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We examine the global organization of heterogeneous equilibrium networks consisting of a number of
well-distinguished interconnected parts—“communities” or modules. We develop an analytical approach al-
lowing us to obtain the statistics of connected components and the intervertex distance distribution in these
modular networks, and to describe their global organization and structure. In particular, we study the evolution
of the intervertex distance distribution with an increasing number of interlinks connecting two infinitely large
uncorrelated networks. We demonstrate that even a relatively small number of shortcuts unite the networks into
one. In more precise terms, if the number of interlinks is any finite fraction of the total number of connections,
then the intervertex distance distribution approaches a �-function peaked form, and so the network is united.
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I. INTRODUCTION

Many real-world networks contain distinct parts with dif-
ferent architectures. In this sense, they are strongly heteroge-
neous. For example, the Internet—the net of physically in-
terconnected computers—is connected to mobile cellular
networks. One should note that the issue of network hetero-
geneity is among the key problems in the statistical mechan-
ics of complex networks �1–7�. The question is how does the
network’s inhomogeneity influence its global structure? The
quantitative description of the global organization of a net-
work is essentially based on the statistics of the nth compo-
nent of a vertex in the network, in particular, on the size
statistics �8–10�. The nth component of a vertex is defined as
a set of vertices which are not farther than distance n from a
given vertex. From this statistics, one can easily find less
informative but very useful characteristics—the distribution
of intervertex distances and its first moment, the average
intervertex distance. In networks with the small-world phe-
nomenon, so-called small worlds, the mean length of the

shortest path �̄�N� between two vertices grows more slowly
than any positive power of the network size N �the total

number of vertices�. Rather typically, �̄�N�� ln N. As a rule,
in infinite small worlds, the distribution of intervertex dis-
tances approaches a �-function form, where the mean width

�� is much smaller than �̄. Moreover, in uncorrelated net-
works, ���N→��→const. So, in simple terms, vertices in
these infinite networks are almost surely mutually equidis-
tant. This statement can be easily understood if a network
has no weakly connected separate parts �11�. In this paper we
consider a contrasting situation. Our networks are divided
into a number of nonoverlapping but interlinked subnet-
works, say j=1,2 , . . . ,m. It is important that we suppose the
connections between these subnetworks to be organized dif-

ferently from those inside them �see Fig. 1�. This assumption
results in a global �or one may say, macroscopic� heteroge-
neity of the network. Using the popular term “community,”
one can say that our networks have well-distinguished com-
munities or modules. Modular architectures of this kind lead
to a variety of effects �12–15�. Figure 1 explains the differ-
ence between these modular networks and the well studied
m-partite networks �16,17�.

In this work we analytically describe the statistics of the
nth components in these networks when all m communities
are uncorrelated. For the sake of brevity, here we consider
only the case of m=2, i.e., of two networks with shortcuts
between them. As an immediate application of this theory we
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FIG. 1. �a� Example of the network that we study in this paper
in the case m=3. The structure of interconnections between the
three nonoverlapping subnetworks differs from the structure of con-
nections inside these subnetworks. Moreover, the structures of the
three subnetworks may differ. �b� A contrasting example of a tri-
partite graph, where connections between vertices of the same kind
are absent.
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find a distribution of intervertex distances. We show how the
global architecture of this �large� network evolves with an
increasing number of shortcuts, when two networks merge
into one. The question is, when is the mutual equidistance
property realized? How general is this feature? Figure 2
schematically presents our result. The conclusion is that the
equidistance is realized when the number of shortcuts is a
finite fraction of the total number of edges in the network.
This finite fraction may be arbitrarily small though bigger
than 0. In this respect, the large network becomes united at
arbitrarily small concentrations of shortcuts.

In Sec. II we briefly present our results. Section III de-
scribes our general approach to these networks based on the
Z-transformation �generating function� technique. In Sec. IV
we explain how to obtain the intervertex distribution for in-
finitely large networks. In Sec. V we discuss our results.
Finally, in the Appendix we outline the Z-transformation ap-
proach in application to the configuration model of uncorre-
lated networks. In particular, we list useful formulas for the
statistics of the nth connected components obtained in Ref.
�10�.

