterns for different
domains are immediately revealed with three-way interaction
features that are not available from the graph structure of the
networks alone.

Motivated by the importance of triangular structures in net-
work clustering and the theory of triadic closure in social net-
works (4, 20), we study an extension of this theory via simplicial
closure or the way in which groups of nodes evolve until even-
tually coappearing in a higher-order structure. In this case,
we find that strong previous interactions between subsets of a
group increase the likelihood of a simplicial closure event, where
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Fig. 1. Higher-order network models, open and closed three-node cliques (triangles), and simplicial closure events. (A) Example of higher-order network
dataset consisting of eight timestamped simplices on nine nodes. More than one simplex can appear at a given time, which often occurs in real-world
data with coarse-grained temporal measurements. We study 19 real-world datasets of this type (Table 1). (B) Visual representation of the dataset (ignoring
timestamps). Shading represents the simplices (to highlight the difference with traditional graphs), and the dashed line between nodes 2 and 3 denotes 3D
perspective for the four-node simplex {1, 2, 3, 4} (this four-node simplex also has darker shading). Nodes 1, 2, and 3 form a closed three-node clique (i.e.,
closed triangle) since all three nodes appeared in the same simplex at time t1, whereas nodes 1, 5, and 8 form an open triangle since all three pairs of nodes
coappeared in a simplex (time t2 for nodes 1 and 5, time t5 for nodes 1 and 8, and time t7 for nodes 5 and 8) but no one simplex contains all three nodes.
Thus, the region between nodes 1, 5, and 8 is not shaded. In total, the dataset has seven closed triangles—{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 3, 5},
{1, 2, 6}, {1, 7, 8}—and one open triangle—{1, 5, 8}. We find that the fraction of triangles that are open varies widely depending on the dataset (Fig. 2).
(C) The “projected graph” of the dataset. The weight of an edge is the number of times its two end points have appeared in a simplex together. Open and
closed triangles are both triangles in the projected graph. Traditional network science ideas often ignore higher-order structure and use only this graph.
(D) A simplicial closure event for nodes 1, 2, and 6. Each transition lists the new simplex and the time it appears in the dataset. Before closing, the three
nodes induce several subgraphs in the projected graph over time. For example, the nodes form an open triangle at time t4, which persists until time t8

when the simplicial closure event occurs. We study properties of such simplicial closure events and predict their future occurrence as part of a framework
for evaluating higher-order network models.

the nodes appear in a group together. The relative impor-
tance of different types of prior interactions depends on the
dataset yet remains consistent when considering groups of dif-
ferent sizes for a given dataset. To facilitate future modeling
and demonstrate that the higher-order patterns are not sim-
ple epiphenomena of the underlying link structure, we intro-
duce a higher-order link prediction problem—the forecasting
of future higher-order interactions—as an evaluation framework
for models and algorithms that aim to predict the emergence of
higher-order structure from existing data.

Structural Analysis of Higher-Order Networks
We assembled a diverse collection of 19 datasets, recording
the timestamped interactions of groups of entities. Thus, each
dataset is a set of timestamped sets of nodes. We call each set
of nodes a simplex, and the nodes in each simplex take part in
a shared interaction at a given timestamp (Fig. 1A). For exam-
ple, in a coauthorship network, a simplex corresponds to a set of
authors publishing an article at a given time.

Formally, each dataset consists of N timestamped simplices,
{(Si , ti)}Ni=1, where ti ∈R is the time at which simplex Si was
observed, and Si is a set representing the nodes in the i th sim-
plex. If |Si |= k , we say that Si is a k -node simplex. [Such a
structure is called a (k − 1)-simplex in algebraic topology, and
the set of all its pairs is called a k-clique in graph theory.] This
set-based representation provides a natural format for datasets
from a range of domains. We briefly describe our datasets below
(see SI Appendix for more complete descriptions).
• Coauthorship data (coauth-DBLP; coauth-MAG-History;

coauth-MAG-Geology): Nodes are authors and a simplex is
a publication; DBLP spans over 80 years and the other two
datasets span about 200 years.

• Online tagging data (tags-stack-overflow; tags-math-sx; tags-
ask-ubuntu): Nodes are tags (annotations) and a simplex is a
set of tags for a question on online Stack Exchange forums; the
data contain the complete history of the forums.

• Online thread participation data (threads-stack-overflow;
threads-math-sx; threads-ask-ubuntu): Nodes are users and a
simplex is a set of users answering a question on a forum; again,
the data contain the complete history of the forum.

• Drug networks from the National Drug Code Directory (NDC-
classes): Nodes are class labels (e.g., serotonin reuptake
inhibitor) and a simplex is the set of class labels applied to a
drug (all applied at one time). (NDC-substances): Nodes are
substances (e.g., testosterone) and a simplex is the set of sub-
stances in a drug; datasets include the complete history of the
directory.

• US. Congress data [congress-committees (21); congress-bills
(22)]: Nodes are members of Congress and a simplex is the set
of members in a committee or cosponsoring a bill; the com-
mittees dataset spans 1989–2003 and the bills dataset spans
1973–2016.

• Email networks [email-Enron (23); email-Eu (24)]: Nodes are
email addresses and a simplex is a set consisting of all recipient
addresses on an email along with the sender’s address; email-
Enron spans most of the duration of a company’s lifetime, and
email-Eu spans over 2 years.

• Contact networks [contact-high-school (25); contact-primary-
school (26)]: Nodes are persons and a simplex is a set of persons
in close proximity to each other.

• Drug use in the Drug Abuse Warning Network (DAWN):
Nodes are drugs and a simplex is the set of drugs reportedly
used by a patient before an emergency department visit.

• Music collaboration (music-rap-genius): Nodes are rap artists;
simplices are sets of rappers collaborating on songs.

