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Abstract
With the increasing availability of microbiome 16S data, network estimation has 
become a useful approach to studying the interactions between microbial taxa. Net-
work estimation on a set of variables is frequently explored using graphical mod-
els, in which the relationship between two variables is modeled via their conditional 
dependency given the other variables. Various methods for sparse inverse covari-
ance estimation have been proposed to estimate graphical models in the high-dimen-
sional setting, including graphical lasso. However, current methods do not address 
the compositional count nature of microbiome data, where abundances of micro-
bial taxa are not directly measured, but are reflected by the observed counts in an 
error-prone manner. Adding to the challenge is that the sum of the counts within 
each sample, termed “sequencing depth,” is an experimental technicality that car-
ries no biological information but can vary drastically across samples. To address 
these issues, we develop a new approach to network estimation, called BC-GLASSO 
(bias-corrected graphical lasso), which models the microbiome data using a logistic 
normal multinomial distribution with the sequencing depths explicitly incorporated, 
corrects the bias of the naive empirical covariance estimator arising from the hetero-
geneity in sequencing depths, and builds the inverse covariance estimator via graph-
ical lasso. We demonstrate the advantage of BC-GLASSO over current approaches 
to microbial interaction network estimation under a variety of simulation scenarios. 
We also illustrate the efficacy of our method in an application to a human microbi-
ome data set.
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1  Introduction

Microorganisms are ubiquitous in nature and responsible for managing key eco-
system services [1]. For example, microbes that colonize the human gut play an 
important role in homeostasis and disease [2–4]. To better reveal the underlying 
role microorganisms play in human diseases requires a thorough understanding 
of how microbes interact with one another. The study of microbiome interactions 
frequently relies on DNA sequences of taxonomically diagnostic genetic markers 
(e.g., 16S rRNA), the count of which can then be used to represent the abundance 
of Operational Taxonomic Units (OTUs, a surrogate for microbial species) in a 
sample.

The OTU abundance data possess a few important features in nature. First, the 
data are represented as discrete counts of the 16S rRNA sequences. Second, the 
data are compositional because the total count of sequences per sample is prede-
termined by how deeply the sequencing is conducted, a concept named sequenc-
ing depth. The OTU counts only carry information about the relative abundances 
of the taxa instead of their absolute abundances. In addition, the sequencing depth 
can vary drastically across samples. Last, the OTU data are high-dimensional in 
nature, as it is likely that the number of OTUs is far more than the number of 
samples in a biological experiment.

When such data are available, interactions among microbiota can be inferred 
through correlation analysis [5]. Specifically, if the relative abundances of two 
microbial taxa are statistically correlated, then it is inferred that they interact on 
some level. More recent statistical developments have started to take the compo-
sitional feature into account and aim to construct sparse networks for the absolute 
abundances instead of relative abundances. For example, SparCC [6], CCLasso 
[7], and REBACCA [8] use either an iterative algorithm or a global optimization 
procedure to estimate the correlation network of all species’ absolute abundances 
while imposing a sparsity constraint on the network.

All the above methods are built upon the marginal correlations between pairs 
of microbial taxa, and they could lead to spurious correlations that are caused 
by confounding factors such as other taxa in the same community. Alternatively, 
interactions among taxa can be modeled through their conditional dependencies 
given the other taxa, which can eliminate the detection of spurious correlations. 
In an ideal setting, the Gaussian graphical models are a useful approach to study-
ing the conditional dependency, in which the data are modeled through a multi-
variate normal distribution and the conditional dependency is determined by the 
non-zero entries of its inverse covariance matrix. Graphical lasso is a commonly 
used method to estimate sparse inverse covariance matrix for high-dimensional 
data under the Gaussian graphical models [9, 10]. However, both the count nature 
and the compositional features of the microbiome abundance data result in viola-
tions of the multivariate normality assumption.

SPIEC-EASI is a popular method for estimating a microbial interaction net-
work that is represented by a sparse inverse covariance matrix between the abun-
dances of species [11]. It is a two-step procedure that first performs a central 
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log-ratio (clr) transformation on the observed counts [12] and then applies graph-
ical lasso to the transformed abundances. As noted in Kurtz et al. [11], the clr-
transformed abundances add up to zero, which leads to a singular covariance 
matrix and thus an ill-posed problem for estimating its inverse. To overcome this 
difficulty, SPIEC-EASI treats the covariance matrix of the clr-transformed abun-
dances as an approximation to that of the log-transformed abundances that is no 
longer singular. Therefore, the second graphical lasso step is treated as estimat-
ing the well-defined inverse covariance matrix of the log-transformed abundances 
instead of the above-mentioned ill-posed problem. In other words, SPIEC-EASI 
is built upon the approximation of two covariance matrices, and thus lacks a clear 
objective function.

