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Network modularity reveals critical scales
for connectivity in ecology and evolution
Robert J. Fletcher Jr1, Andre Revell1, Brian E. Reichert1, Wiley M. Kitchens2, Jeremy D. Dixon3 & James D. Austin1

For nearly a century, biologists have emphasized the profound importance of spatial scale for

ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has

proven incredibly challenging. Here we extend new techniques from physics and social

sciences that estimate modularity on networks to identify critical scales for movement and

gene flow in animals. Using four species that vary widely in dispersal ability and include both

mark-recapture and population genetic data, we identify significant modularity in three

species, two of which cannot be explained by geographic distance alone. Importantly,

the inclusion of modularity in connectivity and population viability assessments alters

conclusions regarding patch importance to connectivity and suggests higher metapopulation

viability than when ignoring this hidden spatial scale. We argue that network modularity

reveals critical meso-scales that are probably common in populations, providing a powerful

means of identifying fundamental scales for biology and for conservation strategies aimed at

recovering imperilled species.
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M
any ecological and evolutionary processes are inher-
ently spatial, occurring at scales from millimetres to
continents1,2. As a result, spatial scale can profoundly

influence our understanding of these processes, altering conclusions
regarding behaviour, population viability, species interactions
and evolutionary dynamics3–6. Of great interest are critical (or
characteristic) scales—spatial scales that govern the dynamics of key
ecological and evolutionary processes7,8. Despite the significance of
spatial scale, objectively identifying critical scales has been
exceedingly difficult3,9. Consequently, our understanding of scale
has been largely driven by patch-based10 (or island-based11) or
larger landscape (summarized across all locations or patches in a
pre-defined region) paradigms8, neither of which are typically
defined by the key process of movement. Integrating the concept of
modularity from physics12, cellular and molecular biology13, and
social sciences14 has the potential to fill this conceptual gap and
objectively identify critical scales for populations15.

In population biology, spatial modularity occurs where habitat
patches (or local populations) are tightly connected to other
patches through movement of individuals or their alleles but only
weakly connected to the remaining patches in the landscape15. In
doing so, spatial modularity provides a formal description of the
functional aggregation of populations, identifies a potentially
critical scale for ecological and evolutionary dynamics (for
example, a relevant ‘management unit’9) and emphasizes the
roles of patches in landscape connectivity based on movement
within and between modules15,16.

The emergence of modularity is crucial for population biology
because several models suggest that such a structure can greatly
influence dynamics17–19. Holt19 catalysed this interest in the
context of island biogeography by suggesting that internal island
dynamics (for example, rescue effects20) reduced extinction risk of
populations, leading to altered predictions for biodiversity on
islands; such internal dynamics are analogous to dynamics that
may arise within modules. Similarly, a recent metapopulation
model contrasting gradients of non-modular and modular
metapopulations found that the most persistent metapopulations
were those that were most modular18. Although theory suggests
that modularity is highly relevant to spatial dynamics, the
empirical application of modularity concepts to spatial ecology
and evolution has been scarce. Recent algorithms from statistical
physics and social sciences may help overcome these challenges
while honouring complex dynamics that may arise in assessments
of connectivity and critical spatial scales, such as highly directional
movement21, spatial variation in the resolution of critical scales
(that is, non-stationarity22) and effects of scale beyond geographic
distance alone23.

Using four examples that vary in spatio-temporal scale regarding
movement and gene flow, here we illustrate how the modularity
concept can be applied to identify critical scales through the use of
network analysis12. We quantify the extent to which populations
are modular, reveal the spatial and non-spatial components of
modularity and illustrate how module identification alters con-
clusions regarding connectivity and metapopulation persistence.
We find significant modularity in the movement and gene flow of
three of the four species, two of which cannot be explained by
geographic distance alone. Furthermore, incorporating modularity
into connectivity and population viability assessments alters
conclusions regarding patch importance to connectivity and
suggests higher metapopulation viability than when ignoring this
hidden spatial scale.

Results
Revealing modularity in spatial networks. We estimated modu-
larity in two mark-recapture datasets that span several orders of

spatial magnitude: movements of the cactus bug (Chelinidea
vittiger) on patchy Opuntia cactus and breeding-season move-
ments of the Everglades snail kite (Rostrhamus sociabilis plum-
beus) among wetlands21. We also estimated modularity from
genetic data on breeding aggregations of the bullfrog (Rana
catesbeiana)24 and among core populations of black bears (Ursus
americanus floridanus) in Florida25. Based on the movement
biology of each species, we expected that modularity should be
weak in the Everglades snail kite and black bear because of
frequently observed long-distance movements26,27, yet strong in
the cactus bug and bullfrog because observed movements tend to
be more localized28,29.