To provide uniformity across datasets, we restrict to simplices
consisting of at most 25 nodes. This is relevant to, e.g., the coau-
thorship data in which large consortia of hundreds of authors
collaborate on a single paper. However, such events are rare
and not relevant for our analysis. Table 1 lists some summary
statistics of the datasets. The number of unique simplices appear-
ing in the data is minuscule compared with the total number of
possible simplices. For example, in the dataset with the smallest
number of nodes (email-Enron, 143 nodes), there are nearly 500
million possible simplices of size at most 5, whereas only 1,542
unique simplices appear in the dataset. On the other hand, in
most datasets, the number of unique simplices is within an order
of magnitude of the number of pairs of nodes that coappear in
some simplex (edges in the projected graph; discussed in the next
section).
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Table 1. Summary statistics for our datasets

Edges in Timestamped Unique
Dataset Nodes projected graph simplices simplices

coauth-DBLP 1,924,991 7,904,336 3,700,067 2,599,087
coauth-MAG-geology 1,256,385 512,0762 1,590,335 1,207,390
coauth-MAG-history 1,014,734 1,156,914 1,812,511 895,668
music-rap-genius 56,832 123,889 224,878 85,429
tags-stack-overflow 49,998 4,147,302 14,458,875 5,675,497
tags-math-sx 1,629 91,685 822,059 174,933
tags-ask-ubuntu 3,029 132,703 271,233 151,441
threads-stack-overflow 2,675,955 20,999,838 11,305,343 9,705,709
threads-math-sx 176,445 1,089,307 719,792 595,778
threads-ask-ubuntu 125,602 187,157 192,947 167,001
NDC-substances 5,311 88,268 112,405 10,025
NDC-classes 1,161 6,222 49,724 1,222
DAWN 2,558 122,963 2,272,433 143,523
congress-bills 1,718 424,932 260,851 85,082
congress-committees 863 38,136 679 678
email-Eu 998 29,299 234,760 25,791
email-Enron 143 1,800 10,883 1,542
contact-high-school 327 5,818 172,035 7,937
contact-primary-school 242 8,317 106,879 12,799

Each dataset is a collection of timestamped simplices (as in Fig. 1).

Higher-Order Features Reveal Rich Structural Diversity. Our data
representation distinguishes between the observations of differ-
ent kinds of k -way interactions between a set of entities. Stated
differently, unlike in a graph representation, we do not break
down each simplex into a set of (induced) pairwise interactions.
Although the specific representation is not essential provided the
information of the group interaction is faithfully encoded, it is
convenient to think of our data as an abstract simplicial complex
as depicted in Fig. 1B.

The simple encoding of the observed information as a graph
is called the projected graph. Formally, in the projected graph,
two nodes are joined by an edge of weight w if they coappear

in w simplices (Fig. 1C). A k -clique in the projected graph is a
set of nodes among which an edge is present between all pairs. k
cliques appear if (i) the k nodes were all part of some simplex or
(ii) each pair was part of some simplex, although all k were never
part of the same simplex. In the former case, we say the k nodes
form a closed clique, while in the latter case we say they form an
open clique.

We first study the occurrence of open and closed 3-cliques
or triangles (Fig. 2). This is the simplest higher-order struc-
ture present in our datasets that is not captured by a graph.
Furthermore, triangles are one of the most important struc-
tural patterns in network analysis (4, 8, 27). As discussed above,

A

B

C

D

E

Fig. 2. Basic structure of higher-order interaction datasets. (A) Distribution of simplex sizes. In most datasets, small simplices (≤4 nodes) are the most
common. (B–E) Dataset landscapes in terms of fraction of triangles that are open and either edge density (B and D) or average degree (C and E) when
considering simplices with 25 or fewer nodes (B and C) or just 3-node simplices (D and E). Datasets from the same domain tend to be similar with respect to
these features, whether or not we include simplices with greater than 3 nodes. Indeed, we can predict the system domain of some datasets by measuring
these statistics on egonets (Table 2 and Fig. 3).

Benson et al. PNAS Latest Articles | 3 of 10



there are two types of triangles which cannot be distinguished
by the weighted projected graph alone. In a closed triangle, all
three nodes have coappeared in at least one simplex. Formally,
{u, v ,w} is a closed triangle if there exists some simplex Si for
which {u, v ,w}⊂Si . In an open triangle, on the other hand,
every pair of the three nodes has coappeared in at least one
simplex, but no single simplex contains all three nodes.

Every simplex with at least three nodes directly creates a
closed triangle, while open triangles appear coincidental. More-
over, larger simplices lead to many closed triangles: For instance,
a k -node simplex contributes

(
k
3

)
closed triangles. Thus, one

might intuit that closed triangles are much more common than
open triangles due to the presence of (potentially) large groups.
On the other hand, only a small fraction of all possible simplices
are present in the network compared with the total number of
possible edges in the projected graph, so one might expect that
there are more open triangles. Our analysis reveals that, across
our datasets, there is a spectrum for the fraction of triangles that
are open (Fig. 2 B–E).

While the distribution of simplex sizes is broadly similar in
most datasets (Fig. 2A), jointly analyzing the edge density in
the projected graph with the fraction of triangles that are open
reveals a rich landscape of datasets (Fig. 2B): (i) low density
with a small fraction of triangles open (coauthorships and music
collaboration), (ii) low density with a large fraction of triangles
open (Stack Exchange threads), (iii) high density with a large
fraction of triangles open (Stack Exchange tags, contact, bill
cosponsorship), and (iv) high density with a medium fraction of
triangles open (email, Congress committee membership, NDC
substances and classes). These results are not skewed by large
simplices—the landscape is broadly preserved when restricting
to the three-node simplices (Fig. 2D).