II. MAIN RESULTS

We apply the theory of Sec. III to the following problem.
Two large uncorrelated networks, of N1 and N2 vertices, have
degree distributions �1�q� and �2�q� with converging sec-
ond moments. �When the second moments diverge, a net-
work has numerous loops, and the tree ansatz becomes du-
bious. So we do not consider this situation here.� We assume

that dead ends are absent, i.e., �1�1�=�2�1�=0, which guar-
antees that finite connected components are not essential in
the infinite-network limit �see Refs. �20,21��. L edges inter-
connect randomly chosen vertices of net 1 and randomly
chosen vertices of net 2. For simplicity, we assume in this
problem that L is much smaller than the total number of
connections in the network. The question is, what is the form
of the intervertex distance distribution? In the infinite-
network limit, to describe this distribution, it is sufficiently to

know three numbers: the average distance �̄1 between verti-

ces of subnetwork 1, the average distance �̄2 between verti-

ces of subnetwork 2, and the average distance d̄ between a
vertex from subnetwork 1 and a vertex from subnetwork 2.
These three numbers give the positions of the three peaks in
the distribution. By examining the variations of these three
distances with L one can determine when the equidistance
property takes place.

The resulting �̄1, �̄2, and d̄ are given by the following
asymptotic �N1 ,N2→�� formulas:

�̄1 �
ln N1

ln �1
, �1�

�̄2 � d̄ +
1

ln �2
ln�N2��2

d̄ + C��−1� , �2�

d̄ � �̄1 +
ln�N2/��

ln �2
. �3�

Here �̄1, �̄2, and d̄ are expressed in terms of �1 and �2, which
generalize the mean branching �� in the standard �one-
module� configuration model; see Eqs. �A13� in the Appen-
dix�. The expressions �3� are valid if �2��1��. The con-
stant C is determined by the degree distributions �1�q� and
�2�q� and is independent of N1, N2, and �. In formula �2�,
�2

d̄= �N1N2 /��ln �2/ln �1. Note that these asymptotic estimates
ignore constant additives. In their turn, “the mean branch-
ings” �1 and �2 are

�1 = K1 +
�2

N1N2q̄1q̄2

1

�K1 − K2�K1
2 ,

�2 = K2 −
�2

N1N2q̄1q̄2

1

�K1 − K2�K2
2 , �4�

where we assume that K1�K2. The quantities K1 and K2 are
defined as

K1,2 � �
q,r

q�q − 1��1,2�q,r�/q̄1,2, �5�

where �1,2�q ,r� are the given distributions of vertices of
intradegree q and interdegree r in subnetworks 1 and 2 �see
Sec. III for more detail�. q̄1 and q̄2 are the mean intradegrees
of vertices in subnetworks 1 and 2, respectively.

Formulas �1�–�3� demonstrate that, if L is a finite fraction
of the total number of connections �in the infinite-network

limit�, then �̄2 and d̄ approach �̄1. The differences are only
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FIG. 2. Schematic view of the evolution of an intervertex dis-
tance distribution with a growing number of shortcuts between two
large networks: �a� two separate networks; �b� two networks with a
single shortcut between them; �c� two interconnected networks,
when the number of shortcuts is a finite fraction of the number of

edges in the networks. �̄1 and �̄2 are the average intervertex dis-
tances in the first and second networks, respectively.
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finite numbers. Indeed, the second terms in relations �2� and
�3� are finite numbers if N2 /L→const. �When L is a finite

fraction of the total number of connections, �2
d̄�L in Eq.

�2�.� On the other hand, when L is formally set to 1, relation

�3� gives d̄= �̄1+ �̄2 �see Fig. 2�b��. Furthermore, assuming

L /N1,2→0 as N1,2→�, we have �̄2� ln N2 / ln �2 according

to relation �2�, since �2
d̄= �N1N2 /L�ln �2/ln �1 �L. Note that the

addition of extra links cannot increase any intervertex dis-
tance in a network, including the shortest-path distances be-
tween vertices within one module. This explains why, in the
mutual equidistance regime, the average intervertex distance
of the total network collapses approximately to the minimum
one �see Fig. 2�c��. �Recall that here we assume that the
number of interlinks is relatively small.�

We also consider a special situation where subnetworks 1
and 2 are equal, so K1=K2�K, q̄1= q̄2, and N1=N2�N. In
this case the mean branching coefficients are

�1,2 = K 	
�

Nq̄1

1

K
. �6�

With these �1 and �2, the mean intervertex distances have the

following asymptotics: �̄1= �̄2� ln N / ln �1 and d̄� �̄1

+ln�N /�� / ln �2. Formally setting L to 1, we arrive at d̄

=2�̄1=2�̄2. One should stress that all the listed results indi-
cate a smooth crossover from two separate networks to a
single united one: there is no sharp transition between these
two regimes.

III. STATISTICS OF MODULAR NETWORKS

We consider two interlinked undirected networks, one of
N1 and the other of N2 vertices. The adjacency matrix of the
joint network, ĝ, has the structure

ĝ = 	 ĝ1 ĥ

ĥT ĝ2

 .

