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The extreme eigenvalues of connectivity matrices govern the influence of the network structure on a
number of network dynamical processes. A fundamental open question is whether the eigenvalues of large
networks are well represented by ensemble averages. Here we investigate this question explicitly and
validate the concept of ensemble averageability in random scale-free networks by showing that the
ensemble distributions of extreme eigenvalues converge to peaked distributions as the system size
increases. We discuss the significance of this result using synchronization and epidemic spreading as
example processes.
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The structure and dynamics of complex networks are of
increasing interest in nonlinear dynamics, biological phys-
ics, complex systems, and statistical physics [1–3]. Part of
this interest comes from the realization that commonly
observed structural properties, such as the scale-free (SF)
degree distribution [4], strongly influence the collective
dynamics of the system. In many dynamical processes, the
influence of the network structure is encoded in the ex-
treme eigenvalues of a connectivity matrix. In complete
synchronization and consensus phenomena, for example,
the stability and convergence are often determined by the
largest and smallest nonzero eigenvalues of the Laplacian
matrix [5–7]. In diffusion processes, the relaxation rate is
governed by the corresponding eigenvalues of the normal-
ized Laplacian [8]. The largest eigenvalue of the adjacency
matrix, on the other hand, plays a central role in determin-
ing epidemic thresholds [9,10] and critical couplings for
the onset of coherent behavior [11].

Our ultimate goal is to find a way to determine the
extreme eigenvalues (and thereby the dynamics) of net-
works by using only averages and local information about
the network structure. This problem is properly defined for
ensembles of networks and involves two elements: deter-
mination of the ensemble averages and characterization of
the fluctuations across the ensemble. Previous studies on
ensemble averages have focused on spectral densities [12–
15] and applications [2–6,8], while here we focus on the
extreme eigenvalues. In this case, the study of fluctuations
is crucial to assess how well the averages reflect the proper-
ties of individual networks in the ensemble. The broader
the distributions of extreme eigenvalues across the en-
semble, the more limited the information provided by the
averages will be. It has been suggested recently that the
degree distribution and other statistical properties are not
sufficient to characterize the eigenvalues of random SF
networks [16]. Though the spectral properties of these
networks are different from those traditionally considered
in random matrix theory [17], as far as we know, extreme
eigenvalue distributions have not been studied for network
ensembles, and their statistical properties remain essen-
tially unknown.

In this Letter, we investigate the averageability of the
extreme eigenvalues in ensembles of random SF networks.
We define a quantity to be ensemble averageable if the
variance of its probability distribution goes to zero in the
limit of a large system size. We show that the largest
eigenvalues of the Laplacian and adjacency matrices are
determined mainly by the largest degree node of the net-
work, while the smallest nonzero eigenvalue of the
Laplacian depends on the details of the way in which nodes
are connected. We provide strong evidence that the small-
est nonzero eigenvalue of the Laplacian and both extreme
eigenvalues of the normalized Laplacian are ensemble
averageable. That is, as the number of nodes increases,
the distributions become increasingly more peaked, and
the averages provide increasingly more accurate informa-
tion about the behavior of most networks in the ensemble.
We apply these findings to the study of synchronization
and epidemic spreading. We show that the physical quan-
tities characterizing the dynamics are averageable and
properly represented by functions of the averages of the
extreme eigenvalues. This provides an unambiguous spec-
tral characterization of the dynamics in ensembles of large-
size networks.

We focus on undirected random SF networks with the
constraints of having a single connected component and no
self- or multiple links. Starting with a graphic degree se-
quence for N nodes generated from a power-law distribu-
tion Pd�k� � cdk��, with k � k0, where cd ’ ��� 1�k��1

0

for large N, we construct an initial network satisfying the
given constraints [18]. Then we randomize the network
topology using the degree-preserving algorithm of
Ref. [19] to implement �

P
iki�

2 link rewirings, while keep-
ing the constraints by rejecting constraint-breaking rewir-
ings. The only degree correlations in the network construc-
tion are those due to these constraints (see, for example,
Ref. [20]). We focus on the ensemble of all such networks.
We consider three connectivity matrices of broad interest:
the adjacency matrix A, defined as Aij � 1 if nodes i and
j � i are connected and Aij � 0 otherwise; the Laplacian
L � D� A; and the normalized Laplacian ~L � D�1L,
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where D � diagfk1; . . . ; kNg is the diagonal matrix of
degrees. For undirected networks, all of the eigenvalues
of these matrices are real. The eigenvalues of L and ~L can
be ordered as �1 � 0< �2 � � � � � �N and �1 �
0<�2 � � � � � �N � 2, respectively. The largest eigen-
value of A is positive and is denoted by �N . The nodes are
labeled in increasing order of their degrees ki, such that
k1 � k2 � � � � kN.

