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Microbiome engineering offers the potential to leverage microbial communities to
improve outcomes in human health, agriculture, and climate. To translate this potential
into reality, it is crucial to reliably predict community composition and function.
But a brute force approach to cataloging community function is hindered by the
combinatorial explosion in the number of ways we can combine microbial species.
An alternative is to parameterize microbial community outcomes using simplified,
mechanistic models, and then extrapolate these models beyond where we have
sampled. But these approaches remain data-hungry, as well as requiring an a priori
specification of what kinds of mechanisms are included and which are omitted. Here,
we resolve both issues by introducing a mechanism-agnostic approach to predicting
microbial community compositions and functions using limited data. The critical
step is the identification of a sparse representation of the community landscape.
We then leverage this sparsity to predict community compositions and functions,
drawing from techniques in compressive sensing. We validate this approach on in silico
community data, generated from a theoretical model. By sampling just ∼1% of all
possible communities, we accurately predict community compositions out of sample.
We then demonstrate the real-world application of our approach by applying it to
four experimental datasets and showing that we can recover interpretable, accurate
predictions on composition and community function from highly limited data.

microbial ecology | compressive sensing | microbiome | theoretical ecology

Our planet is host to a multitude of microbial communities, also known as microbiomes,
which perform an enormous range of functions in shaping biogeochemical processes,
agricultural productivity, and animal and human health (1–3). In recent years, there
have been concerted efforts to modify such communities in order to alter plant, animal,
human, and environmental health for the better (4–14). The complex interspecific
interactions present in real communities lead to diverse steady-state communities, but
these interactions also mean that the final composition and function of a microbiome may
be very different from its initial composition. Moreover, for large numbers of potential
taxa to include in a community, there is a combinatorially large number of distinct
initial compositions. Putting these two issues together makes a brute-force approach
to cataloging potential microbiomes impossible: with as few as ten species from which
to build an initial community, 210, or around 1,000 experiments would be needed to
survey the full range of possible outcomes arising as the dynamics of communities play
out. With 100 potential initial species, that number becomes 1030 (15).

Building mechanistic models of microbial interspecific interactions has the potential
to alleviate this issue. If we can write down and parameterize a model that accurately
represents interactions, but using only a limited amount of experimental data, we might be
able to use such a model to predict outcomes beyond those experiments. A longstanding
approach to modeling interspecific interactions, inspired by Robert May’s seminal work
(16) on complex systems, has been to use pairwise interactions among species, with
the strength of this pairwise dependence encoded in a community interaction matrix
(17, 18). There is certainly no conceptual obstacle to pairwise interactions providing
a potential description of microbial communities—theoretical work demonstrates that
pairwise interactions can lead to diverse, realistic communities (19–26). But there is
also a recent realization that microbial communities may be infused with higher-order
interspecific interactions, where the influence of one species on another is dependent on
the presence or absence of a third, fourth, or fifth species (27–31). Even for pairwise
interspecific interactions, having S2 parameters to fit means that mechanistic models
could just bring us back to a similar experimental load of the combinatorial problem we
started with (18, 27, 32, 33). Higher-order interspecific interactions would then only

Significance

Engineered microbiomes can
hugely benefit human, plant, and
animal health. However, the
diversity and complexity of
microbiomes hinder a full
understanding, and hence,
prediction, of community
assembly outcomes, and
experimental efforts are limited
by the exponential number of
combinations required to be
designed and tested. We consider
ecological landscapes of microbial
abundances, which are maps
from input species to output
steady-state species abundance.
Using tools from signal
processing, a field that focuses on
information acquisition and
reconstruction, we find that
species abundances in both real
and simulated microbiomes have
a sparse representation, which
translates to relative rarity of
higher-order landscape
interactions. We then use this
sparsity to learn and predict
entire landscapes from highly
limited experimental data using
compressive sensing.

Author contributions: S.A., A.B.G., and J.P.O. designed
research; S.A., A.B.G., and J.P.O. performed research; S.A.
and A.B.G. contributed new reagents/analytic tools; S.A.
and A.B.G. analyzed data; and S.A., A.B.G., and J.P.O.
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1S.A. and A.B.G. contributed equally to this work.
2To whom correspondence may be addressed. Email:
jodwyer@illinois.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2307313120/-/DCSupplemental.

Published November 22, 2023.

PNAS 2023 Vol. 120 No. 48 e2307313120 https://doi.org/10.1073/pnas.2307313120 1 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
ta

at
s 

un
d 

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

re
m

en
 o

n 
Ja

nu
ar

y 
24

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

4.
10

2.
16

.4
.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2307313120&domain=pdf&date_stamp=2023-11-22
https://orcid.org/0009-0008-5177-4950
https://orcid.org/0000-0002-6923-3596
https://orcid.org/0000-0003-1180-8622
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jodwyer@illinois.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2307313120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2307313120/-/DCSupplemental


make this problem of fitting parameters even more challenging.
Finally, deep learning has been deployed to address this question
(32, 34), but at the expense of making results and predictions
challenging to interpret.

Developing a method that requires only limited experimental
data, is agnostic to any particular ecological model, and pro-
vides ecologically interpretable, accurate results would add an
important tool to the microbial ecologist’s toolbox. Here, we
will address this need, introducing an approach that reveals a
previously hidden sparsity in the landscape describing the map
from initial composition to final community states, for both sim-
ulated and experimental microbial communities. The sparsity of
this landscape means that the outcomes of microbial community
assembly are highly constrained, in effect containing much less
information than the full combinatorial set would suggest. We
then leverage this sparsity, using algorithms from compressive
sensing to accurately recover the sparse representation. Thus,
we predict the late-time outcomes for microbial community
composition, from highly limited input data, in a way that
is readily interpretable in terms of the sparsity of landscape
interactions.