More recently, several other methods have been proposed to infer a micro-
bial interaction network, including gCoda [13], CD-trace [14], and SPRING [15]. 
However, existing methods for inverse covariance estimation including these meth-
ods and SPIEC-EASI do not properly account for two related features intrinsic to 
microbiome data: (a) the data are compositional counts in nature, and (b) sequenc-
ing depth is finite and varies from sample to sample. In microbiome research, a 
common strategy to tackle uneven sequencing depths is rarefaction, in which data 
on samples with higher sequencing depths are thinned by randomly subsampling 
from the observed counts so that the sequencing depths are the same in the rarefied 
data. However, this is known to amount to substantial loss of data [16]. Another 
widely used practice in microbiome data analysis, also adopted albeit implicitly in 
SPIEC-EASI, is to simply discard the sequence depth by converting the count data 
directly to compositional proportions as a proxy for the true relative abundances in 
a sample. However, it relies on the assumption that the estimated proportion of a 
taxon in a sample is equal to its true value and ignores the uncertainty of the propor-
tion estimates as reflected by the sampling variance of these estimates. Therefore, 
this approach does not adequately account for the variation in the microbial counts 
and has been reported to result in excessive false positives in differential abundance 
analysis of microbiome data [16].

In this paper, we show, in the context of covariance estimation, that the propor-
tion-based approach leads to substantial bias in the estimator, which can deterio-
rate the accuracy of the inferred interaction network. To address this challenge, we 
quantify the bias by directly modeling the compositional count data. We develop 
BC-GLASSO (bias-corrected graphical lasso), a method for inverse covariance esti-
mation in microbiome data, which accounts for the compositional count nature of 
microbiome data and embraces the heterogeneous sequencing depths.

BC-GLASSO is a two-step procedure similar to SPIEC-EASI but possessing 
key distinctions. First, BC-GLASSO is built upon the logistic normal multino-
mial distribution that is commonly applied to model compositional count data 
[12, 17, 18], and thus has a clear objective function. This is a hierarchical model 
that models the compositional counts using a multinomial distribution and hier-
archically the multinomial probabilities using a logistic normal distribution. 
Compared to SPIEC-EASI, the true covariance matrix is defined on the additive 
log-ratio (alr) transformed multinomial probabilities instead of the clr-trans-
formed abundances, with the benefit of being positive-definite and possessing 
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a well-defined inverse matrix. Second, we show that the naive estimator of the 
true covariance matrix, which is the sample covariance matrix based on the alr-
transformed abundances, has estimation bias in this hierarchical model. The bias 
can be approximated by a term that is inversely proportional to the sequencing 
depths. Last, motivated by the form of the estimation bias, we propose a bias 
correction procedure by accounting for and, in fact, taking advantage of the het-
erogeneous sequencing depths. The bias-corrected estimator of the true covari-
ance matrix is easy to compute because it can be written as a weighted average of 
sample-specific covariance matrix estimators based on the alr-transformed abun-
dances. Finally, we apply graphical lasso to estimate a sparse inverse covariance 
matrix based on this bias-corrected estimator. The non-zero entries in this sparse 
inverse covariance matrix are interpreted to represent an edge between the associ-
ated taxa in a microbial interaction network.

The rest of the paper is organized as follows. In Sect. 2, we will describe the 
BC-GLASSO method by introducing the logistic normal multinomial model for 
the compositional counts, approximating the estimation bias of the naive estima-
tor of the desired covariance matrix, and correcting its estimation bias. In Sect. 3, 
we will evaluate the performance of BC-GLASSO via simulation studies and 
compare it with SPIEC-EASI. We will show that BC-GLASSO performs better in 
terms of reducing the estimation bias for the covariance matrix and detecting the 
edges in the microbial interaction networks more accurately. In Sect. 4, we report 
a real data application, in which we compare the performance of BC-GLASSO 
and SPIEC-EASI when applied to the data from the American Gut Project [19]. 
Section 5 concludes this paper with some discussion. Some details for the theo-
retical derivations in Sect. 2 are presented in the Appendix.

2 � Bias‑Corrected Graphical Lasso

2.1 � Data and Model

Consider an OTU abundance data set with n independent samples, each of which 
composes observed counts of K + 1 taxa, denoted by �i = (Xi,1,… ,Xi,K+1)

� for the 
i-th sample, i = 1,… , n . Due to the compositional property of the data, the total 
count of all taxa for each sample i is a fixed number, denoted by Mi . Naturally, a 
multinomial distribution is imposed on the observed counts:

where �i = (pi,1,… , pi,K+1)
� represents the sample-specific multinomial probabilities 

for individual taxa satisfying that pi,1 +⋯ + pi,K+1 = 1.
To model the variability of the multinomial probabilities in the population, we 

build a logistic normal distribution on �i . We first choose one taxon, without loss of 
generality the (K + 1)-st taxon, as a reference for all the other taxa and then apply 
the additive log-ratio (alr) transformation [12] on the multinomial probabilities:

(1)�i|�i = �i ∼ Multinomial(Mi;pi,1,… , pi,K+1),
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Let �i = (Zi,1,… ,Zi,K)
� and further assume that they follow an i.i.d. multivariate 

normal distribution

where � is the mean, and � is the covariance matrix.
The above model in (1)–(3), known as a logistic normal multinomial model, is a 

hierarchical model with two levels. The multinomial distribution is imposed on the 
compositional counts, which is the distribution of the observed data given the mul-
tinomial probabilities. In addition, the logistic normal distribution is imposed on the 
multinomial probabilities as a prior distribution.