Here ĝ1= ĝ1
T and ĝ2= ĝ2

T are N1
N1 and N2
N2 adjacency
matrices of the first and of the second subnetworks, respec-

tively, and ĥ is the N1
N2 matrix for interconnections. We
use the following notations: roman �greek� subscripts i, j,
etc. ��, �, etc.� take values 1 ,2 , . . . ,N1 �N1+1 ,N1
+2 , . . . ,N1+N2�. So gji, g��, gj�, and g�i are the matrix ele-

ments of ĝ1, ĝ2, ĥ, and ĥT, respectively. We assume the whole
network to be a simple one, i.e., the matrix elements of ĝ are
either 0 or 1, and the diagonal ones are all zero, gii=g��=0.

Every vertex in this network has an intradegree and inter-
degree. Vertex i belonging to subnetwork 1 has intradegree
qi=� jgji and interdegree ri=��g�i. Vertex � belonging to
subnetwork 2 has intradegree q�=��g�� and interdegree r�

=� jgj�. The total numbers of intra- and interlinks are 2L1
=� j,igij, 2L2=��,�g��, and L=� j,�gj�=��,ig�i.

We introduce a natural generalization of the configuration
model �we recommend that a reader look over the Appendix
to recall the configuration model and the standard analytical
approach to the statistics of its components�. In our random

network, intralinks in subnetworks 1 and 2 are uncorrelated,
and the set of interlinks connecting them is also uncorrelated.
As in the configuration model, our statistical ensemble in-
cludes all possible networks with given sequences of intra-
and interdegrees for both subnetworks. All the members of
the ensemble are taken with the same statistical weight.
Namely, there are N1,2�N1 ,N2 ;q ,r� vertices in subnetworks
1,2 of intradegree q and interdegree r. Here
�q,rN1,2�N1 ,N2 ;q ,r�=N1,2. The condition
�q,rrN1�N1 ,N2 ;q ,r�=�q,rrN2�N1 ,N2 ;q ,r�=L, where L is
the number of interlinks, should be satisfied. We assume that
in the thermodynamic limit N1→�, N2→�, N2 /N1→
��, we have N1,2�N1 ,N2 ;q ,r� /N1,2→�1,2�q ,r�, where �1
and �2 are given distribution functions. Again, there is a
condition that the number of edges from subnetwork1to 2 is
the same as from 2 to 1:

r̄1 � �
q,r=0

�

r�1�q,r� =  �
q,r=0

�

r�2�q,r� � r̄2. �7�

Here r̄1,2 are average interdegrees of the vertices in subnet-
works 1 and 2.

The theory of uncorrelated networks extensively uses the
Z representation �generating function� of a degree distribu-
tion:

��x� = �
q=0

�

��q�xq. �8�

Here we introduce

�1,2�x,y� = �
q,r=0

�

�1,2�q,r�xqyr. �9�

In Z representation, the average intra- q̄1 and q̄2 and inter-r̄1
and r̄2 degrees of subnetworks 1 and 2, respectively, are

q̄1,2 = � ��1,2�x,y�
�x

�
x=y=1

, r̄1,2 = � ��1,2�x,y�
�y

�
x=y=1

.

�10�

In the unimodal configuration model, the statistics of
components was obtained based on the distribution of

branching of an edge, �̃�q� �see Eq. �A1��. This is the prob-
ability that an end vertex of a randomly chosen edge has
degree q−1. In contrast to this, there are the four following
possibilities for the branching of an edge in a network with
two modules. �i� An edge is in subnetwork 1; �ii� an edge is
in subnetwork 2; �iii� an edge connects the modules, and we
consider the branching at the end belonging to subnetwork 1;
�iv� for this edge, we consider the branching at the end be-
longing to subnetwork 2. In addition, in each of these four
cases, we must distinguish the intra- and interbranching.
These are the numbers of intra- and interconnections ema-
nating from a given end of a given edge, respectively. Con-
sequently, we should introduce four different distributions of
intra- and interbranching.