For the Laplacian L, we estimate the largest eigenvalue
�N by using nondegenerate perturbation theory [21]. In
L � D� A, we consider D as an unperturbed matrix and
�A as a perturbation. This decomposition leads to the
perturbation expansion of �N , which up to second order
of A is

 �N ’ kN � ANN 	
X
j�N

�ANj�
2

kN � kj
’ kN 	 1: (1)

Here we have used the fact that the second-order term can
be expanded as

P
j�ANj�

2
�1=kN� 	 �kj=k2
N� 	 � � �� � 1	

�k�1�N =kN� 	 � � � , where k�1�N is the average degree of the
nearest neighbors of node N. In uncorrelated SF networks,
k�1�N =kN ’ k

�1
N 


P
kk

2Pd�k�=
P
kkPd�k�� � 1 for � > 2 and

large N [22], which leads to �N ’ kN 	 1 for large N. This
result is quite neat since �N of any network is lower
bounded by kN 	 1 [23]. The same approach can also be
used to predict a power-law tail for the � density ���� 
��� [24], because �i  ki is still valid for other nondegen-
erate ki’s in the tail of Pd  k��. Similarly, we can also
obtain the largest eigenvalue �N of the adjacency matrix
by considering the largest diagonal term of matrix A2,
given by kN , and regarding the off-diagonal elements as a
perturbation. Under the approximation of local treelike
structure, we obtain �2

N ’ kN 	 k
�1�
N � 1, which provides

a second-order correction to the previous result �2
N  kN

[12–14].
Equation (1) implies that �N depends on the specific

realization of the degree sequence, which fluctuates widely
across the ensemble. For N integers randomly generated
from Pd�k�, the asymptotic form of the probability distri-
bution of the largest one kN is given by the Fréchet di-
stribution P�kN�’cdNk

��
N exp
�N�k0=kN�

��1� [25]. The
average of kN can be obtained from P�kN� as hkNi ’
k0N1=���1�exp
k��1

0 =N��2��
���2�=���1�;k��1
0 =N��2�,

where �
a; b� denotes the incomplete gamma function.
The standard deviation of P�kN� increases as N1=���1�

in the same way as hkNi does. This implies that kN , and
hence �N , are not averageable quantities in this ensemble.

Instead, the corresponding ensemble averageable quan-
tity is the reduced largest eigenvalue �̂N � �N=�kN 	 1�.
While �̂N may deviate from the prediction in Eq. (1), the
numerical calculation confirms that, as N grows, the dis-
tribution of �̂N becomes extremely peaked, as shown in
Fig. 1. This indicates that �N of large random SF networks
is accurately determined exclusively by kN , which involves
local information only.

On the other hand, we find that �2, �2, and �N are
ensemble averageable by themselves. As shown in Fig. 2,
these eigenvalues have bell-shaped distributions with well-
defined averages in the ensemble of SF networks. We note
that the statistics of �N is indistinguishable from that of
2��2. More importantly, we find that P��2� and P��2�
converge to increasingly peaked distributions as N in-
creases. We have confirmed this behavior by analyzing
the N dependence of the standard deviation, which de-
creases with increasing N. This indicates that the proba-
bility of having large deviations from the averages
decreases to very small values as the size of the system
increases. Therefore, for large N, the eigenvalues �2, �2,
and �N of most networks in the ensemble are well repre-
sented by the ensemble averages.