Measuring average unweighted degree along with fraction of
open triangles also reveals substantial diversity, and datasets
from the same domain continue to exhibit similar features (Fig.
2C). Restricting the data to only three-node simplices, we find
a near-linear relationship between the fraction of open triangles
and the log of the average degree (Fig. 2E). A linear model of
the data in Fig. 2E has R2 =0.85, compared with R2 =0.38 for
a linear model of the data in Fig. 2D. This suggests that larger
simplices bring diversity to the data.

Higher-Order Egonet Features Discriminate System Domains. The
structural diversity of the datasets is also present at the local
level of egonets (1-hop neighborhoods of nodes), and local

Fig. 3. Class decision boundaries of the learned multinomial logistic regres-
sion model for predicting five dataset system domains (coauthorship,
threads, tags, email, or contact) using the log of the average degree (log(d̄))
and fraction of triangles that are open (f) of egonets (Table 2 and Materials
and Methods). Markers correspond to sampled egonets used in model train-
ing. The two-feature linear model can predict the five-class dataset domain
with 75% accuracy (Table 2). In conjunction with the prediction accuracies in
Table 2, our analysis suggests that the fraction of triangles that are open (a
higher-order network statistic) is an important covariate for analyzing and
modeling the local structure of higher-order interaction data.

Table 2. Prediction of dataset type by egonet features

Model features Accuracy

log(ρ) log(d̄) f Intercept Random Multinomial LR

X X X X 0.21 0.78 ± 0.02
X X X 0.21 0.75 ± 0.02

X X X 0.21 0.60 ± 0.02
X X X 0.21 0.49 ± 0.03

For the datasets from coauthorship, threads, tags, email, and contact sys-
tem domains, we sampled egonets and computed the edge density (ρ),
average degree (d̄), and fraction of triangles that are open (f). Using
these features, we trained a multinomial logistic regression model to pre-
dict the system domain of the network (Materials and Methods). Models
incorporating the fraction of triangles that are open outperform the one
that does not, highlighting the importance of this feature for higher-
order organization. Fig. 3 illustrates the model that uses log(ρ) and f as
features.

statistics can identify the “system domain” of datasets. By sys-
tem domain, we simply mean the categories identified in Fig.
2 that correspond to datasets recorded from the same kind
of system. Our collection of datasets has five clear system
domains with at least two datasets each: coauthorship, online
tags, online thread coparticipation, email, and proximity con-
tact. Using a multinomial logistic regression model to determine
system domain with the fraction of triangles that are open and
log of the average degree as covariates reveals clustering struc-
ture of the system domains (Fig. 3). This simple model can
predict system domain with nearly 75% accuracy, compared
with approximately 21% accuracy with random guessing. The
prediction accuracy provides evidence that there are different
organizational mechanisms at play locally for different systems.
In conjunction with the structure illustrated in Fig. 2, this sug-
gests that there is not a single “universal” setting of values
for simplicial network statistics; the context underlying the net-
work matters, but within a given context the parameters are
quite stable.

We also trained models with the log of the edge density as
a covariate, in addition to the log of the average degree and
the fraction of triangles that are open; model accuracy mildly
increased from 75% to 78% (Table 2). However, discarding the
log of the average degree as a covariate decreases model accu-
racy to 60%, and including only edge density and average degree
without the fraction of triangles that are open decreases model
accuracy to 50%. The accuracy numbers are guides in how to
model higher-order interaction data. For example, we conclude
that the fraction of triangles that are open—a network statis-
tic that relies on knowledge of the higher-order structure in the
dataset—is a valuable covariate for identifying system domains.
Thus, simple higher-order interactions should be used when ana-
lyzing or modeling such data. Furthermore, the average degree
tends to be more valuable than edge density when considering
local organizational mechanisms.

A Simple Generative Model for Open and Closed Triangles. We have
now seen that there is diversity in datasets from global network
statistics and that local statistics reveal system domains of the
networks. We now provide a simple generative model of sim-
plices that helps describe how diversity in the datasets might
arise. The model uses the hypothesis that three-node simplices
form independently with a fixed probability. While extreme, this
hypothesis indeed leads to diversity in the fraction of triangles
that are open. To see this, suppose that a dataset consists only
of three-node simplices on n nodes, and any set of three nodes
{u, v ,w} appears in a simplex with probability p=1/nb , where
b> 0 is a parameter regulating the probability of this event. Let
Xuvw be the indicator random variable that {u, v ,w} is an open
triangle. Then, for large n , it follows from the independence
assumption that
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E[Xuvw ]≈ (1− (1− 1/nb)
n
)
3
. [1]

There are two asymptotic regimes here depending on the
value of b. If b< 1, then (1− 1/nb)n ≤ e−n1−b

, and E[Xuvw ]
approaches 1 as n gets large. If b> 1, on the other hand,

E[Xuvw ]≈ (1− (1− 1/nb)n)3 =O(1/n3b−3). [2]

Denote the set of open triangles by O and the set of
closed triangles by C. According to our calculations above, for
large n , the expected number of open triangles is E[|O|] =∑
{u,v ,w} E[Xuvw ] =O(n3) if b< 1. For b> 1, the expected num-

ber of open triangles for large n is E[|O|] =O(n3(2−b)). The
expected number of closed triangles is always E[|C|] = p ·

(
n
3

)
=

O(n3−b). Therefore, if b< 3/2, the number of open triangles
grows faster, and if b> 3/2, the number of closed triangles
grows faster. To illustrate this numerically, we generated five
random samples from this model for b=0.8, 0.82, 0.84, . . . , 1.8
and n =25, 50, 100, 200. As suggested by the above theory, the
samples have a fraction of open triangles spanning the interval
between 0 and 1 (Fig. 4).