Framework
The Challenge of Predicting Microbial Community Composi-
tion. We first explicitly state the problem to address: Given
a set of S species to draw from, there are 2S − 1 possible
combinations, or seed communities, that can be formed, based
on the initial presence–absence of species. This initial condition
naturally does not capture the full subsequent behavior of the
community, which could be extremely complex (35–38). Here,
we will make a simplifying assumption that, from a given initial
condition, all species will approach an equilibrium at late times,
such that each species ends up with a relative abundance that
only depends on the seed community composition. This excludes
more general dynamics, including chaos (39), limit cycles (40),
or priority effects (41). We justify this assumption by noting,
as in ref. 15, that this simple behavior is what has been
frequently observed in experimental communities. Furthermore,
this behavior is predicted by many mechanistic models (see table 1
in ref. 15). More complex behavior is possible, both in theoretical
models, where the Lotka-Volterra equations can exhibit multiple
attractors (40), and in experimental communities, where both
dynamical attractors or a single stable equilibrium can occur
(42). But making progress in the case of systems with a unique
steady state may be an important step toward tackling these more
general cases. Even with this assumption of a unique steady state,
if there are any interspecific interactions at all, the abundance of
a species at steady state will in general depend in a complex way
on which other species are present.

We will label each possible subcommunity one can obtain
from a pool of S species using a binary vector E�, with ones (zeros)
denoting the presence (absence) of each species in the initial
community. There are 2S distinct values of E� corresponding to
the different species combinations possible, with one ecologically
trivial case of all species being absent initially. The steady-
state abundance of a species i in one of the subcommunities,
E�, can then be written as Ni(E�), since the abundance by
assumption depends on the presence of species in the seed
community. Further, since species i is absent from half of
the 2S possible combinations, Ni(E�) can take up to 2S−1

nonzero, and potentially distinct, values. Thus, representing
species abundances in the E� basis requires a binary-ordered vector

Eai(E�), of up to 2S−1 nonzero coefficients,Ni(E�). For each species,
we have thus defined a map between the E� space and the space
of steady-state abundances. This formalism, shown in Fig. 1,
defining maps based on composition, has recently been explored
in the context of composition and community functions, where
the maps are referred to as ecological landscapes (43–45). Here,
we define a distinct ecological landscape for each species in
the community, where the mapping of interest is between the
initial composition of the community, and the final, steady-state
abundance of each focal species. Many functions and services of
microbial communities depend on species abundances, and thus,
reliably predicting late-time abundances is a key step on the way
to predicting community function.

A promising approach to overcoming this combinatorial
challenge would be if there were a more efficient representation
of steady-state species abundances using fewer coefficients. In
the field of signal processing, we would say that this is possible
for a given signal if there is a representation that compresses
it. We are not guaranteed that such a representation exists for
microbiomes, but below we will show that, viewed in the right
basis, microbiomes are highly compressible.

Results
Species Abundances Can be Represented Using Only a Few
Coefficients in a Transformed Basis. The question of mapping
initial community composition to species abundances at late
times is related to the problem of mapping genotypes to fitness
in evolutionary genetics, where the effect of interactions between
species, which we term “landscape interactions,” is analogous
to the effect of epistasis among distinct genetic mutations.
This connection can made more concrete by considering a
combinatorially complete fitness landscape of a genome with S
positions. The different states of this genome can be enumerated
by the presence or absence of a mutation at each of the positions.
For each of these 2S genotypes, there exists a scalar value of
interest, the fitness. The landscape can be represented as a
vector Ef , with length, 2S . Each element is a fitness value and
corresponds to a genotype ordered by an S-bit binary number
whose digits 1 and 0, respectively, signal the presence or absence
of the mutation at the corresponding position (46, 47). In the
case of microbiomes and under the assumptions we outlined
in the previous section, the various genotypes are analogous to
the distinct subcommunities that are possible when combining
species based on initial presence–absence, and the fitness vectors
are analogous to the steady-state abundances, with one vector for
each species.

Here, we draw upon recent progress in the field of evolutionary
genetics to inspire a related approach to microbiome prediction.
Specifically, some empirical fitness landscapes are sparse when
represented in a type of high-dimensional Fourier basis, called
the Walsh–Hadamard basis (47–52). Moreover, in the field of
signal processing, it has been noted that most natural images and
many time-series signals are stored efficiently in the same kind of
basis (53). Identification of these sparse representations, or sparse
coding, has then been used to learn entire datasets from sampling
only limited data using algorithms from the field of compressive
sensing (48, 52, 54, 55).