To provide approximate bounds for the ensemble aver-
ages, we derive an approximation for the extremes of the
spectral density of uncorrelated treelike networks in the
thermodynamic limit. For the Laplacian L, the spectral
density is given by ���� � � 1

�N ImhTrf1=
��	 i0	�I �
L�gi and can be analyzed using a weighted version of the
random walk method [13,26] with a multiplying weight
factor of 
kj � ��	 i0	���1. This leads to ���� ’
1
� Im

P
kfPd�k�=
k� �� i0

	 	 kT����g, where T��� satis-
fies T��� � 1

hki

P
kfkPd�k�=
k� �� i0

	 � �k� 1�T����g,
with hki �

P
kkPd�k�. To obtain the lower extreme ��,

we note that T is complex [so that ����> 0] if � > ��,
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FIG. 1. Numerical results for (a) the distribution P��̂N� of
�̂N � �N=�kN 	 1� and (b) the N dependence of the correspond-
ing standard deviation �̂. All of the numerics are obtained from
5000–105 realizations of the networks with k0 � 3.
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FIG. 2. Ensemble distributions of (a) �2 and (b) �2. The
statistics of �N is not shown because it is well approximated
by that of 2��2. The unspecified parameters are defined in
Fig. 1.
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and T is real [so that ���� � 0] if � < ��. Then, for real
x � ��T

1�T such that g�x� � 4
hki

P
k
kPd�k�=�k� x�� � 1, we

obtain

 �� ’ max
x

1
2
x	 1	 jx� 1j

������������������
1� g�x�

q
�: (2)

For the normalized Laplacian ~L, it is known [13] that the
spectral density is given by ���� ’ � 1

� Im 1
��T��� , with

T��� satisfying T��� � 1
hki

P
kfkPd�k�=
k�	 i0

	 � �k�
1�T����g, where � � 1��. From the identity T���� �
�T����, we obtain the spectral symmetry ���� ’
�����, which helps explain our numerical result h�Ni ’
2� h�2i (cf. Fig. 2). We then obtain an approximate
expression for the upper (lower) extreme �	 (��) by
using the same argument used to derive Eq. (2). For real
x � T=�,

 j1���j2 ’ min
0<x<1

�
1

hkix

X
k

kPd�k�
k� �k� 1�x

�
: (3)

If k0 is large, the right-hand side of Eq. (3) approachesP
k4�k� 1�Pd�k�=�khki� and �� ’ 1� 2=

������
hki

p
, which

agrees with previous results for densely connected net-
works [14,24].

For the large but finite-size sparse networks of our
interest, the actual ensemble average h�2i is expected to
fall inside of the pseudogap region �0; ��� because of the
existence of extended tails of ���� (see Ref. [27] for the
case of homogeneous networks). Then, given a degree
distribution, �� serves as an approximate upper bound
for h�2i. On the other hand, because all of the networks
in the ensemble have all degrees � k0, the average h�2i is
expected to be lower bounded by the corresponding aver-
age of the ensemble of k-regular random graphs with
degree k � k0 for all of the nodes, which is nonzero for
k0 � 3 [28]. Thus, we can write ��1 & h�2i & ��, and,
symmetrically, we have �	 & h�Ni & �	1, where ��1
denotes �� at � � 1, representing k-regular graphs with
P�k� � ��k� k0�. For �2, similar arguments lead to ��1 &

h�2i & ��, where ��1 is �� at � � 1. As shown in Fig. 3,

the numerical results are in good agreement with these
predictions.

We now use synchronization and epidemic spreading as
example processes to show how our findings can impact
the study of network dynamics. In the complete synchro-
nization of identical oscillators, the ability of an oscillator
network to synchronize is measured by the range of the
coupling parameter for which synchronization is stable and
is determined by R� � �N=�2 [5]. If the input signal is
normalized to be equal for all of the oscillators, then the
same stability condition is determined by R� � �N=�2

[8]. In epidemic spreading, on the other hand, the epidemic
threshold of the susceptible-infected-susceptible model is
determined by 1=�N [9]. These dynamical processes, as
well as many others, are determined by functions of the
extreme eigenvalues. To characterize a process in SF net-
works, in principle, one would have to average the corre-
sponding function over all possible realizations of the
networks or study the process on a case-by-case basis.
We have shown, however, that the extreme eigenvalues
are well represented by averages combined with local
information. A practical question then is whether one can
approximate the averages of the functions by functions of
the average eigenvalues.