We can also use the above procedure to construct datasets
with a smaller edge density, while keeping the average degree
fixed by patching together c replicates of one of these random
datasets; this creates a dataset with c times as many nodes, but
the same average degree. More formally, if a dataset with n
nodes has average degree d and edge density ρ, then the union
of c copies of this dataset has cn nodes, average degree d , and
edge density cρ(

(
n
2

)
−n)/(

(
nc
2

)
−nc)≈ ρ/c (for large n). Thus,

our simple independent model spans the two-dimensional fea-
ture space in Fig. 2 B and D, but this does not imply that our data
were generated by this model.

Temporal Dynamics and Simplicial Closure Events
The above analysis already reveals useful information about
the organization of closed and open triangles, and studying the
temporal dynamics of the networks in detail offers additional
insights. A possible hypothesis for strong prevalence of open
triangles would be temporal asynchrony in link creation. For
example, consider three Congresspersons u , v , and w in the
committee membership dataset, where u is in one committee
with v and in another committee with w . If u is not reelected,
there will be no opportunity for the triple of nodes to form a
closed triangle, as u has effectively become inactive. An open
triangle may still form if v and w are on the same committee
in a future Congress. However, we find that temporal asyn-
chrony does not explain most open triangles. Depending on the
dataset, the three edges in 61.1–97.4% of open triangles have

Fig. 4. Distribution of the fraction of triangles that are open and edge den-
sity in simulations from a model where each triple of n total nodes forms a
three-node simplex independently with probability p = 1/nb, b∈ [0.8, 1.8].
Color scales with b so that larger p are lighter and smaller p are darker. Vary-
ing b creates datasets spanning all possible values of the fraction of triangles
that are open.

an overlapping period of activity (including 89.5% for Congress
committees; SI Appendix).

Regardless of how open triangles are created, the three asso-
ciated nodes may of course appear together in a simplex in the
future as the network evolves. Deviating from our above sim-
ple model of independent creation of closed triangles, we find
that many newly formed simplices in our data consist of k nodes
that had previously constituted an open k -clique in the projected
graph. We say that the appearance of a new simplex containing
these k nodes is an instance of a simplicial closure event, i.e., the
conversion of an open structure to a closed one, as illustrated
in Fig. 1D. [Here we are building on terminology for datasets
of static sets of simplices (28). The term “simplicial closure”
also appears in the combinatorial topology literature but with
a different meaning (29).] In the following, we investigate the
simplicial closure mechanism as an organizational principle for
higher-order interactions.

Simplicial Closure on Triangles Reveals Competing Features. Al-
though conceptually similar, three nodes participating in a sim-
plicial closure event is distinct from the well-known phenomenon
of triadic closure events in social networks (4). A triadic closure
event modifies the structure of the underlying pairwise interac-
tions, whereas a simplicial closure event adds a new higher-order
interaction without necessarily changing the pairwise structure of
the projected graph.

Any induced subgraph on three nodes in the weighted pro-
jected graph can change several times before the three nodes
appear in a simplex together, i.e., go through a simplicial clo-
sure event (Fig. 5). We call this the “lifecycle” of the triple of
nodes. There are two changes that a triple of nodes can undergo
during its lifecycle before a simplicial closure event. First, a new
pairwise link can be added between two nodes u and v . This cor-
responds to an increase in density in this induced subgraph; e.g.,
the introduction of the drug Promacta adds an edge in Fig. 5B.
Second, the projected graph edge weight between nodes u and
v can increase, which we interpret as an increase in tie strength.
For instance, in Fig. 5C, the tie strength between Gucci Mane
and Young Thug increases after they collaborate on “Fell.” To
simplify our analysis, we differentiate only between weak ties
corresponding to a single interaction (Wuv =1 in the projected
graph; denoted 1) and strong ties corresponding to multiple
interactions over time (Wuv ≥ 2; denoted 2+). With this binning,
there are 11 possible states in a lifecycle (Fig. 5A).

To get a first impression of the magnitude of these events, we
examine the lifecycle of every triple of nodes that becomes an
open or closed triangle in the coauth-MAG-History dataset (Fig.
5A). In this dataset, a closed triangle is more likely to have come
from a configuration with exactly two strong tie edges (3,171
cases) than from an open triangle (328 + 779 + 722 + 285 =
2,114 cases). Most closed triangles are formed by nodes that
had no previous interaction (2,732,839 cases); however, since the
graph is sparse, the fraction of triples of nodes with no prior
engagement that go through a simplicial closure event is small
(SI Appendix). Additionally, if three nodes induce an open tri-
angle with only weak ties at some point in time, then the three
nodes are more likely to gain a strong tie before closure (445
cases) than to close directly from that state (328 cases).