These breakthroughs in other fields motivated us to consider
the representation of species abundances in various subcommu-
nities in a similarly transformed perspective. Specifically, we used
a weighted Walsh–Hadamard basis (Methods and SI Appendix)
(52, 56, 57). Up to multiplication by a diagonal matrix, this
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A

B

Fig. 1. A sparse recovery algorithm can be used to predict microbial community end points. (A) Given a species pool with S members, there are 2S − 1
subcommunities, based on different choices of initial presence–absence of the members. This problem of exponential scale means that only a few
subcommunities can be sampled in the laboratory. In this paper, we focus on predicting end point community compositions of unseen subcommunities,
given limited data. (B) We found that the relative abundances of any species in the pool when stacked according to the subcommunities in which it was
initially present is sparse in a weighted Walsh–Hadamard basis ( E�( E!)). This means that even though a chosen focal species (green, round) may have numerous,
different steady-state abundances in different subcommunities, a weighted Walsh–Hadamard representation of this vector will have only a few components.
The numerous, different possible steady-state abundances are represented by the colors in the column corresponding to Eai(E�). Sparsity of the representation,
E�i( E!), is visualised by the number of transparent components, or boxes, which indicate that a lot of the coefficients in this representation are insignificant.
This sparsity may be leveraged by using a sparse recovery technique, called compressive sensing, which prescribes that a much smaller, generic sampling of
subcommunities is required to efficiently predict steady-state abundances of the species in all other, unsampled subcommunities.

transform is the well-known Walsh–Hadamard (WH) transform,
an analog of Fourier transforms in this discrete basis. It has
several useful properties as discussed in SI Appendix, including
orthogonality and symmetry (46, 47, 58). In this work, we denote
this weighted Walsh–Hadamard basis as E!. This is different from
the presence–absence basis, which we denote using E�. In terms of
the abundance of a species in the presence–absence basis, which
is given by Ea(E�), the transformed abundances are given by E�( E!)
with the following relation between the two representations:

E�( E!) = ΩEa(E�), [1]

where Ω is the transformation matrix defined as Ω = VH ,
H is the Hadamard matrix, and V is a diagonal weighting
matrix, both described in Methods. Multiplication by the
Hadamard matrix H transforms the representation into an
orthogonal basis, while multiplication by the weighting matrix
V implements an ecologically motivated assumption that down-
weighs higher-order landscape interactions. This is based on
the assumption that while higher-order landscape interactions

are allowed, lower-order interactions are relatively more likely,
and the weighting encoded in V captures this expectation
(see Methods and SI Appendix, Figs. S3 and S7 for more
details).

To test whether microbiomes could plausibly be sparse in the E!
basis, we first generated abundance data from simulated microbial
communities using microbial consumer–resource (MiCRM)
models (59, 60). We consider a community of 16 species,
with interspecific interactions mediated by consumption of
resources. As elaborated in Methods, the MiCRM is a realistic
choice for studying in silico microbiomes since its dynamical
equations include terms for both cross-feeding and competition.
In these in silico communities, species are distinguished by
the differences in their ability to consume and secrete various
resources. The advantage of starting with simulated communities
is that we are able to comprehensively generate all possible species
combinations and thus test rigorously to what extent sparsity
does or does not hold in the E! basis. In particular, from a pool of
16 species, we considered the stationary points of the MiCRM
corresponding to each of the total possible 216 = 65, 536 species
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D E

A B C

Fig. 2. Relative abundances of a simulated community are sparse in the weighted Walsh–Hadamard ( E!) basis. (A) We simulated a pool of 16-species in silico
using microbial consumer–resource models (59, 60). Simulations started from all 65,535 possible subcommunities corresponding to distinct species presence–
absences (E�) to obtain species abundances in the different steady-state communities. The relative abundances of a species, in the 32,678 subcommunities
in which it was initially present, constitute the coefficients of Ea(E�). By using a weighted Walsh–Hadamard transform, species abundance can be represented
in an orthogonal E! basis. (B) The coefficients used to represent abundances of a typical species in the 32678 subcommunities using the E! basis are shown
sorted by absolute size. The vast majority of the 32,678 coefficients are small; the inset plots the largest 50 coefficients. (C) Using only 50 coefficients, we were
able to explain most (99%) of the variation in species abundances. The color bar indicates the density of points in the hexplot. Panel (D) demonstrates that a
small number of E! coefficients is sufficient to fit abundances almost perfectly. (E) Box-plots of goodness-of-fit, aggregated for all 16 species in all 10 replicates,
demonstrate that only a small number of E! coefficients are required to explain most of the observed variation in abundances. We display medians in the text
and by yellow lines, while mean statistics is denoted by white triangles. Coefficients in panel (B) are ordered by magnitude. The goodness-of-fit is calculated via
Eq. 2.

assemblages, obtaining the late-time, steady-state abundances
arising from each initial species combination. To ensure the
robustness of our conclusions, we considered 10 different sets
of 16-species communities.

Fig. 2B shows the coefficients in the E! basis, �( E!), calculated
from the steady-state abundances of a typical species from
this simulated pool. A small fraction of the 32,768 (=216−1)
coefficients are significantly larger than the others, and using just
the 50 largest coefficients to estimate the observed abundances
in each community, we explain 99% of the observed variance
(Fig. 2C ). Fig. 2D shows the goodness of fit as we change the
number of �( E!) coefficients used to fit species abundance, Ea(E�).
The goodness of fit is measured as a prediction score (52, 61),

PS =
1

2− R2 , [2]

where R2 is the coefficient of determination. The prediction score
always lies between 0 and 1. For a model that could predict only
the mean abundance (over all subcommunities in which a species
was initially present) regardless of the input subcommunity,
this prediction score would be 0.5 (corresponding to R2 = 0).
A score of 1 indicates perfect prediction. The high value of this
goodness-of-fit measure indicates that we are able to capture

most of the variation in species abundance using a very small
number of coefficients, reinforcing that this representation of
species abundances is highly sparse. This finding is consistent for
all species across the 10 species pools we simulated (Fig. 2E).