The logistic normal multinomial model has been applied to microbiome data to 
detect covariates that are associated with differential microbial taxa [18]. The goal 
of this paper, however, is to infer interactions between microbial taxa. To this end, 
we set � = �−1 to be the inverse covariance matrix or the precision matrix. � is the 
parameter of interest whose non-zero entries encode the conditional dependencies 
between Zi,1,… , Zi,K , which are interpreted as edges in the microbial interaction net-
work. Our objective is to find a sparse estimator of the inverse covariance matrix � 
based on the observed data (�1,… ,�n).

2.2 � Naive Estimation

A naive approach to estimating � is a two-step procedure. First, one can estimate 
�1,… ,�n from the multinomial distribution by applying the same alr transforma-
tion on the counts as in

and then apply graphical lasso directly on �̂1,… , �̂n by treating them as surrogates 
for �1,… ,�n:

where �̂ is the sample covariance matrix of �̂1,… , �̂n and � is a tuning parameter.
This naive estimation shares the same spirit as SPIEC-EASI [11] except that the 

alr transformation is used in (4) but SPIEC-EASI uses the central log-ratio (clr) 
transformation

where g(�i) is the geometric mean of the counts Xi,1,… ,Xi,K+1 . As noted in Kurtz 
et  al. [11], the clr transformation results in a singular covariance matrix for the 

(2)Zi,k = log

(
Pi,k

Pi,K+1

)
, i = 1,… , n, k = 1,… ,K.

(3)�i

iid
∼N(�,�), i = 1,… , n,

(4)Ẑi,k = log

(
Xi,k

Xi,K+1

)
, i = 1,… , n, k = 1,… ,K,

(5)�(�) = − log[det(�)] + tr(�̂�) + 𝜆‖�‖1,

Ẑi,k = log

(
Xi,k

g(�i)

)
, i = 1,… , n, k = 1,… ,K + 1,
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transformed data, and thus the non-existence of the inverse covariance matrix. None-
theless, Kurtz et al. [11] argued that this covariance matrix is an approximation of 
the covariance matrix of the logged counts log(Xi,1),… , log(Xi,K+1) and they applied 
graphical lasso to this covariance matrix directly. Therefore, SPIEC-EASI is built 
upon the approximation of two covariance matrices, and thus lacks a clear objective 
function. In this paper, we focus on the alr transformation in (4) instead of the clr 
transformation and call the resultant estimator of � from (5) the naive estimator.

In the logistic normal multinomial model in (1)–(3), the inverse covariance matrix 
is defined on the true parameters �1,… ,�n but not their estimators �̂1,… , �̂n . 
The naive estimation treats �̂1,… , �̂n as known, which ignores the variation of 
�̂1,… , �̂n as the estimators of �1,… ,�n . In Sect. 2.3, we will show that the naive 
estimator has an estimation bias due to the ignorance of the variation of �̂1,… , �̂n.

2.3 � Estimation Bias

In this subsection, we investigate how the naive sample covariance matrix �̂ based 
on �̂1,… , �̂n estimates the true covariance matrix � in (3). In particular, we evalu-
ate the estimation bias of each element in the covariance matrix separately.

For each pair (k, l) with 1 ≤ k, l ≤ K , let �kl = Cov(Zi,k, Zi,l) be the true covariance 
between Zi,k and Zi,l . Notice that �kl does not depend on i because �1,… ,�n share 
the same distribution. The naive estimator of �kl is the sample covariance

where 𝜎̂i,kl = (Ẑi,k − Ẑ
⋅,k)(Ẑi,l − Ẑ

⋅,l) and Ẑ
⋅,k =

1

n

∑n

i=1
Ẑi,k for k = 1,… ,K . In (6), it is 

seen that the sample covariance 𝜎̂kl is the arithmetic mean of 𝜎̂1,kl,… , 𝜎̂n,kl , the cor-
responding contributions from each sample. In the following, we will argue that 𝜎̂i,kl 
is biased as an estimator of �kl and so is 𝜎̂kl.

When Mi is large, the Taylor’s expansion of Xi,k∕Mi at its conditional mean Pi,k 
gives the following approximation by ignoring higher-order terms

A direct evaluation leads to the following approximations

where Ck = E(P−1
1,k

− P−1
1,K+1

) and C
kl
= E(P−1

1,K+1
) −

1

2
Cov(Z1,k,P

−1
1,l

− P
−1
1,K+1

)

−
1

2
Cov(Z1,l,P

−1
1,k

− P
−1
1,K+1

) are quantities that do not depend on i. Plugging (8) to 
E(𝜎̂i,kl) leads to the following approximation of its estimation bias when Mi and n are 
both large

(6)𝜎̂kl =
1

n

n∑

i=1

𝜎̂i,kl =
1

n

n∑

i=1

(Ẑi,k − Ẑ
⋅,k)(Ẑi,l − Ẑ

⋅,l),

(7)

Ẑi,k ≈ Zi,k +

(
Xi,k

MiPi,k

−
Xi,K+1

MiPi,K+1

)
−

1

2

[(
Xi,k

MiPi,k

− 1

)2

−

(
Xi,K+1

MiPi,K+1

− 1

)2
]
.