We also analyze the probability of a simplicial closure event
conditioned on the state of the three nodes in its lifecycle. To do
so, we split each dataset based on the temporal order of appear-
ance of the simplices into a training set, consisting of the first
80% of the simplices (in time) and a test set of the remaining
20% of the simplices. Formally, if t∗ is the 80th percentile of the
timestamps t1, . . . , tN , then the training set is the set of times-
tamped simplices {(Si , ti) | ti ≤ t∗} and the test set consists of
{(Si , ti) | ti > t∗}. We then measured the probability that a triple
of nodes from the training set is a closed triangle in the test set as
a function of its previous configuration in the weighted projected
graph, i.e., its lifecycle state in the training data (SI Appendix
contains all of the simplicial closure event probabilities).
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Fig. 5. Lifecycles of triples of nodes. Triangle edge weights are from the projected graph binned into weak ties for pairs of nodes appearing in only one
simplex together (denoted 1) and strong ties for pairs of nodes appearing in at least two simplices together (denoted 2). (A) Lifecycles in the coauth-
MAG-History dataset for all triples that eventually form a triangle. Edges represent transitions between configurations, and the numbers are counts of
triples that follow the transition. The top number counts triples of nodes that never experience a simplicial closure event (i.e., never reach the closed state
on the far right), and the bottom number counts triples that do go through a simplicial closure event. (B) Lifecycle of classification codes “HIV protease
inhibitors,” “UGT1A1 inhibitors,” and “breast cancer resistance protein inhibitors” in the NDC-classes dataset, where simplices consist of the labels applied
to drugs. Reyataz and Kaletra—two HIV-1 medications—produced strong ties via multiple drug labelers; RedPharm Drug Inc. and E.R. Squibb & Sons, LLC
labeled Reyataz, and Physicians Total Care and DOH Central Pharmacy labeled Kaletra. Promacta, a bone marrow stimulant classified as both a breast
cancer resistance protein inhibitor and a UGT1A1 inhibitor, creates the open triangle. A strong tie is due to GlaxoSmithKline plc labeling multiple dosages
of Promacta as products (25 mg and 50 mg). The introduction of Evotaz, a combination drug, induces a simplicial closure event for the three labels, six
years after the open triangle formed. (C) Lifecycle of rap artists Young Thug, Gucci Mane, and Travis Scott. Mane and Thug first collaborated on the song
“Anything” on a Mane mixtape; the two subsequently both featured on Waka Flocka Flame’s track “Fell.” Thug then twice featured on Scott’s 2014 mixtape
“Days Before Rodeo,” on the tracks “Mamacita” and “Skyfall.” Both Mane and Scott featured on Kanye West’s ensemble track “Champions,” leading
to an open triangle. A simplicial closure event occurred when Scott and Mane both featured on Thug’s track “Floyd Mayweather.” (D) Lifecycle of tags
“icons,” “colors,” and “16.04” applied to questions on the Ask Ubuntu question-and-answer forum. The tag 16.04 refers to a 2016 Ubuntu release. There
are questions about icons and colors independent of the Ubuntu version, dating back to 2011 (just one year after the forum was created). In 2016, users
asked 16.04-specific icon questions related to the new release. Finally, a 16.04-specific question on both icons and colors leads to a simplicial closure event.

We highlight four important findings. First, the simplicial clo-
sure event probability typically increases with additional edges
(Fig. 6A). In other words, as the edge density of the subgraph
induced by the three nodes increases, the probability of a simpli-
cial closure event increases. We formally test this by comparing
the closure probability of a fixed weighted induced subgraph
configuration and the same configuration with an additional unit-
weight edge for all suitable cases. The latter has a statistically
significant larger simplicial closure event probability in 102 of
113 cases over all datasets and pairs of configurations, whereas
the less dense structure is never significantly more likely to close
(P < 10−5; Materials and Methods). (Our goal here is to illustrate
general trends rather than to find a single statistically significant
result.) This result is consistent with both theoretical (4) and
empirical (30) studies of dyadic link formation in social networks.
However, several of our datasets are not social networks.

Second, the probability of a simplicial closure event typically
increases with tie strength (Fig. 6B). We test the effect of tie
strength by comparing the closure probability of a fixed weighted
induced subgraph containing at least one weak tie and the same
configuration where the weak tie is converted to a strong tie.
Increasing the tie strength significantly increases the probability
of a simplicial closure event in 82 of 113 cases over all datasets
and significantly decreases the closure probability in just 6 of 113
cases (P < 10−5). Again, this result is consistent with both theo-
retical (4) and empirical (27, 31) studies of social networks, even
though not all of our networks are social.

Third, neither edge density nor tie strength dominates the
likelihood of simplicial closure events (Fig. 6C). In the coauthor-
ship and Congress datasets, an open triangle composed of three
weak ties is more likely to close than a three-node subgraph with
just two strong ties. The reverse is true for the stack exchange
tags and stack exchange threads datasets. Overall, the open tri-
angle of weak ties is significantly more likely to close than the
three nodes with two strong ties in 4 of 19 datasets, whereas the
opposite is true in 6 of 19 datasets (P < 10−5).

Fourth, the results reveal varying closure dynamics over the
dataset domains. In human social interactions, simplicial clo-
sure events appear to be driven by a topological form of tri-
adic closure: Mutual acquaintance between all of the nodes in
a set increases the probability of a joint interaction. In con-
trast, simplicial closure events in the discussion platform net-
works resemble transitive closure: Once there is a sufficiently
strong co-occurrences of tags, they become likely to be used
together.

A possible concern with our analysis is that we measured clo-
sure probabilities only at one point in time for each dataset.
Furthermore, while some of our datasets represent a complete
history of the network (tags, threads, NDC) and some span a long
duration of time (coauthorship, music, congress-bills), a few con-
tain only a slice of the underlying network’s dynamics (email-Eu,
contact). However, we find that the closure probabilities and the
results on edge density and tie strength are consistent at different
points in time (SI Appendix).
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Fig. 6. Comparison of simplicial closure event probabilities based on configurations of three-node and four-node structures. The simplices appearing in
the first 80% of the time spanned by the dataset determine the configuration (appearing as the x-axis and y-axis labels). The scatter plots compare the
probability of different configurations going through a simplicial closure event in the final 20% of timestamped simplices. (A–C) Comparison of simplicial
closure event probabilities for pairs of three-node configurations that demonstrate how increasing edge density (A) or tie strength (B) increases the prob-
ability of a simplicial closure event. However, the relative importance of edge density and tie strength depends on the dataset (C). (D–F) Comparison of
simplicial closure event probabilities for pairs of four-node configurations. Each axis has two labels giving two pictorial representations of the configuration.
The white nodes in the “flat” representation (left label on x axis; top label on y axis) represents the same node, so the 3D structure can be envisioned by
folding the white nodes on top of each other. The other representation (right label on x axis; bottom label on y axis) shows a 3D tetrahedral perspective
of this folding. We again see that increasing edge density (D) or tie strength (E) increases the probability of a simplicial closure event. Here, “tie strength”
is measured at the level of three-node simplices, i.e., how often three nodes have appeared in a simplex (no times, not shaded; one time, shaded, denoted
1; or at least two times, shaded, denoted 2+). The relative importance of edge density and tie strength depends on the dataset but is consistent with the
three-node case. In three of the five datasets for which the configuration on the y axis in F is significantly more likely to go through a simplicial closure
event, the open triangle of weak ties is also significantly more likely to close for sets of three nodes (coauth-DBLP, coauth-MAG-Geology, congress-bills;
compare with C; P< 10−5). And in three of the four datasets for which the configuration on the x axis in F is significantly more likely to go through a
simplicial closure event the configuration with just two strong ties is also more likely to close than the open triangle with all weak ties (tags-stack-overflow,
tags-math-sx, tags-ask-ubuntu; compare with C; P< 10−5). Moreover, there were no datasets for which tie strength was significantly more indicative of
simplicial closure events for one simplex size and density was more important for another (significance level 10−5).