Compressive Sensing Predicts Simulated Community Compo-
sitions from Limited Data. In simulated consumer–resource
models, we have established that there is a sparse representation
of species abundances. But we obtained this sparse representation
from a complete knowledge of all species abundances at steady-
state, Ea(E�), from all initial species combinations. Even if sparsity
does also hold in real microbiomes, we will need a method to
identify the largest, most significant coefficients of the vector
E�( E!) from only limited experimental data. Compressive sensing
(CS) provides this method. Assuming that a sparse representation
does exist for a given signal, compressive sensing will recover
the signal in its entirety from only limited, generic sampling
(48, 52, 54).

In the context of microbial ecology, results shown in Fig. 2
conclusively establish sparsity for our in silico communities: The
steady-state abundance vector, Eai(E�), of most species is afforded
a sparse representation in the E! basis. Compressive sensing
may then allow us to recover these E! coefficients from limited
sampling of abundance data, Eai,sampled(E�). Specifically, using
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compressive sensing translates to implementing a constrained
optimization algorithm that finds a solution, E�i,bestguess( E!),
which has the lowest-possible l1-norm while possessing an
inverse Walsh–Hadamard transform that optimally fits the
sampled abundances. In this work, we implemented the Basis
Pursuit Denoising (BPDN) algorithm (52, 55, 62) to find the
E�i,bestguess( E!). The inverse Walsh–Hadamard transform then
yields the model prediction for abundances:

Eabestguess(E�) = Ω−1 E�bestguess( E!). [3]

We tested the predictive power of compressive sensing for the
in silico communities, for which we have access to all data in prac-
tice, and where we have already shown that a sparse basis exists.
Specifically, we restricted ourselves to observing/sampling 1%
or 327 subcommunities of the 32,678 possible subcommunities
with a given species present initially. We also considered lower
sampling percentages of 0.1%, 0.2%, and a higher percentage of
2%. With these limited “training” data, we used CS algorithms to
estimate coefficients in the E! basis. Fig. 3A shows that CS is able

to infer the most significant coefficients of the ground truth E�( E!)
accurately from limited training data, and the accuracy increases
as more data are obtained for training.

Next, we compare the recovered abundances with the ground-
truth abundances. We compute the recovered abundance for a
species using Eq. 3, where E�bestguess( E!) is the Walsh–Hadamard
vector inferred by the BPDN algorithm when trained on the
limited abundance data for the species. Fig. 3B shows the
resulting prediction score on out-of-sample abundance data.

We see that the algorithm’s predictive power improves with
more training data and appears to asymptote at as little as 1%
of all possible data included in the training set. We compare
our method with two alternative approaches: an l1-regularized
regression on the E� basis that tries to estimate Eai(E�) directly and
random forest regression (see Methods for detailed description
of these algorithms). The l1-regularized regression is adopted
since the number of observations is smaller than the number of
possible coefficients, i.e., the problem is underdetermined. We
found that compressive sensing outperforms both regularized
regression and random forest regression, as can be seen from

A B

C D

Fig. 3. Sparsity in the E! coefficients implies abundances can be practically recovered from limited data in simulated communities. (A) The accuracy of predicting
the 4 most significant ! coefficients by compressive sensing (CS) increases as the size of training data is increased. The largest coefficients, which explain most
of the variance in abundance, are more easily predicted than smaller coefficients from limited data. The percentages in the parenthesis next to the coefficient
symbol and index denote the percentage of the variance explained by each coefficient taken individually. This means, for example, that the first ! term explains
52% of the total variance. (B) The ability of compressive sensing to predict species abundances in new subcommunities when trained on a small fraction
of all possible subcommunities is shown using the Prediction Score (Eq. 2). Note that 1% of the total number of possible sub-communities corresponds to
327 subcommunities, which would require four 96-well plates. The median score, shown by the yellow line is annotated. The number of subcommunities
sampled at each training level is indicated within parentheses. (C) The prediction score of two alternative methods, l1-regularized regression and random forest
regression, is shown for comparison. We controlled for data so that all the methods were trained on the same 327 (1%) communities. Box plots denote the
performance across the 160 species (10 replicates of pools with 16 species). A model that outputs only the mean abundances of a species in all subcommunities
in which the species was initially present, regardless of the input subcommunities, would get a prediction score of 0.5. We see that compressive sensing
does objectively better than such a model (prediction score shown using red dashed line) while outperforming random forest regression and l1-regularized
regression. (D) Comparing the performance of CS, l1-regularised regression, and random forest on a species-by-species basis, we find that some species
are easier to predict than others. Nevertheless, CS outperforms both regressions for most species. The permutation test P-value for the difference in the
performance at 1% sampling between compressive sensing and random forest regression is statistically significant at 10−4 and that between compressive
sensing and l1-regularized regression is 5× 10−5. All results are averages over 5 runs.

PNAS 2023 Vol. 120 No. 48 e2307313120 https://doi.org/10.1073/pnas.2307313120 5 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
ta

at
s 

un
d 

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

re
m

en
 o

n 
Ja

nu
ar

y 
24

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

4.
10

2.
16

.4
.



the median values of the predictions in Fig. 3C. Finally, Fig.
3D compares the prediction score of the three methods for each
species, which is a matched comparison at the species level of the
three approaches, with training data held at 1%. This analysis
reveals that some species are easier to predict, with a prediction
score close to 1, while some others that are harder to predict.
In SI Appendix, we show that species which are easier to predict
are dominated by low-order landscape interactions and have a
smoother abundance landscape (SI Appendix, Fig. S4 and ref. 58).
We can thus conclude that prevalence of low-order interactions
leads to a more predictable landscape. Despite this variation in
performance at the species level, compressive sensing outperforms
l1-regularized regression in 97% of the cases and outperforms
random forest regression in a majority of the cases (67%).