Let �j , i�, �� ,��, �j ,��, and �� , i� be ordered vertex pairs.
Let us name their elements in the first and second positions
as final and initial, respectively. The joint intra- and inter-
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branching distribution is the conditional probability for the
final vertex of some �randomly chosen� ordered pair of ver-
tices to have intra- and interbranchings q and r, respectively,
provided the vertices in this pair are connected by an edge.
To be clear, q and r are the numbers of the intra- and inter-
connections of the final vertex, excluding the edge connect-
ing the pair of vertices. So we have four distributions, each
one depending on two variables:

P1�q,r� =
1

2L1
�

ji

�gji��qj − 1 − q���rj − r� ,

P2�q,r� =
1

2L2
�
�,�

�g����q� − 1 − q���r� − r� ,

Q1�q,r� =
1

L�
j,�

�gj���qj − q���rj − 1 − r� ,

Q2�q,r� =
1

L�
�,i

�g�i��q� − q���r� − 1 − r� . �11�

Note that some of the � functions on the right-hand sides of
these definitions have −1 in their arguments and others have
not. In other words, in some cases the intra- or interbranch-
ing is smaller than the intra- or interdegree of the end vertex
by 1. In other cases, the intra- or interdegree branching co-
incides with the intra- or interdegree, respectively. Let us
explain this difference, e.g., for P1�q ,r�. In this case, the
edge is in module 1. So the intrabranching at any of its ends
equals the intradegree of this end vertex minus 1, since the
edge itself must be subtracted. In contrast, the interbranching
coincides with the interdegree of the relevant end vertex.
Indeed, in this case, the edge does not contribute to the in-
terdegree. Similar arguments explain the definitions of the
other three distributions. Taking into account the definitions
of vertex degrees, we have

P1,2�q,r� = �q + 1��1,2�q + 1,r�/q̄1,2,

Q1,2�q,r� = �r + 1��1,2�q,r + 1�/r̄1,2. �12�

In Z representation these distribution functions take the fol-
lowing forms:

�1�x,y� =
1

2L1
�

j

�qjx
qj−1yrj =

1

q̄1

��1�x,y�
�x

,

�2�x,y� =
1

2L2
�
�

�q�xq�−1yr� =
1

q̄2

��2�x,y�
�x

,

�1�x,y� =
1

L�
j

�rjx
qiyrj−1 =

1

r̄1

��1�x,y�
�y

,

�2�x,y� =
1

L�
�

�r�xq�yr�−1 =
1

r̄2

��2�x,y�
�y

. �13�

Let us introduce the nth components of ordered vertex
pairs Cn,ji, Cn,��, Cn,j�, and Cn,�i. These components are sets,

whose elements are vertices. As is natural, the components
are empty, if the vertices in a pair are not connected. The first
component is either a one-element set consisting of the final
vertex, or an empty set. For example, C1,�i is either vertex �
or �. The second component, if nonempty, contains also all
the nearest neighbors of the final vertex, except the initial
one, and so on. We have four types of the components of an
edge: Cn,ji, Cn,��, Cn,j�, and Cn,�i. They are defined in a
recursive way similarly to the standard configuration model
�see the Appendix�. Each of these four nth components itself
consists of two disjoint sets: one of the vertices in subnet-
work 1, the other in subnetwork 2. For example, Cn,ji
=Cn,ji

�1� �Cn,ji
�2� .

The sizes of the components are Mn,ji
�1� = �Cn,ji

�1� �, etc. Taking
into account the locally treelike structure of our network
gives

Mn,ji
�1,2� = gji	�1

0
� + �

k�i

Mn−1,kj
�1,2� + �

�

Mn−1,�j
�1,2� 
 ,

Mn,��
�1,2� = g�a	�0

1
� + �

k

Mn−1,k�
�1,2� + �

���

Mn−1,��
�1,2� 
 ,

Mn,j�
�1,2� = gja	�1

0
� + �

k

Mn−1,kj
�1,2� + �

���

Mn−1,�j
�1,2� x
 ,

Mn,�i
�1,2� = g�i	�0

1
� + �

k�i

Mn−1,k�
�1,2� + �

�

Mn−1,��
�1,2� 
 . �14�

The configuration model is an uncorrelated random net-
work. So all the terms on the right-hand side of each of the
four equations �14� are independent random variables. Quan-
tities within each of two sums in these equations are equally
distributed. Their statistical properties are also independent
of the degree distribution of the initial vertex of the edge,
i.e., of j or �.