Simplicial Closure Properties Extend Beyond Triangles. All four of
the above findings hold for simplicial closure events on four
nodes, so our results are not limited to structure on three nodes
(Fig. 6 D–F). Now, a simplicial closure event is all four nodes
appearing in a simplex, and tie strength is measured on three-
node simplices, i.e., how often the three-node subsets of a four-
node structure have appeared together in a simplex (0, “open”;
1, “weak”; or at least two times, “strong”).

To measure the effect of edge density, we compare the clo-
sure probability of a configuration consisting of a fixed number
of edges to the closure probability of the same configuration with
an additional edge, keeping the tie strengths fixed (Fig. 6D shows
one such comparison). In 180 of 228 applicable comparisons over
all datasets, the closure probability significantly increases with
the edge density and significantly decreases in only 2 cases (P <
10−5). To measure the effect of tie strength, we compare the
closure probability of a given configuration to the closure proba-
bility of the same configuration where the tie strength increases
from an open tie to a weak tie or from a weak tie to a strong
tie (Fig. 6E shows a case where the tie strength increases from
open to weak). The closure probability significantly increases
with simplicial tie strength in 26 of 38 cases for three-edge con-
figurations, 31 of 38 cases for four-edge configurations, 77 of
114 cases for five-edge configurations, and 177 of 359 cases for
six-edge configurations, compared with a significant decrease in
closure probability in just 2 of 38, 1 of 38, 1 of 114, and 4 of
359 cases (P < 10−5). Therefore, tie strength is also a positive
indicator of simplicial closure in four-node configurations.

There is also tension between the influence of sparser con-
figurations with strong ties and that of denser configurations
with weak ties. Fig. 6F shows one such comparison. In this case,
three of five datasets for which edge density is significantly more

indicative than tie strength in the three-node comparison of Fig.
6C, edge density is also significantly more important in the four-
node case (P < 10−5). And in three of the four datasets for which
tie strength is significantly more indicative than edge density in
the same three-node case, the same is true in the four-node case.
Finally, there is no dataset for which tie strength was significantly
more influential for one simplex size and density was significantly
more influential for another.

Higher-Order Link Prediction
Thus far, we have shown that higher-order interactions provide
a rich source of additional information beyond traditional net-
work modeling. Our analysis leaves open many questions, such
as the development of better mechanistic models for the emer-
gence of these interactions. To facilitate this process, we propose
an analog of link prediction for higher-order structure.

Model Evaluation Framework. The basic premise in link predic-
tion—whether pairwise or higher order—is to use structural net-
work properties up to some time t to predict the appearance
of new interactions after t . In traditional network analysis, link
prediction is a cornerstone problem and a highly successful
evaluation framework for comparing different models via a well-
calibrated prediction task (32, 33). Specifically, link prediction
examines data that evolve over time and sees how well a given
model predicts the appearance of new links—for example, new
coauthorships appearing in a coauthor network or new messages
between pairs of people in an email network.

In this context, a model is interpreted broadly and may be
mechanistic [e.g., preferential attachment (34)], statistical [e.g.,
probabilistic hierarchical models (35)], or implicitly encapsulated
by a principled heuristic algorithm. For instance, personalized
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PageRank is a model capturing the fact that a large number
of walks between two nodes drive up the connection probabil-
ity between them (32). A key advantage of link prediction as an
evaluation framework is precisely that it can handle these various
kinds of models. This holds even in the absence of a likelihood
expression, which would be required for a more standard statis-
tical evaluation of goodness of fit. While ultimately we may want
to arrive at a generative, causal description of the emergence of
higher-order patterns, the flexibility of link prediction enables
us to probe the importance of features of the network data
in a simple manner without having to create a formal statisti-
cal model.

Link prediction has proved valuable for methodological rea-
sons and also in concrete applications. Methodologically, asking
whether one model is better than another at predicting new
links provides a data-driven way of assessing the effectiveness
of the models (32, 36, 37). Link prediction also has a num-
ber of direct applications that cut across disciplines, including
predicting friendships in social networks (38), inferring new rela-
tionships between genes and diseases (39), and suggesting novel
connections in the scientific community (40).

Link prediction is also used within model selection tools for
evaluating community detection algorithms (41, 42). In these
cases, link prediction may be interpreted as the smallest possi-
ble test for the fit of a model as we need to predict only one
edge at a time. However, if one were to consider all edges in
a cross-validation assessment, good link prediction performance
indicates a good model fit for other structures in the data. Our
higher-order link prediction task probes a larger set of features,
in that it requires us to be able to predict more aspects of the
data (any higher-order interaction, in principle).