Thus, compressive sensing provides a way to use the sparse
basis for our simulated consumer–resource communities, along
with limited observations of species abundances in different
subcommunities, to predict species abundances out-of-sample.

Compressive Sensing Predicts Species Abundances in Exper-
imental Data. Using simulated communities, we demonstrate
that the challenge posed by an exponential number of subcom-
munities to the problem of ecological predictions is massively
reduced with compressive sensing. We now test the performance
of CS as a predictive tool in a diverse range of real microbiomes,
in the context of unknown community dynamics which likely
depart from our idealized consumer–resource model, in addition
to the difficulties posed by both stochasticity and incomplete
data. We draw data from four published studies of microbial
communities spanning in vitro and in vivo conditions, pool sizes
from 5 to 16, and microbes from environments including the
human gut, soil, and fruit flies (28, 29, 63, 64).

In the first study, Gould et al. assembled all combinations of 5
species in vivo in the gut of Drosophila melanogaster. The remain-
ing three studies considered larger species pool sizes and hence
assembled only a fraction of all possible species combinations
in vitro. Sanchez-Gorostiaga et al. assembled 53 combinations
of 6 starch-degrading soil microbes. Friedman et al. assembled
101 combinations of 8 soil microbes. From Clark et al., we
consider 187 combinations assembled of 16 gut microbes. Fig.
4 demonstrates the performance of compressive sensing, l1-
regularized regression, and random forests on predicting unseen
communities using a k-fold cross-validation procedure (Methods).
We used a k-fold cross-validation procedure due to the small
number of data points and report the prediction score, at the
optimal value of the hyperparameter, on the stacked validation
sets. Further, keeping the bias-variance trade-off (65) in mind,
we set k = 3 for most experimental communities. A complete
description is given inMethods. Fig. 4 B–E show the performance
of compressive sensing, alongside the alternative methods, on the
individual species. As in simulations, we find that some species are
easier to predict than others. Compressive sensing outperforms
regularized regression in the majority of the cases (32 out of 35)
and also does better than random forest regression in 29 of 35
cases. At the community level, as shown in Fig. 4, compressive
sensing outperforms both methods when comparing the mean
prediction score on a dataset. This difference in prediction
is statistically significant for the two largest datasets. This is
tabulated in Table 1, where we list the P-values of a one-sided
permutation test. We also note that species which are harder
to predict using compressive sensing remain hard to predict
when using the other methods. In summary, our compressive
sensing approach enables more accurate predictions of microbial
community abundances.

Table 1. Performance P-values: One-sided permuta-
tion test for various datasets, comparing compressive
sensing with a weighted Walsh–Hadamard basis with
random forest regression and l1-regularized regression

P-value P-value
Dataset (CS and l1) (CS and RF)

In silico (16 species) 5× 10−5 10−4

Fruit fly gut (5 species) 0.06 0.06
Starch soil (6 species) 0.1 0.015
Friedman soil (8 species) 8× 10−3 4× 10−3

Clark human gut (16 species) 1.52× 10−5 9× 10−3

Clark human gut (SCFAs) 0.0022 0.0002

Discussion
A central goal of ecology is to understand emergent properties
of microbiomes. In particular, we want to be able to understand
and quantitatively predict outcomes of community assembly.
Furthermore, community composition may be predictive of
community function, and systematically optimizing microbial
community function is a critical goal in microbiome engineering.
However, an exhaustive search through all possible ways to
combine microbial taxa is impractical, and fitting mechanistic
models can still require large amounts of data, while also imposing
assumptions about community dynamics that may fail to hold
for real microbiomes. Here, we establish the method of com-
pressive sensing as a model-agnostic, predictive tool, applicable
in situations where experimenters have access to limited data.
The success of our approach relies on the assumption that
species abundances are sparse in a transformed basis, which we
demonstrate explicitly for simulated consumer–resource models,
and test in experimental data. While this kind of sparsity appears
in many areas of signal processing and has also been applied in
an evolutionary genetics context (52–54, 69), the different and
complex dynamics underlying microbiome communities means
that this sparsity did not a priori need to hold in microbiomes.
The fact that it does may open up broad avenues for assembling
microbial communities and optimizing their function.