(8)E(Ẑi,k) ≈ 𝜇k −
Ck

2Mi

and E(Ẑi,kẐi,l) ≈ 𝜎kl + 𝜇k𝜇l +
Ckl

Mi

,
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For details of the above derivations, we refer to the Appendix. The result in (9) 
implies that 𝜎̂i,kl has an approximate bias with the order of M−1

i
 as an estimator of �kl , 

ignoring higher-order terms. In addition, as the arithmetic mean of 𝜎̂i,kl , the naive 
sample covariance 𝜎̂kl is also approximately biased with the order of 1

n

∑n

i=1
M−1

i
 for 

the bias term, when all Mi ’s and n are large.
The expression in (9) has a similar form to a simple linear regression if we treat 

𝜎̂1,kl,… , 𝜎̂n,kl as the responses and M−1
1
,… ,M−1

n
 as the explanatory variables. In this 

linear regression, �kl serves as the intercept and Ckl serves as the slope. This obser-
vation motivates us to develop a bias correction procedure based on fitting such a 
simple linear regression in Sect. 2.4.

2.4 � Bias Correction and Graphical Lasso

We fit a simple linear regression of the responses 𝜎̂1,kl,… , 𝜎̂n,kl to the explanatory 
variables M−1

1
,… ,M−1

n
:

and use the least-squares estimator of the intercept �0 , denoted by 𝜎̃kl , to estimate �kl . 
It is not hard to show that

where

where �−1 = (M−1
1
,… ,M−1

n
)� , and ‖ ⋅ ‖1 and ‖ ⋅ ‖2 denote the L1 and L2 norm of a 

vector, respectively.
Compared to the naive estimator 𝜎̂kl that is an arithmetic mean of 𝜎̂1,kl,… , 𝜎̂n,kl , 

the bias-corrected estimator 𝜎̃kl is a weighted mean. It is seen that when the sample 
i has a higher sequencing depth Mi , �i will be larger and so is the weight, which 
agrees with the intuition that a higher sequencing depth gives more accuracy in esti-
mating its compositional probabilities. In addition, the fact that 

∑n

i=1
�i = 0 implies 

that the sum of all the weights still add up to one as same as in the naive estimator.
Figure  1 presents a scatter plot of the estimated and true covariances in the 

(1,2)-entry of the covariance matrix from a simulation study. If an estimator has 
no bias, the points on the scatter plot should lie around the straight line which 
indicates the equality of the quantities on both axes. It is obvious that the naive 
estimator has a substantial bias (left panel) and the bias correction procedure is 

(9)E(𝜎̂i,kl) ≈ 𝜎kl +
Ckl

Mi

.

𝜎̂i,kl ∼ 𝛽0 + 𝛽1
1

Mi

, i = 1,… , n

(10)𝜎̃kl =
1

n

n∑

i=1

(
1 + 𝛿i

)
𝜎̂i,kl,

�i =
‖�−1‖1

‖�−1‖2
2
− ‖�−1‖2

1
∕n

�‖�−1‖1
n

−
1

Mi

�
,
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effective in removing the bias (right panel). This can also be justified by evaluat-
ing E(𝜎̃kl) by combining (9) and (10), which turns out to be approximately unbi-
ased as

In other words, the bias-corrected estimator 𝜎̃kl is approximately unbiased when all 
sequencing depths and the sample size are large. In Fig. 1, we also notice that the 
variance of the bias-corrected estimator 𝜎̃kl is slightly higher than that of the naive 
estimator 𝜎̂kl . In this particular simulation, the sample variance of 𝜎̃kl is approxi-
mately twice of the sample variance of 𝜎̂kl.

With the bias-corrected estimator of the covariance matrix �̃ whose (k,  l)-entry 
being 𝜎̃kl for 1 ≤ k, l ≤ K , we can apply graphical lasso to achieve a sparse estimator 
of the inverse covariance matrix � = �−1 as in

Note that the only difference of (11) from (5) is the replacement of the naive esti-
mator �̂ by the bias-corrected estimator �̃ . Therefore, we call this approach bias-
corrected graphical lasso (BC-GLASSO) and the resultant inverse covariance matrix 
estimator the BC-GLASSO estimator.

E(𝜎̃i,kl) ≈ 𝜎kl.

(11)�(�) = − log[det(�)] + tr(�̃�) + 𝜆‖�‖1.