We first assessed modularity by using extensions of the
Newman–Girvan algorithm from statistical physics30 that
account for weighted (non-binary), directed network data
where migration rates may differ. We find that three of the
four examples exhibit significant spatial modularity based on
generalized linear models testing for within versus between-
module movement and gene flow (see Fig. 1a; Supplementary Fig.
S1 for assessments of this statistical test), with only the black bear
showing no significant modularity (Supplementary Table S1).
However, modules showed a strong spatial signature, where
patches within the same modules tended to be in close geographic
proximity. Because movement of individuals and shared alleles
are dependent on the distance between patches (Fig. 1b),
geographic distance is a key (yet implicit) component of
modularity on spatial networks and may confound our under-
standing of the mechanisms generating such structure. All
empirical examples of modularity in ecology and evolution have
neglected this issue15,16,31, such that it currently remains
unknown whether modularity is simply a by-product of
distance effects on movement.

To address this crucial issue, we altered the modularity
function to account for geographic distance effects. Recently,
modularity analysis for social network data was extended to
account for distance effects32. We applied this general approach
for each of the spatial networks, extending it to reflect
metapopulation theory for connectivity33,34 and potential
directionality in movement. This formulation identifies whether
modularity remains after accounting for dispersal kernels or
isolation-by-distance in gene flow35. After accommodating space
modularity remained, although the modules identified changed
(Fig. 1c). Significance tests suggested that for snail kites, the
observed modularity could be explained by distance effects alone
(that is, movement within versus between modules was no longer
statistically significant after accommodating space), whereas
distance could not fully explain modularity in the other two
examples where modularity was detected (significant modularity
remained; Supplementary Table S1).

Modularity and patch connectivity. In modular networks,
individual patches may have fundamentally different impacts on
connectivity within and between modules. Guimera and
Amaral36 argued that in such networks, the universal roles of
nodes (patches) can be described by their relative within-module
importance or the importance of a patch to connectivity within its
module compared with other patches within the same module
and their ‘participation coefficient’ or the extent to which a patch
is connected to all modules in a network.

For each network, we assessed the relative importance of
patches to connectivity by contrasting patch strength (the total
observed movement or gene flow for patch i, wi) that ignores
modularity to similar measures that incorporate modularity based
on the within-module strength and participation coefficient for
each patch. We found that in each example, patches that tended
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to have high participation coefficients tended to have low within-
module strength (Fig. 2a–c), emphasizing that patches rarely had
important roles for connectivity both within and between
modules. Furthermore, the rank importance of patches changed
when incorporating modularity into our connectivity assessment
(Fig. 2d–f). Although rank importance of patches was sometimes
similar based on patch strength and within-module strength,
rank importance based on participation coefficients diverged
substantially.

Modularity and metapopulation viability. Although theory
suggests that modularity can increase metapopulation viability,
empirical assessments of such potential remain absent. We
assessed how incorporating modularity may alter metapopula-
tion viability assessments for cactus bugs. We focused on this
species because it shows extinction–colonization dynamics on
cactus patches that resemble metapopulation dynamics37.
Theory suggests that the metapopulation capacity of a
fragmented landscape can provide a relative measure for
metapopulation viability34,38. Metapopulation capacity is
defined as the leading eigenvalue of a ‘connectivity matrix’,
which previously has used Euclidean distance between patches
as a proxy for isolation and potential movement (Methods).
However, elsewhere we have shown that statistical models
developed for social networks reliably predict movements, in

terms of model fit and predicting unknown linkages and
improve predictions of metapopulation viability for cactus
bugs compared with traditional distance-based proxies21. We
tested for variation in predicted metapopulation capacity by
fitting social network models to predict movement rates of
cactus bugs, contrasting models that ignore modularity21 to
those that considered the potential for modularity14 (Methods).
This approach allows for altering predictions of connectivity
matrices, and thus the metapopulation capacity, based on the
potential for modularity in movements.