The average of a function hf�x�i is not necessarily equal
to the function of the average f�hxi�. However, from the
identity

P
if�xi�=n � f�

P
ixi=n� for x1 � x2 � � � � � xn,

one expects that, if the distribution of x goes to a �-like
function in the thermodynamic limit, then hf�x�i ap-
proaches f�hxi�. For finite N, this can be formalized for
locally monotonic functions by noting that the probability
distributions of the function and variable are related
through Pf
f�x�� � Px�x�=

df�x�
dx . If f�x� can be expressed

as a uniformly convergent Taylor series around x � hxi, the
deviation of f�hxi� from hf�x�i can be written as hf�x�i �
f�hxi� �

P
1
n�2

1
n! f

�n��hxi�h�x� hxi�ni, where f�n��hxi� de-
notes the nth derivative of f�x� at x � hxi. In this case, the
central moments h�x� hxi�ni determine the N dependence
of the deviation. If x is averageable, this deviation is
expected to decrease as N increases and the central mo-
ments decrease.

In Fig. 4, we show numerically that the averages of the
functions R̂� � R�=�kN 	 1�, R�, and 1=�N are indeed
well approximated by the functions of the average eigen-
values:

 hR̂�i ’
h�̂Ni
h�2i

; hR�i ’
h�Ni

h�2i
;

�
1

�N

�
’

1

h�Ni
: (4)

In the lower panels of Fig. 4, we show that the probability
distributions of these functions become increasingly more
peaked as N increases, which indicates that the functions
themselves are ensemble averageable. Note that we have
normalized R� to benefit from the fact that �̂N is average-
able. The function R� is broadly distributed in the en-
semble but can be estimated for individual realizations of
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FIG. 3. Numerical results for the ensemble averages (a) h�2i
and (b) h�2i (dotted lines). We also show �� and �� predicted
by Eqs. (2) and (3), respectively, for the same degree distribution
(right-hand side symbols) and for k-regular graphs with degree
k0 (horizontal solid lines). The symbols and parameters are the
same as in Fig. 1.
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the network using R� ’ �kN 	 1�hR̂�i. A similar argument
could be used for 1=�N , although in this case the extreme
statistics [25] of x � k��1=2�

N  1=�N is directly given by
the Weibull distribution P�x� / x2��3 exp��cNx2��2�,
which becomes increasingly peaked as N increases.

The importance of our results is twofold. First, despite
the rich variety of possible structural configurations of
individual networks, one can conclude that most networks
in an ensemble of large SF networks have remarkably
similar spectral properties. Second, many network dynami-
cal processes can be described using average eigenvalues
and local information provided by the degrees, which
require very few network parameters. These results have
broad significance in view of the previous finding [16] that
there are networks in the SF ensemble with very different
extreme eigenvalues, implying large deviations in the cor-
responding dynamics. Our results show that the probabil-
ities of such large deviations are remarkably small and
decrease with the increasing size of the networks.

The averageability of the extreme eigenvalues estab-
lished in this Letter helps provide an unambiguous setting
for the spectral characterization of dynamical processes on
ensembles of complex networks. For large random SF
networks, our results show that the eigenvalues �2, �2,
and�N are statistically well characterized by the ensemble
averages determined by the degree distribution, which is in
sharp contrast with the conclusions drawn from the study
of particular networks [16]. Our conclusion also applies to

�N and �N normalized by simple functions of the maxi-
mum degree. These results provide evidence of self-
averaging properties reminiscent of the laws of large num-
bers and are likely to remain valid for other ensembles of
disordered networks.

The authors thank David Taylor, Hermann Riecke,
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manuscript.
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FIG. 4. (a) hf�x�i vs f�hxi� for synchronization [hR�i vs
h�Ni=h�2i (squares), hR̂�i vs h�̂Ni=h�2i (circles)] and epidemics
[h1=�Ni vs 1=h�Ni (diamonds)] for networks with N � 28–212

and � � 2:4–5:0. (b)–(d) show the ensemble distributions for
� � 3:0 and N � 29–211. Here R̂� � R�=�kN 	 1�. The other
parameters are the same as in Fig. 1.
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