The sizes of the connected components of an edge in dif-
ferent networks �e.g., Mn,jk

�1� and Mn,jk
�2� � are, generally, corre-

lated. So we introduce four joint distribution functions of the
component sizes in different networks. In Z representation,
they are defined as follows:

�n
�1��x,y� =

1

2L1
��

j,i
gjix

Mn,ji
�1�

yMn,ji
�2� � ,

�n
�2��x,y� =

1

2L2
��

�,�
g��xMn,��

�1�
yMn,��

�2� � ,

�n
�1��x,y� =

1

L��
j,�

gj�xMn,j�
�1�

yMn,j�
�2� � ,

�n
�2��x,y� =

1

L��
�,i

g�ix
Mn,�i

�1�
yMn,�i

�2� � . �15�

The recursive relations for these distributions are straightfor-
ward generalizations of a relation for the usual uncorrelated
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network, without modularity �see Eq. �A7� in the Appendix�,

�n
�1��x,y� = x�1��n−1

�1� �x,y�,�n−1
�2� �x,y�� ,

�n
�2��x,y� = y�2��n−1

�2� �x,y�,�n−1
�1� �x,y�� ,

�n
�1��x,y� = x�1��n−1

�1� �x,y�,�n−1
�2� �x,y�� ,

�n
�2��x,y� = y�2��n−1

�2� �x,y�,�n−1
�1� �x,y�� . �16�

The nth component Cn,i �Cn,�� of vertex i ��� contains all
vertices at distance n from vertex i ��� or closer. Let
Mn,i

�1,2�= �Cn,i
�1,2�� and Mn,�

�1,2�= �Cn,�
�1,2�� be the sizes of the compo-

nents �C�1� and C�2� are the subsets of C, containing vertices of
the first and second networks, respectively�. Using the lo-
cally treelike structure of the network and absence of corre-
lations between its vertices, we obtain the Z transform of the
joint distributions of component sizes:

�n
�1��x,y� =

1

N1
��

i

xMn,i
�1�

yMn,i
�2�� = x�1��n

�1��x,y�,�n
�1��x,y�� ,

�n
�2��x,y� =

1

N2
��

�

xMn,�
�1�

yMn,�
�2� � = y�2��n

�2��x,y�,�n
�2��x,y�� .

�17�

The conditional average sizes of the components are ex-
pressed in terms of the derivatives of the corresponding dis-
tribution functions at the point x=y=1. For example, the
conditional average component sizes for an internal vertex
pair in network 1 are expressed as follows: for the part,
which belongs to the first network it is

M̄n
�111� = �gijMn,ij

�1� /�gij = � ��n
�1��x,y�
�x

�
x=y=1

�18�

for the component part in network 1, and

M̄n
�211� = �gijMn,ij

�2� /�gij = � ��n
�1��x,y�
�y

�
x=y=1

�19�

for the part of the component which is in network 2. Here, �i�
the first superscript indicates whether the component is in
subnetwork 1 or 2, �ii� the second superscript indicates
whether the final vertex is in subnetwork 1 or 2, and �iii� the
third superscript indicates whether the initial vertex is in sub-
network 1 or 2. For the components of a pair with initial
vertex in network 2 and final in network 1 we have

M̄n
�112� = �gi�Mn,i�

�1� /�gi� = � ��n
�1��x,y�
�x

�
x=y=1

�20�

and

M̄n
�212� = �gi�Mn,i�

�2� /�gi� = � ��n
�1��x,y�
�y

�
x=y=1

, �21�

and so on.
Using Eqs. �16� one can derive recurrent relations for the

average values of Mn and Mn−1. We introduce a pair of four-
dimensional vectors:

Mn
�1� =�

M̄n
�111�

M̄n
�112�

M̄n
�121�

M̄n
�122�
� , Mn

�2� =�
M̄n

�211�

M̄n
�212�

M̄n
�221�

M̄n
�222�
� . �22�

Then the recurrent relations take the forms

Mn
�1� = �̂Mn−1

�1� + m1, Mn
�2� = �̂Mn−1

�2� + m2, �23�

where

�̂ =�
�11 0 �21 0

�11 0 �21 0

0 �22 0 �12

0 �22 0 �12

�, m1 =�
1

1

0

0
�, m2 =�

0

0

1

1
� .