Social network models provided strong support for modularity
in the insect network (Bayesian Information Criterion ignoring
modularity¼ 1,143; including modularity¼ 964; Fig. 3a). When
contrasting metapopulation capacity based on this modularity-
driven, social network model to the existing theory34 and social
network models that ignored modularity21, we found that
accounting for modularity greatly increased predictions of
metapopulation capacity (Fig. 3a). In this context, relative patch
importance (proportional contributions) to metapopulation
capacity can be assessed on the basis of leading eigenvectors of
the connectivity matrices34. Inclusion of modularity altered
predictions of patch contributions to metapopulation capacity
(Fig. 3b), suggesting that 4–5 key patches have a much greater
contribution than what would be assumed when modularity is
ignored. Taken together, the inclusion of modularity into
metapopulation assessments was most supported by the data
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and had strong effects regarding the predictions of persistence of
this population.

Discussion
For three of the four species considered, modularity analysis
objectively identified meso-scales—above the patch and below the
landscape—that are commonly hidden in biology. Only gene flow
in black bears showed no significant evidence of modularity,
which could be attributed to either their wide-ranging move-
ments27 or that modularity analysis may have limited power in
small networks (Supplementary Fig. S1). Fortuna et al.15 argued
that such modules represent fundamental scales for populations.
Our results provide empirical support for this claim by illu-
strating that these scales can profoundly influence conclusions
on connectivity and metapopulation viability. Moreover, our

findings identify modules where other processes of ecological and
evolutionary interest (for example, mate selection) are probably
spatially restricted.

In spatial networks, modularity can arise simply from localized
movement among geographic locations when the Newman–
Girvan expected value is used. Consequently, it has previously
been unclear the extent to which observed modularity in spatial
biology is simply driven by well-known distance effects on
movement, which are frequently summarized in dispersal kernels
and genetic measures of isolation-by-distance (Fig. 1b). Our
spatial extension of this algorithm suggested that modularity
occurred beyond what localized movement could explain in two of
the species, the cactus bug and the bullfrog. At least two
alternative hypotheses may explain this structure in cactus bugs.
First, the vegetation surrounding patches (the ‘resistance’ of the
matrix39) may influence movement rates beyond geographic
distance alone because movement of cactus bugs is influenced by
vegetation height28 in the surrounding matrix. However, this
‘matrix resistance’ hypothesis cannot, in isolation, explain
modularity because replacing our null model with an effective
distance based on matrix resistance (measured from vegetation
height using circuit theory39) still resulted in significant
modularity (modularity¼ 0.47, Po0.001). Second, aspects of
patch size and quality could drive module structure beyond that
captured in our null models37. Cactus bugs show preferential
movements toward large patches40 and the observed modules can
be discriminated based on measures of patch size (MANOVA
using cactus size, shape and height: Pillai’s trace¼ 0.60, d.f.¼ 7,48,
P¼ 0.036), providing some support for this hypothesis.

For bullfrogs, genetic distances are probably influenced by both
historical and contemporary ecological processes41; in this
instance, modularity may be confounding limited gene flow
between patches with the historical process of secondary contact
between allopatric lineages. Bullfrogs in Ontario represent two
distinct postglacial lineages, whose distribution is very similar to
that represented by the observed modules42 after the effects of
distance are removed (Fig. 1c). Additional effort to remove
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historical influences on the genetic signals of modularity should
be explored, particularly, when the geographic scale of the study
far exceeds the scale of ecological dispersal. In the northeastern
populations, we observed spatial heterogeneity in modularity
(Fig. 1c) that could reflect a pattern of finer-scale disequilibrium
than what was described previously based on patterns of
isolation-by-distance24. Fine-scale modularity among bullfrog
populations may be driven more by habitat characteristics and
the degree of aquatic connectivity than by distance. Future efforts
to interpret the effect of these characteristics on movement and
gene flow and incorporate these factors as a null model in
modularity analysis, similar to that used for the cactus bug, may
shed light on this issue.

In the observed networks, key patches were generally important
for either within-module connectivity or between-module
connectivity—but not both. Within-module connectivity is prob-
ably relevant for facilitating colonization and rescue effects19 and in
altering the rate of genetic drift and local adaptation. Between-
module connectivity may be critical for long-term metapopulation
persistence and the maintenance of genetic diversity via rare
dispersal events. For example, patch removal simulation experi-
ments for the cactus bug network suggest that participation
coefficients better explain changes in metapopulation capacity than
do within-module strength of patches (Supplementary Fig. S2).
Although there are dozens of metrics that are aimed to assess both
genetic and demographic connectivity at the patch and landscape
scale21,33,43–45, current approaches ignore module structure. These
results suggest that such metrics may be misleading when
modularity occurs. Consequently, if the potential for modularity
is not considered, connectivity conservation that aims to prioritize
patches may incorrectly prioritize key areas, reducing the
effectiveness of conservation strategies.