For simplicity of presentation and scalability reasons, we pre-
dict simplicial closure events on triples of nodes. Thus, the
higher-order link prediction problem examined here is predict-
ing which triples of nodes that have not yet appeared in a simplex
together will be a subset of some simplex in the future. Our
above analysis suggests that open triangles or triples of nodes
with strong ties are the most likely to close in the future. For
our experiments, we predict which open triangles will go through

a simplicial closure event in the future. Thus, this is a problem
completely ignored by traditional link prediction, which would
just view the triangle as already part of the graph. From a compu-
tational view, this restriction also makes it feasible to enumerate
all open structures upon which the algorithms will make a predic-
tion, using only modest computational resources. Thus, we avoid
a common problem in link prediction of how to pare down an
enormous candidate set of potential links, which itself is an active
research topic (43, 44).

Simple Local Features Predict Well. We first split the data into
training (first 80% of simplices in time) and test (final 20%)
sets. Then, we evaluated the prediction performance of several
models (several inspired from classical link prediction) on each
dataset by the area under the precision-recall curve (AUC-PR)
metric (Table 3). We use random scores as a baseline, which,
with respect to AUC-PR, corresponds to the proportion of open
triangles in the training set that go through a simplicial closure
event in the test set.

We compare eight models here and provide additional com-
parisons in SI Appendix. Three are heuristics based on our finding
that tie strength is indicative of closure; these are the harmonic,
geometric, and arithmetic means of the three edge weights in the
open triangle. Two more are based on the Adamic–Adar model
(45) and the preferential attachment model. The latter has been
suggested as a growth mechanism of coauthorship networks (20,
34). Two are based on longer path counts (Katz and personal-
ized PageRank), which are models known for providing good
prediction in dyadic link prediction (32). Finally, we use a super-
vised logistic regression model based on features from the other
models.

No single model performs the best over all datasets, but our
proposed baseline algorithms can achieve much better perfor-
mance than randomly guessing which open triangles go through
a simplicial closure event. In the threads datasets, we achieve
between one and two orders of magnitude performance improve-
ments with the harmonic and geometric means, which indi-
cates that local tie strength is relatively more important for
these datasets than for others. The absolute performance of the

Table 3. Open triangle closure prediction performance based on eight models: harmonic, geometric,
and arithmetic means of the three edge weights; three-way Adamic–Adar coefficient (A-A);
preferential attachment (PA); Katz similarity; personalized PageRank similarity (PPR); and a
feature-based supervised logistic regression model (Log. reg.)

Harmonic Geometric Arithmetric
Dataset mean mean mean A-A PA Katz PPR Log. reg.

coauth-DBLP 1.49 1.59 1.50 1.60 0.74 1.51 1.83 3.37
coauth-MAG-history 1.69 2.72 3.20 5.82 2.49 3.40 1.88 6.75
coauth-MAG-geology 2.01 1.97 1.69 2.71 0.97 1.74 1.26 4.74
music-rap-genius 5.44 6.92 1.98 2.10 2.15 2.00 2.09 2.67
tags-stack-overflow 13.08 10.42 3.97 6.63 2.74 3.60 1.85 3.37
tags-math-sx 9.08 8.67 2.88 6.34 2.81 2.71 1.55 13.99
tags-ask-ubuntu 12.29 12.64 4.24 7.51 5.63 4.15 2.54 7.48
threads-stack-overflow 23.85 31.12 12.97 3.19 3.89 11.54 4.06 1.53
threads-math-sx 20.86 16.01 5.03 23.32 7.46 4.86 1.18 47.18
threads-ask-ubuntu 78.12 80.94 29.00 30.82 6.62 32.31 1.51 9.82
NDC-substances 4.90 5.27 2.90 5.97 4.46 2.93 1.83 8.17
NDC-classes 4.43 3.38 1.82 0.99 2.14 1.34 0.91 0.62
DAWN 4.43 3.86 2.13 4.77 1.45 2.04 1.37 2.86
congress-committees 3.59 3.28 2.48 5.04 1.31 2.59 3.89 7.67
congress-bills 0.93 0.90 0.88 0.66 0.55 0.78 1.07 107.19
email-Enron 1.78 1.62 1.33 0.87 0.83 1.28 3.16 0.72
email-Eu 1.98 2.15 1.78 1.37 1.55 1.79 1.75 3.47
contact-high-school 3.86 4.16 2.54 2.00 1.13 2.53 2.41 2.86
contact-primary-school 5.63 6.40 3.96 3.21 0.94 4.02 4.31 6.91

Performance is AUC-PR relative to the random baseline, i.e., relative to the fraction of open triangles that close. The
top performance number for each dataset is in boldface type.
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algorithms is far from perfect (SI Appendix), as the higher-order
link prediction is challenging. This finding is consistent with
recent research on subgraph prediction in pairwise networks
(46). However, our goal here is to identify some of the impor-
tant structural features of the problem, rather than to predict
with perfect accuracy.

The harmonic and geometric means of edge weights perform
well across many datasets, which further highlights the impor-
tance of tie strength in predicting simplicial closure events. This
finding is fundamentally different from traditional link predic-
tion with pairwise interactions (i.e., for the edges in a graph). In
traditional link prediction, a key principle is that it is valuable to
use information contained in paths of nontrivial length between
two nodes u and v for predicting a link between them—for exam-
ple, PageRank and Katz measures are effective (32, 33). In this
sense, higher-order link prediction is fundamentally more local
in its overall structure. This arises from the ability of a k -tuple
of nodes, for k ≥ 3, to contain rich local information in its inter-
actions among subsets of size k − 1, a phenomenon that has no
natural analogue when k =2.