�24�

Here

��� = ������x,y��x=y=1, ��� = ������x,y��x=y=1,

where, � ,�=1,2. The initial conditions are M1
�1�=m1, M1

�2�

=m2. As for the average sizes of the nth components of
vertices, they are

M̄n
�11� =

1

N1
��

i

Mn,i
�1�� = � ��n

�1��x,y�
�x

�
x=y=1

= 1 + q̄1M̄n
�111�

+ r̄1M̄n
�112�,

M̄n
�21� =

1

N1
��

i

Mn,i
�2�� = � ��n

�1��x,y�
�y

�
x=y=1

= q̄1M̄n
�211�

+ r̄1M̄n
�212�,

M̄n
�12� =

1

N1
��

�

Mn,i
�1�� = � ��n

�2��x,y�
�x

�
x=y=1

= q̄2M̄n
�122�

+ r̄2M̄n
�121�,

M̄n
�22� =

1

N2
��

i

Mn,i
�2�� = � ��n

�2��x,y�
�y

�
x=y=1

= 1 + q̄2M̄n
�222�

+ r̄2M̄n
�221�. �25�

Here, �i� the first superscript of M̄n indicates whether the
component is in subnetwork 1 or 2, and �ii� the second su-
perscript indicates whether a mother vertex is in subnetwork
1 or 2. Recall that q̄1 and q̄2 are the mean numbers of internal
connections of vertices in subnetworks 1 and 2, respectively;
r̄1 is the mean number of connections of a vertex in subnet-
work 1, which go to subnetwork 2; and finally r̄2 is the mean
number of connections of a vertex in subnetwork 2, which go
to subnetwork 1. Relations �23� and �25� allow us to obtain
the average sizes of all components.
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Example

Since formulas in this section are rather cumbersome, to
help the readers, we present a simple demonstrative example
of the application of these relations. Let us describe the
emergence of a giant connected component in a symmetric
situation, where both subnetworks have equal sizes and iden-
tical degree distributions �1,2�q ,r����q ,r�. In this case,
�1�x ,y�=�2�x ,y����x ,y� and �1�x ,y�=�2�x ,y����x ,y�.
Also, ��1��x ,y�=��2��x ,y����x ,y� and ��1��x ,y�=��2��x ,y�
���x ,y�. So the relative size S of a giant connected compo-
nent takes the form

S = 1 − ��t,u� , �26�

where t���1,1� and u���1,1� are nontrivial solutions of
the equations:

t = ��t,u�, u = ��t,u� . �27�

For example, let the subnetworks be classical random
graphs, and each vertex has no interlinks with a probability
1− p and has a single interlink with the complementary prob-
ability p. That is,

��q,r� = e−q̄ q̄q

q!
��1 − p��r,0 + p�r,1� , �28�

where q̄ is the mean vertex intradegree, so ��x ,y�
=eq̄�x−1��1− p+ py�.

For a single classical random graph with vertices of aver-
age degree q̄, Eqs. �A15� and �A17� give the point of emer-
gence of a giant connected component, q̄=qc=1, and the
relative size of this component S�2�q̄−1� in the critical
region.

Let us now find the emergence point q̄=qc�p� and the
critical dependence S�q̄ , p� in the modular network. For this
network, we find ��x ,y�=�x��x ,y� / q̄=��x ,y� and ��x ,y�
=�y��x ,y� / r̄=eq̄�x−1�. Substitution of these functions into
Eqs. �26� and �27� directly leads to the result

qc =
1

1 + p
, S � 2

�1 + p�3

1 + 3p
�q̄ −

1

1 + p
� , �29�

compare with a single classical random graph.

IV. INTERVERTEX DISTANCE DISTRIBUTION

As was explained in Sec. II, the intervertex distance dis-
tribution in the thermodynamic limit is completely deter-

mined by the three mean intervertex distances �̄1 for subnet-

work 1, �̄2 for subnetwork 2, and d̄ for pairs of vertices
where the first vertex is in subnetwork 1 and the second is in
subnetwork 2. The idea of the computation of these interver-
tex distances is very similar to that in the standard configu-
ration model �see the Appendix, Eq. �18��. However, the
straightforward calculations for two interconnected networks
are cumbersome, so here we only indicate some points in our
derivations without going into technical details.

The calculations are based on the solution of the recursive
relations �23�. As is usual, these relations should be investi-
gated in the range 1−x�1, 1−y�1 of the Z-transformation

parameters. Fortunately, the problem can be essentially re-
duced to the calculation of the two highest eigenvalues of a
single 4
4 matrix. The resulting eigenvalues �1 and �2 for
networks with � /N1,2�1 are given by formulas �4� and �6�.
The nth component sizes are expressed in terms of these
eigenvalues. The leading contributions to the nth component
sizes turn out to be linear combinations of powers of the
mean branchings: A�1

n+B�2
n. The factors A and B do not de-

pend on n. For example, when �1��2, the main contributions

to M̄n
�11� and M̄n

�21� are �1
n+ ��2 / �N1N2���2

n and �L /N1��2
n, re-

spectively. Here we omitted nonessential factors and as-
sumed a large n. This approximation is based on the tree
ansatz, that is, on the locally treelike structure of the net-
work. This ansatz works when the nth components are much
smaller than subnetworks 1 and 2. So the intervertex dis-
tances are obtained by comparing the sizes of relevant nth
components of vertices with N1 and N2. Since networks 1
and 2 are uncorrelated, this estimate gives only a constant
additive error which is much smaller than the main contribu-
tion of the order of ln N1,2. �See Ref. �10� for complicated
calculations beyond the tree ansatz in the standard configu-
ration model, which allow one to obtain this constant num-
ber.�

One should emphasize an additional difficulty specific for
the networks under consideration. The problem is that in
some range of N1 and N2, and �1 and �2, while an nth com-
ponent in, say, network 1 is already of size �N1 �failing tree
ansatz�, the corresponding nth component in network 2 is
still much smaller than N2. In terms of Sec. III, this, e.g.,

means that there exists a range of n, �̄1�n� d̄, where

M̄n
�11��N1 but still M̄n

�21��N2. Computing M̄n
�21� in this

regime, we use the tree ansatz, while M̄n
�11� is set to N1. This

approximation also produces only a constant additive error
which one may ignore in these asymptotic estimates.

V. DISCUSSION AND CONCLUSIONS

A few points should be stressed.
�i� In Sec. III we derived relations for the Z transforma-

tion of the distributions of nth components. Quite similarly
to the standard configuration model �see the Appendix�, us-
ing these formulas with n→� readily gives corresponding
relations for the statistics of finite connected components and
for the size of a giant connected component. Note that when
subnetworks 1 and 2 are uncorrelated, which is our case,
finite connected components are essential in an infinite net-
work only if there is a finite fraction of vertices of degree 1.

�ii� The theory of Sec. III is essentially based on the lo-
cally treelike structure of networks under consideration. In
principle one can go even beyond the tree ansatz as was done
for the standard configuration model in Ref. �10�. This is a
challenging problem for these networks. Since we exten-
sively used the tree approximation in Sec. IV, our results for
the intervertex distances are only asymptotic estimates.

�iii� For the sake of brevity, we obtained relations only for
networks with two interlinked subnetworks, but it is not a
restriction. A generalization to networks with an arbitrary
number of interlinked subnetworks is straightforward. The
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final relations in Sec. III can be readily generalized without
derivation. Generalization to structured networks with
degree-degree correlations is also clear. Note that, in particu-
lar, our theory can describe multi-partite networks, whose
subnetworks have no intraconnections. Based on equations
derived for the configuration model �22,23� �for k cores in
real-world networks; see Refs. �24,25��, one can also gener-
alize this theory to describe the k-core organization of modu-
lar networks

�iv� As an application, we considered interlinked networks
with a relatively small number of shortcuts. Note, however,
that our general results in Sec. III do not assume this restric-
tion.

In summary, we have developed an analytical approach to
the statistics of networks with well-distinguished communi-
ties. We have derived general relations allowing one to find
the distributions of the sizes of connected components in
these networks. As a particular application of this theory, we
have obtained asymptotic estimates for the distribution of
intervertex distances in two weakly interconnected uncorre-
lated networks. We have shown that, in the infinite-network
limit, vertices in this network are almost surely equidistant if
the relative number of interlinks is any finite number. Our
approach can be applied to a number of other problems for
networks of this sort, including the emergence of a giant
connected component, percolation, and others.
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APPENDIX: STATISTICS OF THE CONFIGURATION
MODEL

For the sake of clarity, here we outline the
Z-transformation �generating function� technique in applica-
tion to the standard configuration model of an uncorrelated
graph with a given degree distribution ��q�. For more detail,
see Refs. �8–10�. Note that we use this technique to derive
the nth connected component statistics �10� unlike earlier
approaches �8,9� where only the size distribution of con-
nected components was obtained. In Sec. III we generalize
the description of the statistics of the nth connected compo-
nent to modular networks. In simple terms, the configuration
model �18,19� is a maximally random graph with a given
degree distribution. In graph theory it is also called a random
graph with a given degree sequence.

A graph of size N consists of a set of vertices vi, i
=1,2 , . . . ,N, connected by edges eji. An edge eji exists if the
adjacency matrix element gji=1. We start from the following
distribution:

�̃�q� =
1

2L��
ji=1

N

gji�K�qj − 1 − q�� , �A1�

where �K is the Kronecker symbol. This is the probability
that a randomly chosen end of a randomly chosen edge in the

graph has branching q �degree of the end vertex minus 1�.
Alternatively, it may be considered as the conditional prob-
ability for the final vertex j in a randomly chosen ordered
pair �j , i� to have degree q+1, provided the vertices are con-
nected by an edge. Obviously,

�̃�q� =
1

2L��
j=1

N

qj�K�qj − 1 − q�� =
q + 1

q̄
��q + 1� ,

�A2�

where q̄��q is the average degree of a vertex. In the Z
representation this relation takes the form