Modularity is frequently hypothesized to be important for the
stability and persistence of a wide range of networks19,46–48. Here,
we found that inclusion of modularity into connectivity matrices
via social network models substantially increased predictions of
metapopulation capacity, a common index of metapopulation
viability34,38. Identifying the mechanisms driving the influence of
modularity on metapopulation dynamics, such as heightened
rescue effects within modules due to redundant linkages19 or
asynchronous dynamics between modules49, will be essential for
understanding how to manage and conserve populations
exhibiting modularity.

Modularity in populations is relevant to existing ideas in
landscape ecology50–52, metapopulation biology38,53–56 and
genetics23,57, yet the concept has novel utility for identifying
critical scales in connectivity for several reasons. First and
foremost, module identification is an outcome rather than an
input: the presence, number, strength and location of modules are
unknown variables that are estimated from the data. The
detection of genetic modularity is in this way different than
Bayesian clustering approaches57 that identify the most likely
membership of genotypes to an a priori defined number of
clusters. Second, as we show here, modularity analysis can
accommodate frequent problems that currently exist in spatial
analysis and are often ignored in existing spatial biology theory,
such as redundancy in connectivity (beyond pair-wise
comparisons), non-stationarity in ecological processes (that is,
spatial trends) and anisotropy. Third, modularity can reveal
spatial structure independent of geographic distance effects,
thereby allowing for assessments to understand the relative
contribution of isolation-by-distance and other factors to the
functional aggregation of populations. Finally, other null models
that impose constraints on module identification can be
accommodated in a straightforward manner, such as distance
between patches, matrix resistance or population density.

Although modularity analysis has several advantages over
existing approaches for identifying relevant spatial scales for
connectivity of populations, there have been some recent
criticisms of this approach in the network sciences. First, the
approaches we show assume no overlap among modules (that is,
it is a ‘hard’ partition)12. Nonetheless, overlapping modules have
been considered (and observed) in other types of networks.
Second, there is a known ‘resolution limit’ to modularity
analysis58. Such resolution limits can, however, be minimized
by adjusting null models to reflect biologically relevant processes,
such as localized movement12. Third, modularity analysis
often suffers from what has been termed ‘degeneracy’: when
several possible module assignments provide nearly identical
modularity values59. We note that such degeneracy could be
accommodated through the use of ensemble predictions60 of
module assignments, which may also better acknowledge
uncertainties in module identification.

We argue that modularity probably occurs in most spatially
structured populations. The concept of modularity provides a
vehicle for objectively moving beyond the patch paradigm in
ecology that dates back to the application of island biogeography
to terrestrial systems11. It offers a complementary means of
evaluating the appropriate scale of population genetic structure57

and genetic connectivity23, and we expect it will improve our
understanding of connectivity and population biology in a
changing world.

Methods
Focal species. We analysed individual movement data from mark-recapture
studies for two species: the cactus bug and the Everglades snail kite21. We analysed
movement data of cactus bugs among 56 prickly pear cactus (Opuntia humifusa)
patches. For the snail kite, we analysed within-breeding season movements among
15 wetlands in peninsular Florida. For both species, we used a weighted, directed
adjacency matrix, A, to assess modularity, where Aij represents the number of
observed movements from i to j.

We analysed population genetic data for two species: the bullfrog and the
Florida black bear. We reanalysed the genetic data (seven microsatellite loci) from
753 bullfrogs sampled at 26 wetlands in eastern Ontario, Canada24. We also
reanalysed genetic data from Florida black bear populations25, which included 12
microsatellite loci from 339 bears sampled at 9 core habitat areas in Florida. For
both species, we constructed a spatial network of genetic similarity where Aij is a
weighted, undirected matrix of genetic covariance15,61. These methods reduce Aij

between all samples to those best explained by the conditional genetic covariance
among all populations considered simultaneously.