We use this method in silico, in vivo, and in vitro to predict
final steady-state abundances of all species. We also show that
our method outperforms l1-regularization and a widely used
machine learning method, random forest regression. We also
find that the sparsity of microbial landscapes is not limited to
their late-time, steady-state abundances but can be extended to
community functions. In Fig. 5, we show that this method
can also robustly predict community functions: For the 16-
species dataset studied in ref. 64, compressive sensing can be
used to accurately predict the amount of butyrate, succinate,
lactate, and acetate produced by combinations of these species. By
leveraging the interpretability of Walsh–Hadamard coefficients
and the roughness of the community-function landscape, we also
found that butyrate production, in particular, could be associated
with two key species, Desulfovibrio piger (DP) and Anaerostipes
caccae (AC). The absence of DP was found to increase butyrate
production, while the absence of AC decreased it. This inference
matches what has been found in the study in ref. 64: Hydrogen
sulfide production by DP inhibits butyrate production. This
reinforces a key assumption that emergent properties of mi-
crobiomes, perhaps even incredibly complex community-level
functions, may be thought of as effectively arising from only
a few degrees of freedom. On the side of microbiome engi-
neering, this result is useful in practice—using sparsely sampled
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Fig. 4. Performance of compressive sensing on four experimental data. We tested the performance of compressive sensing in four real microbiomes, ranging
from 5 to 16 species, and in both in vitro and in vivo contexts (Methods). (A) At a community level, compressive sensing outperforms both random forest
regression and l1-regularized regression. (B) For the in vivo gut fly dataset from refs. 28 and 66, compressive sensing does better in predicting a majority (4
of 5) of the species. Permutation test P-values are 0.09 and 0.06 for comparison against random forest regression and l1-regularized regression. (C) For the
in vitro 6-species soil community (29, 67), we find that compressive sensing outperforms random forest marginally (permutation test P-value: 0.1) but does
better than l1-regularized regression (P-value: 0.015). This dataset, overall, is harder to predict. (D) Compressive sensing outperforms both random forest
regression and l1-regularized regression (P-values: 4 × 10−3 and 8 × 10−3) in the 8-species in vitro soil community assembled by Friedman et al. (63). At the
species level, compressive sensing improves predictions in 7 of 8 cases when compared to l1-regularized regression and in all cases when compared to random
forests. (E) Using a 16 species community assembled by Clark et al. (64, 68), we find that compressive sensing outperforms other methods reaching statistically
significant values in a permutation test (P-value: 9 × 10−3 for comparison with random forest regression, and 1.52 × 10−5 for l1-regularized regression). At
the species level, compressive sensing improves predictions in 15 of 16 cases when compared to l1-regularized regression and in 12 cases when compared to
random forests. We report all results as averages of 5 runs. The error bars in panels (B–E) indicate SD from the mean across 5 runs. Species names on the
x-axis are compiled from the data as provided by authors of the studies.

structure-function landscapes, we may be able to recover entire
landscapes and hence reliably look for optimal functions and cor-
responding communities without taking into account intricate
mechanistic models. This formalism does not require time-series
data, making it easier to work with data obtained from high-
throughput laboratory techniques. Further, it performs well with
relative abundances, which is in line with how abundances are
widely observed and calculated in this field, though in principle,
the approach will also work well on absolute abundances
(SI Appendix, Figs. S8 and S9).

Recently, there has been work on applying deep-learning
models to predict community structures (32, 34), providing a
natural point of comparison with our approach. These models
can predict well, but their performance can be obscured by
large numbers of hyperparameters and a difficulty in inter-
pretability. On the contrary, our method is naturally endowed
with interpretation in terms of the sparseness of higher-order
landscape interactions, and the compressive sensing algorithm
requires only one tunable hyperparameter. In cases where

compressive sensing predicts species abundances accurately, it
is reasonable to conclude that higher-order interactions are
sparse, and that low-order interactions dominate. Our approach
therefore provides a kind of middle-ground between mecha-
nistic models, which may be challenging to parametrize well,
and purely statistical models, which are hard to interpret.
The identification of sparsity renders the nature of the land-
scape in real communities both more predictable and better
interpretable.

While our approach works well in the simulated and ex-
perimental data we applied it to, this method hinges on the
assumption that there is a unique steady-state set of community
abundances, rather than the potential for multiple equilibria,
or more complex late-time dynamics (35–38, 63). There is
therefore scope to consider further generalizations in cases where
experimental data suggest that these outcomes are possible.
However, for cases where experiment suggests a unique map
from initial composition to late-time abundances, our approach
paves a way to reliably engineer microbial communities.
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Fig. 5. Compressive sensing is able to directly predict community functions.
Along with abundances of species, Clark et al. (64, 68) reported concentrations
of four organic acid fermentation products: butyrate, acetate, lactate, and
succinate. Of these, butyrate is reported to be particularly important to
human health. For these important community functions of metabolite
production, we find that compressive sensing does well with PS > 0.5 and
also outperforms the methods of l1-regularized regression and random
forest regression. Permutation P-values for difference in means between
compressive sensing and l1-regularized regression and that between com-
pressive sensing and random forest regression indicate statistical significance
(P-values: 0.0022 and 0.0002). We report averages over 3 runs. Cross-
validation k fold was chosen to be 10.

Methods
Representation of Abundances in the Walsh–Hadamard Basis. We con-
sider a combinatorially complete dataset of microbial abundances at steady
state. Starting with a set of S species, there are 2S

− 1 of combining them, each
assemblage characterised by the species initially present. We consider that the
underlying population dynamics of these subcommunities, whatever they are,
give rise to a unique steady state for each subcommunity, i.e., we do not consider
cases of multistability. Borrowing from the language of genetics and epistasis,
we consider a vector of abundances at steady state for each of the S species. For
concreteness, in this section, we consider a set of three species. The set of all the
subcommunities, each with a different starting composition is enumerated as
E� = {[000], [001], [010], [011], [100], [101], [110], [111]}. We include the
ecologically trivial case of all species being initially absent. The element [011],
for example, denotes the subcommunity with species 2 and 3 present at the start.
For each of these unique conditions, we consider the steady-state abundance
(say, cell counts) of each species. This allows for a mapping to be written down
explicitly, between the decimal-ordered binary elements and the S steady-state
abundance vectors.

000
001
010
011
100
101
110
111


7→



N000
N001
N010
N011
N100
N101
N110
N111


0

,



N000
N001
N010
N011
N100
N101
N110
N111


1

,



N000
N001
N010
N011
N100
N101
N110
N111


2

... [4]

Here, the subscripts on the vectors denote the species indices. For each species,
we can further build 2S−1-long vectors, since every species is initially present
in only the half the total possible 2S subcommunities. We can define a Walsh–
Hadamard transform on this vector of steady-state abundances of a species i.
In particular, we work with a weighted Walsh–Hadamard transform. The weighted

transform is implemented by the matrix: VH where the matrices V and H are
generated by the recursion relations:

Hn+1 =

[
Hn Hn
Hn −Hn

]
, [5]

with H0 = 1

Vn+1 =

[
0.5Vn 0

0 −Vn

]
, [6]

with V0 = 1.
V is a diagonal weighting matrix that takes into account the order of

interactions, to account for averaging over different numbers of terms as a
function of the order of interactions (56). In our case, it serves to provide a way to
bias inference from limited data toward lower-order interactions (SI Appendix,
section 5 and Fig. S7).