−1.0 −0.5 0.0 0.5 1.0

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Naive estimator

rho

es
tim

at
es

−1.0 −0.5 0.0 0.5 1.0

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Bias−corrected estimator

rho

es
tim

at
es

Fig. 1   Scatter plot of estimated and true covariances for the (1,2)-entry of the covariance matrix from 
a simulation study. Results are based on K = 50 , n = 500 , setting (M1) for the sequencing depth as 
described in the simulation setting, and a true correlation between the first and second taxa ranging from 
−0.9 to 0.9. Left panel: naive estimator; right panel: bias-corrected estimator
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In the following sections, we will apply BC-GLASSO on simulated data and 
real data to evaluate its performance by assessing its estimation unbiasedness for 
the covariance matrix and its identification accuracy for the interaction network.

3 � Simulation Studies

We perform simulation studies under a variety of settings to assess the effec-
tiveness of bias correction and the accuracy of network identification using BC-
GLASSO and to compare its performance with SPIEC-EASI. Note that in addi-
tion to adopting the naive approach described in Sect. 2.2, SPIEC-EASI also uses 
the clr transformation rather than the alr transformation in BC-GLASSO. For a 
fair comparison and to highlight the impact of the proposed bias correction tech-
nique enabled by more careful modeling of the data, we will adopt the alr trans-
formation in our implementation of SPIEC-EASI instead of its default clr trans-
formation. In addition, we also implement CD-trace and gCoda for comparison.
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Fig. 2   The four network structures used in simulation studies. a Random-edge network. b Cluster net-
work. c Hub network; d scale-free network
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3.1 � Simulation Settings

We consider four types of network structures: the random-edge, cluster, hub, and 
scale-free networks (Fig. 2). First, in the random-edge network, each pair of nodes, 
independently of other pairs, has a probability of 0.3 to be connected by an edge. In 
its corresponding inverse covariance matrix � , �kl is 1 if nodes k and l are connected 
and 0 otherwise, while �kk is a constant in k that controls the condition number of 
� at 100. Second, in a cluster network, the nodes are evenly partitioned into 2 dis-
joint groups of the same size. Each group forms a cluster that is interconnected as a 
random-edge network with the connection probability 0.3. Third, similar to the clus-
ter network, the nodes in a hub network are also evenly partitioned into 2 disjoint 
groups of the same size and each group has a center to which all the other nodes 
within the same group are connected to. Finally, in a scale-free network, the distri-
bution of degrees (the number of connections each node has to other nodes) follows 
a power law. The cluster, hub, and scale-free networks as well as their respective 
inverse covariance matrices are generated using the Huge package in R [20, 21]. In 
this package, we set the off-diagonal element of � to be v = 0.3 for the cluster net-
work and v = 0.03 for the hub and scale-free networks. Throughout our simulations, 
we fix the number of nodes to be K = 50 for all four types of networks.

For each network structure, we simulate microbiome compositional counts on 
n = 500 samples with heterogeneous sequencing depths given by � = (M1,⋯ ,Mn)

� . 
We consider three settings for � : (M1) half of the Mi ’s are K/2.5 and the other half 
are 40K, (M2) each Mi is independently drawn from the uniform distribution from 
K/2.5 to 40K, and (M3) the Mi ’s are generated from the real sequencing depths in the 
16S data from the American Gut Project (see Sect. 4). Specifically, for setting (M3), 
after removing rare OTUs (average relative abundance < 0.01%) in the real data, we 
compute the total reads of each sample based on a randomly selected set of K + 1 
taxa. Then, after removing samples whose total reads are below K + 1 , we randomly 
draw 500 samples from the rest and use their total reads as � . In summary, settings 
(M1) and (M2) contrast cases with high and low heterogeneity in sequencing depth, 
while setting (M3) tries to mimic the real situation.

Given the inverse covariance matrix � for each network structure, we inde-
pendently draw �1,… ,�n from the multivariate normal distribution given by 
N(�,�−1) , where � = (�0,⋯ ,�0)

� . In general, with other factors held fixed, the 
greater �0 is, the rarer the reference taxon tends to be. In our simulations, we use 
𝜇0 = log(4∕K) < 0 , which implies that the reference taxon is on average more abun-
dant than the other taxa. Given �1,… ,�n and the sequencing depths � generated 
as described in the previous paragraph, the compositional counts are generated 
based on the multinomial distribution in (1) and (2). The simulated count data may 
include zero counts. In order to perform the log-ratio transformation to obtain the 
�̂i’s, we add to each count Xi,k a small positive number equal to p̂k(K + 1) , where 
p̂k = n−1

∑n

i=1
Xi,k∕Mi is the estimated mean relative abundance of taxon k. This 

allows a zero count to be replaced by a positive number whose value depends on 
the relative abundance of the associated taxon in the other samples for which its 
observed abundance is non-zero. For each simulation setting, the process described 
above is independently repeated to create 100 replicates.
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3.2 � Simulation Results

To assess the effectiveness of BC-GLASSO in correcting the estimation bias in the 
covariance matrix, we implement BC-GLASSO and SPIEC-EASI to the simulated 
data sets to evaluate their performances. We compare the estimated covariances to 
their corresponding true values across simulation replicates to obtain the empirical 
bias and mean squared error (MSE) separately for each off-diagonal entry in the 
covariance matrix. Table 1 summarizes the results by averaging the absolute values 
of the empirical bias and the MSE values across all pairs of taxa. In addition, the 
entry-wise bias values are visualized in heatmaps (see Fig. S1–S4 in the Supplemen-
tal Materials).