Modularity analysis. A powerful approach to identifying modules comes from
statistical physics and social sciences, where interest is in detecting ‘communities’
in social networks. This approach defines modularity, Q, as:

Q ¼ 1
2m

X
ij

ðAij� PijÞdðCi;CjÞ ð1Þ

where m is the total number of possible links in an undirected network, Aij is the
element of the adjacency matrix that describes movement/gene flow between
patches i and j, Pij is an expected value and d(Ci, Cj) is an indicator matrix that is
equal to one if i and j are members of the same module and zero otherwise30. We
used the common, Newman–Girvan30 expected value of wiwj/2m to calculate Q
(Qng hereafter), where w is the patch strength (wi ¼

P
j Aij)12. This expected value

is useful in that both the strength distribution and the total amount of observed (or
potential) movement on the network are conserved (

P
ij Aij ¼

P
ij Pij ¼2m);

however, it also implicitly assumes an equal likelihood of movement among
resource patches regardless of spatial location32 (see below for relaxing this
assumption). To accommodate directional movement (for example,
immigrationaemigration for patches i, j), we set Pij¼wi-outwj-in/w, where wi-out is
the emigration rate for patch i and wj-in is the immigration rate for patch j 12. Here,
Pij accounts for immigration and emigration rates between patches, such that it
identifies modularity structure that arises beyond what is expected based on patch-
specific immigration and emigration rates. Because of the additive nature of the
modularity function, the contributions of each module to Q can readily be assessed
by summing the elements of equation 1 for each module detected (Fig. 1).

We used a simulated annealing algorithm to maximize the modularity function
by iteratively searching for d(Ci, Cj) that maximizes Q36 and generalized linear
models to assess significance of observed modules. Generalized linear models
(GLMs) assess significance by comparing the amount of movement within modules
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to the amount of movement between modules62, thereby addressing the question:
is there a significant variation in movement within versus among identified
modules? In the Supplementary Methods, we contrast this approach with
randomization tests based on known modules and find that GLMs are more
powerful, particularly on small networks (Supplementary Fig. S1). Based on these
simulation results, we used Poisson GLMs for assessing the significance of
identified modules for mark-recapture data and used zero-adjusted gamma GLMs
for assessing significance in genetics data, where Aij included continuous values Z0
(Supplementary Table S1).

Although the expected value for the modularity function is widely applied, it
may be limited for applications in spatial biology because movement probabilities
and gene flow of species decline, often exponentially, with distance. Recently, the
expected value, Pij, has been altered to account for geographic effects in social
networks when calculating Q (Qspa hereafter)32:

Pij ¼ wiwjf ðdijÞ ð2Þ

where f(dij) is a ‘deterrence’ function that in this case describes variation in
movement as a function of distance, d, between patches:

f ðdÞ ¼

P
i;jj dij¼d

AijP
i;jj dij¼d

wiwj
: ð3Þ

This function is a non-parametric, data-driven function describing the
probability of movement between i and j, given the distance between patches (note
that

P
ij Aij ¼

P
ij Pij ¼2m). We used this function for bullfrogs and black bears

because we had no a priori expectation for parametric relationships to explain Aij as
a function of distance. When using this deterrence function, distances must be
binned for determining movements within distance categories. We systematically
altered the bin width and then used the bin width with the highest observed
Qspa (Supplementary Fig. S3). For cactus bugs and snail kites, we extended the
approach as:

f ðdÞ ¼ expð� adijÞ ð4Þ

where 1/a is the mean dispersal distance observed. This extension captures
assumptions from metapopulation theory and does not require binning of
empirical data (but note that we must add a scaling constant to equation 2 to
satisfy

P
ij Aij ¼

P
ij Pij ¼2m). Directed movements were accommodated in

equation 2 as Pij¼wi-outwj-inf(dij). Consequently, directionality is captured through
the incorporation of patch-specific immigration/emigration rates, rather than
altering the effective distance between patches. Note that dij could be replaced with
measures of effective distance that incorporate effects of the structure of the
surrounding environment (that is, the ‘matrix’), such as resistance distances or
least-cost distances39. For cactus bugs, we considered vegetation height as a
relevant aspect of matrix structure that can influence bug movement28 and
calculated resistance distances between all patches i and j (based on an interpolated
resistance map of 106 vegetation height measurements and using circuit theory to
estimate resistance distances39). We then altered equation 4 using resistance
distance to ask if modularity remained beyond what would be expected based on
the surrounding matrix.