Compressive Sensing and Sparse Recovery Algorithms. Implementation
of compressive sensing involves using optimization algorithms that find a
sparse representation of the data using small subsets of observations. After
a sparse representation has been found by the algorithm, the rest of the unseen
data are computed by taking the inverse transform of the bestguess sparse
representation. This inverse transform is the inverse of the matrix, , that is
expected to sparsify the data. To infer the sparse representations from limited
data, we employed the basis pursuit denoising (BPDN) algorithm (55) which is
an optimization problem posed as: argmin

b

( 1
2 ||Db − a||22 + �||b||1

)
. This is

the same as LASSO (Least Absolute Shrinkage and Selection Operator) (53). The
idea is to find the b vector that has the smallest l1-norm while keeping the error
from observed data as low as possible. To find the sparsest representation, the
problem should actually minimize the l0-norm instead of l1, but this problem
is nonconvex and combinatorial (53), and l1-norm minimization is a convex
approximation to this. This algorithm has only one hyperparameter, �, which
can be tuned according to the expected sparsity of the representations. In real
datasets, this value needs to be chosen carefully. We report all results in the
main text based on the optimal hyperparameter. We used the SPORCO package
(70) in Python to implement BPDN using an alternating direction method of
multipliers (ADMM) algorithm (71).
Problem set-up. Given a S-species combinatorially incomplete dataset with
n different subcommunities sampled, we want to predict the abundances of
species outside of the sampled experiments. We focus on a species, i, for which
we have n sampled abundances, and we make predictions for the remaining
2S−1
− n subcommunities. We assume, for most species in the pool, that the

abundances, Ea(E�), are sparse in the E! basis, i.e., E�( E!) = Ea(E�) is a sparse
vector, with only a few significant coefficients.
Algorithm implementation. We implement the BPDN/LASSO algorithm with
D = −1

n×M; here, D is the partial −1 matrix with rows chosen such that
the row indices correspond to the decimal representation of the sampled n
subcommunities, and M = 2S−1. The algorithm then returns the optimal
E�bestguess( E!) which is a solution to the program:

argmin
�

(
1
2
||−1

n×M
E�( E!)M − Ea

i
n(E�)||

2
2 + �|| E�( E!)M||1

)
. [7]

Using Eq. 3 of the main text, we recover the complete 2S−1-long abundance
vector for species i. For the in silico dataset, we compute the prediction score on
the out-of-sample data, whose ground truth is known, using Eq. 2:

PS =
1

2− R2(Eatrue(E�), Eabestguess(E�))(out−of−sample)
. [8]

This procedure is repeated for all species in the pool, each with its own
set of sampled subcommunities. For experimental datasets, with only partial
abundance vectors available, we use k-fold CV, by dividing the available dataset
for each species into k-folds, and solving the program in Eq. 7 for sampled
abundances in the training folds, and computing the prediction score on
the stacked abundances corresponding to the data-points in the validation
folds.
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l1-regularized regression. For a species i with relative abundances Ea(E�), we
consider a representation

Eg = GnEa(E�).
Here, G is a matrix defined recursively as

Gn+1 =

[
Gn 0
−Gn Gn

]
, [9]

with G0 = 1. We note that, as elucidated in refs. 52 and 56, this transformation
can be thought of as looking at the abundance landscape of a species as a
local approximation around a single subcommunity—the one with all species
absent. This is akin to a Taylor expansion on the landscape, while the class of
Walsh–Hadamard transforms corresponds to a Fourier transform (72) on the
landscape and is an approximation over the background of all subcommunities.
We implement a similar BPDN algorithm as for compressive sensing with Walsh–
Hadamard transform, where the algorithm tries to learn the g coefficients.

Bench-marking with Random Forest Regression. Tree-based ensemble
learners, like the random forest regressor and xgboost, are popular choices
of supervised learning algorithms, especially when the predictors are not sure
to be linearly related to the target variables. We implemented the random forest
regressor as available in scikit-learn in Python (73). While there are arguments
for using a multioutput regression instead of several single-output ones (74),
we worked with fitting a random forest model to each species individually.
For data control and an apples-to-apples comparison, we used the same data
splits and number of folds as we did in compressive sensing. With random
forest regression, there are multiple hyperparameters to consider. To reduce
the number of hyperparameters to tune, given the small size of some of the
experimental datasets, we used the number of estimators (trees) to be the scikit-
learn default (100) and the number of features for selection at every split to be
1/3 of the number of species in each case.

Predictions on a 5-species Gut Community. Gould et al. (28) assembled all
possible communities from a 5-species pool of bacteria that are known to colonize
fly guts in both wild and laboratory conditions. All the 32 subcommunities
(termed treatments) were assembled in germ-free flies, each with 48 replicate
experiments. They reported colony-forming unit (CFU) counts for each replicate
and each treatment. For each replicate, we first computed the relative abundance
of each species in that community and then took the average of these relative
abundances of each condition (i.e., each subcommunity type). Complete data
for this study are available in ref. 66.