To assess the accuracy with which a method is able to recover the interaction 
network, we compare the true network with the inferred network obtained by join-
ing pairs of nodes with non-zero entries in the estimated inverse covariance matrix. 
The true positive rate is defined to be the frequency with which an edge in the true 
network is present in the inferred network, and the false positive rate is defined to 
be the frequency with which an edge not present in the true network is identified 
in the inferred network. We implement BC-GLASSO, SPIEC-EASI, CD-trace, and 
gCoda with a range of values for the tuning parameter, which allows us to plot the 
true positive rate of each method against its false positive rate in an ROC curve. For 
CD-trace and gCoda, because the true network has one less node than the dimension 
of the estimated inverse covariance matrix, we build the estimated network based on 
the K-dimensional submatrix on the top left by excluding the last dimension. The 
ROC curves from different simulation settings are included in Fig. 3.

From Table 1, we find that BC-GLASSO effectively reduces the overall bias by up 
to 2 orders of magnitude. We note that under some scenarios, the bias reduction comes 
at the cost of a moderate increase in MSE. This is due to a potential increase in the vari-
ance of the bias-corrected estimator as compared to the naive estimator. In addition, as 
demonstrated in Fig. 3, BC-GLASSO outperforms the naive procedure in recovering 
the interaction network across all network structures and sequencing depth settings in 

Table 1   Simulation results. Bias: average of the absolute values of the empirical bias across all pairs of 
taxa; MSE: average of the MSE values across all pairs of taxa

(M1) (M2) (M3)

Bias MSE Bias MSE Bias MSE

Random 
edge

SPIEC-EASI 6.79E-4 2.34E-3 1.27E-2 6.30E-4 1.36E-2 6.79E-4
BC-GLASSO 5.71E-4 4.75E-4 2.94E-3 5.25E-4 4.21E-3 5.71E-4

Cluster SPIEC-EASI 6.69E-2 8.27E-3 2.26E-2 2.68E-3 2.07E-2 2.56E-3
BC-GLASSO 3.84E-2 5.95E-3 7.51E-3 2.88E-3 5.93E-3 3.10E-3

Hub SPIEC-EASI 4.93E-2 3.77E-3 1.41E-2 2.00E-3 1.28E-2 1.99E-3
BC-GLASSO 3.61E-2 5.74E-3 4.19E-3 2.86E-3 4.31E-3 2.83E-3

Scale free SPIEC-EASI 5.25E-2 4.12E-3 1.47E-2 1.99E-3 1.18E-2 1.95E-3
BC-GLASSO 3.76E-2 5.84E-3 4.54E-3 2.83E-3 4.28E-3 2.99E-3
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our simulations. More specifically, at a fixed true positive rate, BC-GLASSO consist-
ently maintains a lower false positive rate than SPIEC-EASI, and at a fixed false posi-
tive rate, BC-GLASSO consistently attains a higher true positive rate. BC-GLASSO 
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Fig. 3   BC-GLASSO enjoys more accurate network recovery than SPIEC-EASI, CD-trace, and gCoda in 
simulations. ROC curves for BC-GLASSO, SPIEC-EASI, CD-trace, and gCoda are compared for each 
simulation setting. Blue solid: BC-GLASSO. Black dotted: SPIEC-EASI. Red dashed: CD-trace. Green 
dotdash: gCoda. Each row is a network structure. Each column is a configuration for the sequencing 
depth (Color figure online)
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exhibits a greater advantage over SPIEC-EASI in a setting with high heterogeneity in 
the sequencing depths (M1) than in a setting with low heterogeneity (M2). Substantial 
improvement in network recovery is achieved by BC-GLASSO when the sequencing 
depths are obtained mimicking the real situation in setting (M3). For example, for the 
scale-free network, BC-GLASSO, when compared to SPIEC-EASI, reduces the false 
positive rate from 24.7% to 15.4% with a fixed true positive rate of 90% . For a random-
edge network, BC-GLASSO increases the true positive rate from 44.8% to 59.0% with 
a fixed false positive rate of 20%.

As further demonstrated in Fig. 3, the comparison with CD-trace shows that BC-
GLASSO either outperforms or achieves almost the same performance as CD-trace for 
most of the settings, with the exception of a hub network with high sequencing depth 
heterogeneity (M1), for which CD-trace is slightly better than BC-GLASSO. However, 
BC-GLASSO yields substantial improvement over CD-trace in several settings includ-
ing the cluster network with setting (M1). Overall, we conclude that BC-GLASSO 
compares favorably with CD-trace. Moreover, the comparison with gCoda indicates 
that the performance of gCoda is dominated by that of CD-trace and BC-GLASSO.