�̃�x� = �
q=0

�

�̃�q�xq =
1

2L��
j=1

N

qjx
qj−1� =

���x�
q̄

. �A3�

Note that q̄=���1�.
Let the nth component of the ordered pair �j , i�, Cn,ji, be

the following set of vertices. For any �ordered� pair of verti-
ces �j , i�, C1,ji is vertex j if the vertices are connected, else
C1,ji=�. For n�1, Cn,ij is defined recursively as follows. If
gji=0, all Cn,ji=�. Otherwise, in C2,ij there are also qj −1
other vertices, connected to the vertex j, the third component
C3,ij contains also all other vertices, connected with ones of
the second component, and so on �see Fig. 3�.

In the thermodynamic limit �N→�� almost every finite
nth component of an uncorrelated random graph is a tree.
Then for the sizes �numbers of vertices� of the components,
Mn,ij = �Cn,ij�, we have �assuming gji=1�

Mn,ji = 1 + �
k�i

Mn−1,kj , �A4�

with the initial condition M1,ji=1. Due to the absence of
correlations in the configuration model, Mn,kj and Mn,lj, k
� l, are independent equally distributed random variables.
We define the distribution function of the nth component of
an edge as

pn�M� =
1

2L
�
j,i=1

N

�gji��Mn,ij − M�

=
N�N − 1�

2L
�gji��Mn,ji − M�

=
1

�gji
�gji��Mn,ji − M� . �A5�

It is more convenient to use the Z transformation of this
distribution:

i j i j

(a) (b)

FIG. 3. First �a� and second �b� components of edge �ij�. Filled
vertices belong to the components. The zeroth component is empty.
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�n�x� =
1

2L��
i,j=1

N

gijx
Mn,ij� =

1

�gij
�gijx

Mn,ij . �A6�

Substituting Eq. �A4� into Eq. �A6� and using Eq. �A3�, we
obtain

�n�x� =
x

2L��
j,i=1

N

gji �
k�i,

1

�gkj
�gkjx

Mn−1,kj�
=

x

2L��
j=1

N

qj��n−1�x��qj−1� = x�̃��n−1�x�� . �A7�

Let Cn,i be the nth component of vertex vi. This component
includes all vertices at distance n or closer from vertex vi.
�The zeroth component of a vertex is empty.� Due to the
absence of loops �treelike structure�, we have the following
relation for the size of the nth component of vertex vi,
Mn,i= �Cn,i�;

Mn,i = 1 + �
j

Mn−1,ij . �A8�

So the nth component size distribution

Pn�M� =
1

N��
i=1

N

��Mn,i − M�� �A9�

is expressed in Z representation as

�n�x� =
1

N��
i=1

N

xMn,i� = x���n−1�x�� . �A10�

The average sizes of subsequent nth components are re-
lated through the following equations:

M̄n = �n��1� = 1 + q̄M̄n−1, �A11�

M̄n = 1 + �M̄n−1, �A12�

where

� � �̃�1� =
���1�

q̄
=

1

q̄
�
q=0

�

q�q − 1���q� =
�q2

q̄
− 1,

�A13�

which is the mean branching. If ��1, both Mn and Mn have
finite limits as n→�. That is, the network has no giant con-
nected component. If ��1, a giant connected component
exists.

Assuming �n=�n−1�� in Eq. �A7�, we obtain an equa-
tion for the distribution function of the sizes of edge’s con-
nected components,

��x� = x�̃���x�� , �A14�

which implicitly defines ��x�. If ��1, this equation has two
solutions at x=1. One is ��1�=1, the other is some ��1�
� t�1,

t = �̃�t� . �A15�

For any value of �, �n�1�=1. On the other hand, if ��1,
limx→1−0limn→��n�x�= t�1. This is the probability that the
connected component of a randomly chosen edge is finite.
Then the probability that a randomly chosen vertex belongs
to a finite connected component of the graph is

�
q=0

�

��q�tq = ��t� . �A16�

Therefore the number of vertices in the giant connected com-
ponent in the thermodynamic limit is

M� = N�1 − ��t�� . �A17�

One may find the intervertex distance distribution from
the mean sizes of the nth components of a vertex �see Refs.

�8,26��. The diameter �̄ of the giant connected component,
i.e., the distance between two randomly chosen vertices, is
obtained from the relation ��M��N. So, if the second mo-
ment of the degree distribution is finite,

�̄ �
ln aN

ln �
, �A18�

where a is some number of the order of 1. For more straight-
forward calculations, see Refs. �10,27�.
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