Patch importance and modularity. In modular networks, connectivity can vary
within versus between modules. We assessed these different connectivity roles of
patches using two key metrics: within-module strength and participation coeffi-
cient36. Within-module strength assesses the relative importance of a patch to
connectivity within modules compared with other patches within the same module:

zi ¼
wig �wg

skgi

ð5Þ

where wig is the amount of movement observed for patch i within its module g.
The participation coefficient is:

Pi ¼ 1�
XNm

i¼1

wig

wi

� �2

ð6Þ

where Nm is the number of modules in the network. Pi will be zero if all movement
is within the module of patch i and will approach one when movement is
uniformly distributed among all modules in the network. However, because the
maximum value of Pi will depend on the number of modules observed (where
Pmax¼ 1–1/Nm), we scale Pi by dividing by Pmax, such that it ranges 0–1 for all
networks. With these metrics, we ask whether patch prioritization differs when
acknowledging modularity. We contrasted within-module strength and participa-
tion coefficient to patch strength, wi, because this measure is the most direct
analogue when ignoring modularity to these modularity metrics. Thus, rankings
based on patch strength prioritize patches associated with the greatest amounts of
movement in the landscape, within-module strength rankings prioritize patches
with the greatest amounts of movement within modules, and rankings based on the
participation coefficient prioritize patches that connect modules in the landscape.
Patch isolates (no observed movement) were not considered because zi is unde-
fined. See Supplementary Figs S4–S7 for comparisons to other connectivity metrics.

Modularity and metapopulation capacity. Community detection uses the
observed adjacency matrix, A, to interpret if modularity emerges in networks.
However, a distinct and complementary approach is to ask how predictions of A
change if we treat modules as a covariate in making predictions for Aij. Recently,
statistical social network models have been extended to formally consider clus-
tering (approximate modularity) in the modelling process, termed ‘latent position
cluster models’14. These models begin with describing a ‘latent space’, li, for patch
connectivity on networks. In the context of landscape connectivity, latent space
models leverage observed similarities in movements within networks to predict Aij

based on an unobservable or latent ‘connectivity space’21. We modelled the
probability of observed movement between patches, yij, as a Bernoulli distribution
with a mean, pij, and included distance, dij, between patches (pair-wise distances) as
the only fixed covariate in the model. We used a Euclidean distance measure based
on similarities of between-patch movements to estimate latent connectivity space,
such that our model formulation is:

yij � BernoulliðpijÞ
logitðpijÞ ¼ aþ bdij � j li � lj j ð7Þ

where yij is the observed presence or absence of a link (movement) between patches
i and j, a is an intercept, b is the coefficient for distance and the latent space is:

j li � lj j ¼
XK

k¼1

ðlik � ljkÞ2
 !1=2

; ð8Þ

where K is the number of dimensions in the Euclidean latent space (we set
K¼ 2)63,64. This formulation of latent space is inherently symmetrical64.
Previously, we have shown that this latent space model accurately predicts cactus
bug movements21. Here we extend this approach by assuming that the latent space
parameters li emerge from a finite mixture of multivariate normal distributions of
different groups, G, which can have different means, m, and variances, s2:

li �
XG

g¼1

lg MVNkðmg ; s
2
g IkÞ ð9Þ

where lg is the probability that patch i belongs to module g, k is the number of
latent space dimensions and I is an identity matrix14. We fit these models via
Markov Chain Monte Carlo. Importantly, for fitting this model, one must a priori
pick G, unlike the modularity optimizations we have considered. Handcock et al.14

recommended that the choice of G be determined using a variant of Bayesian
Information Criterion (BIC) developed for this model. We considered G ranging
from 1 to 7 and selected the model with the lowest BIC. We followed
recommendations for prior distributions and hyperparameters in this model
formulation14. We then compared predictions when assuming no modularity
(G¼ 1) to predictions that assume modularity (G41).

We assessed metapopulation capacity of the cactus bug network using the
conventional approach in metapopulation biology by calculating the leading
eigenvalue of the ‘connectivity matrix’, M¼ SiSj(exp(-adij)) (ref. 34), where Si is the
size of patch i. We then replaced exp(-adij) with the predicted Aij from the social
network model21 that assumes no modularity (G¼ 1) and Aij from the best-fitting
model that captured modularity (G¼ 5). We incorporated uncertainty in
predictions of metapopulation capacity from the network models based on 200
samples of the posterior distributions of the model predictions. We estimated the
relative patch importance to metapopulation capacity by squaring the elements of
the leading eigenvectors of the connectivity matrices34. For each model, these
importance values sum to one and describe the relative contribution of each patch
to the predicted metapopulation capacity34.

Finally, we used latent position cluster models coupled with a patch removal
experiment to examine if the roles of within-module strength and participation
coefficient of patches have differential influences on predicted metapopulation
capacity. Using the best-fitting latent position cluster model, we removed each
patch from the network one at a time and the metapopulation capacity was
calculated. We then used two general linear models to correlate predicted
metapopulation capacity with the within-module patch strength and participation
coefficient of the removed patch, calculated from modules identified with both Qng
and Qspa (Supplementary Fig. S2).
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