In summary, BC-GLASSO is effective in reducing bias in the estimation of the 
covariance matrix compared to SPIEC-EASI. In some scenarios, BC-GLASSO can 
yield a higher MSE due to the inflation of the estimation variance. However, in all of 
our simulation scenarios, BC-GLASSO always outperforms SPIEC-EASI in terms 
of the accuracy in the recovering the interaction network represented by the esti-
mated inverse covariance matrix. The overall performance of BC-GLASSO also 
surpasses that of CD-trace and gCoda in terms of recovering the microbial interac-
tion network.

We also investigate the performance of using SPIEC-EASI on rarefied data, 
where data from samples with higher sequencing depths are subsampled without 
replacement so that all sequencing depths are equal to the smallest one. We note that 
BC-GLASSO cannot be applied to rarefied data. Therefore, we compare the ROC 
curves of three methods: SPIEC-EASI applied to unrarefied data, SPIEC-EASI 
applied to rarefied data, and BC-GLASSO. The results are summarized in supple-
mental Fig. S8. It is clearly seen that SPIEC-EASI applied to the rarefied data per-
forms the worst among the three methods—its ROC curve is dominated by the other 
two methods most of the time. This is not very surprising. In our simulation settings, 
the sequence depth varies from sample to sample. In all settings for the sequencing 
depth, (M1)–(M3), the smallest sequencing depth is usually quite small. As such, 
rarefaction results in considerable loss of information for those samples with higher 
sequencing depths and also adds artificial uncertainty with random subsampling 
[16]. Therefore, SPIEC-EASI applied to the rarefied data performs the worst.

4 � Real Data Analysis

We illustrate the use of BC-GLASSO with an analysis of 16S data from the Ameri-
can Gut Project (AGP) [19] to infer the interaction network between microbial taxa 
in the human gut. We focus on the data collected on 3,679 stool samples and remove 
from the data set samples collected from other body sites.
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To better capture the variation in the composition of human microbiota, it is 
helpful to take into account subgroup structure of the population that may exhibit 
fundamentally different biological properties. Recent research has found evidence 
that while the gut microbiome takes on smooth gradients of compositional diversity 
across individuals [22], human populations can generally be stratified into two main 
clusters, referred to as “enterotypes,” based on the abundance of specific taxa [23]. 
These enterotypes are compositionally and potentially functionally distinct [24]. In 
our analysis, we propose to estimate the microbial interaction network separately for 
each enterotype, which helps minimize the detection of spurious interactions due to 
confounders related to population stratification and enhances our ability to identify 
biologically relevant interactions. Recent studies have shown the existence of two 
common enterotypes, including one marked by a high relative abundance of Bacte-
roides and the other by a high relative abundance of Prevotella [25], and that Prevo-
tella-to-Bacteroides ratio (P/B ratio) can be used to effectively classify humans to 
these subpopulations [26]. In our analysis of the AGP data, we analyze two groups 
of samples separately: the P group which includes samples whose P/B ratio is in the 
upper 25%, and the B group includes samples whose P/B ratio is in the lower 25% 
(Fig. 4).

We conduct our analysis on the genus level and aggregate the counts for OTUs 
that belong to the same genus. OTUs the do not have the genus-level taxonomic 
information are aggregated into a pseudo-genus, which we will refer to as the “unla-
beled genus.” We filter the data to remove samples with very low sequencing depths 
and genera that are highly sparse. More specifically, samples with total reads smaller 
than 100 are removed from the analysis. Separately for the two groups based on P/B 
ratio, we remove genera with zero abundance for over 95% of the subjects within a 
group. The resulting data set has 786 subjects and 143 genera in the P group, and 
864 subjects and 142 genera in the B group.

To select the reference taxon, we aim to find a genus whose abundance remains 
stable across samples. To this end, we evaluate the inter-sample dispersion of the 
relative abundance of each taxon and find the taxon whose relative abundance is 
the least dispersed. More specifically, we first calculate each genus’ relative abun-
dance in a sample by taking the ratio of its observed count to the total read count for 
the sample. Then, we measure the dispersion of a taxon’s relative abundance by the 
coefficient of variation, defined as the standard deviation of the relative abundance 
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Fig. 4   Empirical distribution of P/B ratio from the AGP data and the regions in this distribution corre-
sponding to the P group and the B group
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across samples divided by its mean. The genus that minimizes the coefficient of var-
iation is taken as the reference taxon. This criterion is applied separately for the P 
group and the B group, for both of which the unlabeled genus is chosen to be the 
reference. This reference has a non-zero count for over 95% of the samples in both 
groups.