The arithmetic mean performs the worst of the three means
in all but one dataset. We further analyze the performance of
edge weight means using the generalized mean with parameter
p as score functions: sp(u, v ,w)= [(W p

uv +W p
uw +W p

vw )/3]
1/p ,

where Wab is the weight between nodes a and b in the projected
graph. The harmonic, arithmetic, and geometric means are the
special cases where p=−1, p=1, and the limit p→ 0. Generally,
prediction performance is (i) unimodal in p, (ii) maximized for
p ∈ [−1, 0], and (iii) better for p<−1 than for p> 1 (Fig. 7). Two
exceptions are NDC-classes and coauth-MAG-History. The for-
mer is the only dataset without an open triangle with exactly one
strong tie to close. Thus, smaller p should perform better, as this
accounts more for the minimum edge weight value. The latter
is the dataset with the smallest average degree in the projected
graph (Fig. 2C). Therefore, a single strong edge could provide
the signal for closure, in which case a larger p is a better score
function.

The supervised learning approach also performs well broadly,
especially in the larger datasets such as the coauthorship
datasets, which have sufficient training data to learn a good
model. However, even when including the features of the other
models, the method does not always perform the best. This is
likely a case of overfitting (47). In the case of the congress-bills
data, the supervised method captures a unique feature of this
dataset—nodes appearing in fewer simplices are more likely to
go through a simplicial closure event. This is possibly due to the
ambition of junior Congresspersons. The fact that combinations
of features prove effective in many domains highlights the rich-
ness of the underlying problem, and the array of methods and
findings presented here can guide progress on better models.

Discussion
The dyadic network modeling paradigm has been successful
but fails to capture natural higher-order interactions. Here, we
established the foundation for analyzing the basic structure of
temporal networks with higher-order structure. We found rich
structural variety in our datasets in terms of the fraction of tri-
angles that are open, the average degree, and the edge density.
Local statistics at the level of egonets can identify system domain,
which suggests that these features are key to the organizing prin-
ciples of the systems. Recent research shows the small fraction
of triangles that are open in coauthorship networks (28); our
results are consistent but reveal that open triangles are extremely
common in other domains. Prior research has also identified
the distinction between open and closed triangles when project-
ing bipartite networks but has not studied the idea of simplicial
closure events (7, 48).

We found that common principles from dyadic network evolu-
tion also hold for higher-order structure; namely, tie strength and
edge density are positive indicators of simplicial closure events

Fig. 7. AUC-PR relative to random predictions as a function of the param-
eter p in the generalized mean heuristic model for higher-order link
prediction.

among sets of three and four nodes. However, there is tension
between these features—the more influential feature depends on
the dataset, suggesting different mechanisms for simplicial clo-
sure events. For example, edge density matters more in human
interaction, but tie strength matters more for tagging on online
discussion platforms.

Higher-order link prediction provides a general methodology
for evaluating models in any data where higher-order structure
evolves over time, such as predicting which sets of authors will
write a paper together or which sets of people will appear as
joint recipients on an email. We anticipate that higher-order link
prediction will validate emerging higher-order network modeling
techniques, such as multipartite networks (49), metapaths (50),
and embeddings (51), and connect to ideas in computational
topology, such as random walks on simplicial complexes (52, 53).
Related higher-order models for different data (18, 19) can also
use higher-order link prediction for model evaluation. For exam-
ple, in the absence of temporal information, higher-order link
prediction could be used to find missing data, similar to how
dyadic link prediction can find missing data in static networks
(35). Our higher-order link prediction framework also provides
a way to study more sophisticated models where the underly-
ing network is also dynamic, e.g., with arrival and departure of
nodes. Specifically, such models should be able to predict higher-
order links.

Our prediction problem examined a structure that is not
even considered in traditional network analysis, where no dis-
tinction is made between open and closed triangles. From this
setup, we found that simple local measures (generalized means
of edge weights) are effective predictors. This finding differs
from traditional link prediction, where long paths are important
(32), and suggests that the temporal evolution of higher-order
network data is fundamentally different from dyadic network
evolution.
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Materials and Methods
System Domain Prediction from Egonet Statistics. We computed (i) the frac-
tion of open triangles, (ii) the log of the average degree in the projected
graph, and (iii) the log of edge density in the projected graph of 100 egonets
sampled uniformly at random (without replacement) from all egonets
containing at least one open or closed triangle in each of 13 datasets catego-
rized as coauthorship, stack exchange tags, stack exchange threads, email,
or contact. Using 80 samples from each of the 13 datasets as training data,
we trained an `2-regularized multinomial logistic regression classifier to pre-
dict the system domain given the three features above and an intercept
term. The model was trained using the scikit-learn library (the regularization
parameter was set to C = 10). Test accuracy was computed on the remain-
ing 20 samples for each dataset. This entire process described was repeated
20 times, resulting in 20 different collections of egonet samples. Table 2
reports the mean and SD of test accuracy over the 20 trials. The decision
boundary in Fig. 3 comes from one of the 20 trials. Finally, let pc be the frac-
tion of egonets in a system domain within the training data and C the set of
all classes. Then random guessing accuracy is

∑
c∈C p2

c . The square appears
because class c appears in a pc fraction of the data and is guessed correctly
with probability pc.

Hypothesis Testing for Simplicial Closure Event Probabilities. Let nc and xc

denote the number of instances of an open configuration c in the train-
ing set (first 80% of data) and the number of those instances that close in
the test set (final 20% of data). For a pair of configurations c and c′, we use
a one-sided hypothesis test for xc/nc < xc′/nc′ . We use Fisher’s exact test
when max(xc, xc′ )≤ 5; otherwise, we use a one-sample z test.

Data and Software. Data collection details are in SI Appendix. Soft-
ware is available at https://github.com/arbenson/ScHoLP-Tutorial. Datasets
have been deposited in the GitHub repository, https://github.com/arbenson/
ScHoLP-Data.
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