Predictions on a 6-species Starch-degrading Community. Sanchez-
Gorostiaga et al. (29) studied assemblages by considering a pool of 6 amylolytic
soil bacterial species. Out of the 63 possible communities, they reported
abundance data (in colony-forming units) for 53 communities. We dropped
two communities that were inconsistent with labeling and worked with 51 data
points. For each community and each replicate, we calculated the total biomass
of the community and divided the abundance of each species to find the relative
abundance of each species in the community. If multiple replicate experiments
were reported, we first computed the relative abundance of a species in each
replicate and then averaged this across replicates to find the mean relative
abundance. Data for this study are available in ref. 67.

Predictions on an 8-species Soil Microbiome Community. Friedman et al.
(63) studied a community of 8 heterotrophic soil-dwelling bacteria, reporting
their optical densities (ODs) after cross-checking actual cell counts using
agar plating. They considered subcommunities which included all the 8
monocultures, all pairwise combinations, all three-species communities, all 8
leave-one-out communities, and the subcommunity with all the species present.
They combined species in different ratios (i.e., other than 1:1) and sampled the
populations at various times, obtaining time-series data. This difference in
starting abundances however did not affect the steady state in most conditions
and replicates. However, for 2 subcommunities, they found that the steady-state
abundances within the replicates had a much larger variation than what could
be accounted for by experimental noise, and one subcommunity displayed
bistability. We discarded these experimental conditions, and for all other data

points proceeded to take the average of the final time (where we assume steady
state has been attained) abundances across the replicates. Data for this study
are available in ref. 75.

Predictions on a Subset of a 25-species Synthetic Human Gut Com-
munity. Clark et al. (64) studied a community of 25 species that consisted
of species spanning all major phyla in the human gut microbiome and
also are representative of the major metabolic functions in the gut. Of
the 225

− 1 ecological communities possible, they sampled ∼600. For
these subcommunities, they reported read counts and computed the relative
abundances for each species using total read counts for each subcommunity.
They also found absolute abundances by multiplying the relative abundance
with the OD600 measurement for each sample. As outlined in Methods section of
ref. 64, we excluded subcommunities that were flagged as contaminated. Data
for this study are available in ref. 68. In such a data-limited case, the performance
of any algorithm will be difficult to test. Therefore, we considered a subset of
16 species with the other 9 always being absent. Since there are many possible
subsets of 16 species in the background of any consistently absent 9 species,
we selected a 16-species pool such that the number of experimental data-
points available to us was maximized. The distribution of available data-points
with different number of species consistently absent is shown in SI Appendix,
Fig. S10. With this, we had∼0.2% of this 16-species landscape available to us.
We considered relative abundances in the data, after averaging over the number
of replicate experiments for each subcommunity. There were differing number
of data points corresponding to each species, unlike the previous datasets. We
therefore allowed k to vary in the cross-validation scheme. k was set to 3, 5, or 7
depending on the size of the dataset for each species. The authors also reported
concentrations of 4 organic acid fermentation products: butyrate, acetate, lactate,
and succinate. For these community functions of metabolite production, we used
a 10-fold cross-validation approach.

Microbial Consumer–Resource Models. We considered a pool of 16 species,
with a single externally supplied resource in a chemostat. Communities with
cross-feeding that are supplied with a single resource externally have been
studied in recent experiments (76–80). In our simulations, the supplied resource
is primarily consumed by only a few species. However, in the presence of cross-
feeding, there are 20 metabolites present in the community. Different species
consume different resources at different rates; this information is encoded in the
consumer matrix, C, with elements ci� , which characterizes a kind of pairwise
interaction, but here between consumer and resource, rather than directly
between pairs of species. Such pairwise consumer–resource interactions can
give rise to both pairwise interspecific interactions and higher-order interspecific
interactions (81). We choose a consumer matrix whose elements are sampled
from a binary-gamma distribution (44). We chose a binary-gamma distribution
because this allows for positive uptake rates but also allows us to control the
sparsity of the consumer matrix. By considering all possible combinations of
initial presence–absence of the species, we generated steady-state abundances
of all the species, by numerically solving the ODEs for the consumer–resource
model (equations given in SI Appendix, section 3). Simulations reached steady
state when the root mean square of the logarithmic growth rates of the species
fell below a threshold, i.e., RMS

(
1
Ni

dNi
dt

)
< 10−2. Further, we verified that

the extinct species could not have survived in the community by simulating a
reinvasion attempt of the steady-state community.

Thus, for each species, we have 216 abundance data points. Since each
species is present in only half the combinations, the effective total data for each
species is 215. Further, we considered the relative abundance of a species in each
combination. We calculated the relative abundance by summing the biomass
of each species in the subcommunity and dividing this by the total biomass of
that subcommunity. Details of parameters used in the simulations are given in
SI Appendix, section 3.

Data, Materials, and Software Availability. The code to reproduce all
the analyses in this manuscript is available on GitHub, https://github.
com/sayra-ecoevol/compressed_landscapes_microbiome. The 5-species fruit
fly dataset (28) is available in ref. 66, https://doi.org/10.5061/dryad.
2sr6316. The 6-species starch-degrading community (29) dataset is avail-
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able in ref. 67, https://github.com/djbajic/structure-function-bacilli, while
the 8-species dataset (63) is available in ref. 75, https://doi.org/10.5281/
zenodo.8176044. The 25-species dataset with microbes relevant to the
human gut (64) is available in ref. 68, https://github.com/RyanLincolnClark/
DesignSyntheticGutMicrobiomeAssemblyFunction.
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