We apply BC-GLASSO and SPIEC-EASI to estimate the inverse covariance 
matrix separately for the two groups. For both methods, the value of the tuning 
parameter � is selected using a grid search based on BIC. In Figs. 5, 6, and 7, we 
compare the results based on BC-GLASSO and SPIEC-EASI for the P group. The 
comparison between the two methods is qualitatively similar for the B group and we 
show the results in Fig. S5–S7 in Supplemental Materials. Fig. 5 visualizes the esti-
mated correlation matrices based on the two methods. SPIEC-EASI has resulted in 

Fig. 5   Estimated correlation matrices for the P group in the AGP data based on BC-GLASSO and 
SPIEC-EASI. The correlation matrices are obtained based on the estimated covariance matrix used in the 
two methods. a BC-GLASSO. b SPIEC-EASI (Color figure online)

Fig. 6   Estimated inverse covariance matrices for the P group in the AGP data based on BC-GLASSO 
and SPIEC-EASI, on the negative scale. Diagonal entries are omitted. a BC-GLASSO. b SPIEC-EASI 
(Color figure online)
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an estimated correlation matrix wherein positive correlations overwhelmingly domi-
nate negative ones. In contrast, the correlation matrix based on BC-GLASSO has 
led to a greater number of negative correlations.

To visualize the microbial interactions identified by a method, we show the heat-
map visualizing the estimated inverse covariance matrix, where a non-zero entry 
corresponds to an edge in the inferred microbial network (Fig. 6). Because an entry 
in an inverse covariance matrix is connected to the negative of the partial correlation 
between two variables [27], we show the inverse covariance matrices on the nega-
tive scale. Both methods are able to identify two clusters of taxa that are densely 
connected to each other. The first cluster includes about 14 genera from the family 
Enterobacteriaceae, and the second cluster includes all of the seven genera from 
the family [Tissierellaceae]. Comparing the inverse covariance matrices based 
on the two methods, however, SPIEC-EASI seems to lead to a background rate of 
additional non-zero interactions that arise evenly from all families, while for BC-
GLASSO the identified interactions align more closely with the taxonomic relation-
ships of the genera, showing a clearer trend of genera from the same family exhibit-
ing similar patterns of interactions.

We are further interested in the interactions that are exclusively detected by only 
one method. In summary, between the 142 genera analyzed for the P group, there 
are a total of 10,011 potential pairwise interactions. Among these, 938 interactions 
are identified by both methods, BC-GLASSO detects an additional set of 151 inter-
actions, and SPIEC-EASI detects an additional set of as many as 1,460 interactions 
(Fig. 7b). Interestingly, 114 out of the 151 interactions exclusively identified by BC-
GLASSO (shown in red in Fig. 7a) are associated with a small number of genera, all 
of which are from the family Enterobacteriaceae. These genera are found to have 
extensive interactions with the rest of the microbiome which are captured by BC-
GLASSO. The genera include Pantoea (44), Enterobacter (34), Plesiomonas (14), 

938

151

1460

Only by BC-GLASSO

By both methods

Only by SPIEC-EASI

a b

Fig. 7   Comparing the microbial networks based on BC-GLASSO and SPIEC-EASI for the P group in 
the AGP data. a Network difference between two methods. Red—edges identified by BC-GLASSO but 
not by naive; White—edges identified by naive but not by BC-GLASSO; Orange—edges identified by 
either both or neither. b Numbers of common and unique edges detected by BC-GLASSO and/or SPIEC-
EASI (Color figure online)
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Klebsiella (12), and Erwinia (10), where the numbers in parentheses indicate how 
many edges associated with a genus are unique identified by BC-GLASSO. The 
interactions associated with these genera exclusively identified by BC-GLASSO are 
listed in Supplemental Table S1. In contrast, the 1,460 interactions that are present 
only in the network produced by SPIEC-EASI (shown in white in Fig. 7a) are wide-
spread and distributed across all families, rather than concentrated within specific 
taxa.

The unique interactions revealed by BC-GLASSO represent important discover-
ies that can advance follow-up research and potentially impact the development of 
clinical resources. For example, members of the genera Enterobacteria, Klebsiella, 
and Plesiomonas include known opportunistic pathogens and pathobionts that can 
impact the host of the health when highly abundant in the gut [28–30]. Our identi-
fication of additional linkages between members of these genera and other gut taxa 
can help guide experiments that uncover how other gut taxa impact the success of 
these organisms in the gut, possibly through competitive exclusion or biocontrol.

5 � Discussion

It is becoming increasingly recognized that microbiome data have unique charac-
teristics that are known to require tailored statistical methods. With these charac-
teristics in mind, in this paper, we focus on the problem of inferring the interaction 
network between microbial taxa through the estimation of a sparse inverse covari-
ance estimation in microbiome data. We have highlighted a key disadvantage of the 
popular proportion-based approach due to the bias that originates from the failure to 
properly model the abundance counts and to adequately capture the variation in the 
data. To address this issue, we have developed BC-GLASSO, a model-based method 
for inverse covariance estimation which directly tackles the compositional count 
data and exploits the heterogeneity in sequencing depth. Features of BC-GLASSO 
include (a) the method is based on a hierarchical model where the technical vari-
ation of the count data are modeled using a multinomial distribution and the bio-
logical (i.e., inter-sample) variation of microbiome composition is modeled using 
a logistic normal distribution on the multinomial probabilities; (b) the unevenness 
in the sequencing depth, which frequently poses a challenge in microbiome data 
analysis, is not only properly accounted for in our model but also taken advantage 
of to correct the bias in the estimator; (c) despite the hierarchical model used in BC-
GLASSO, the method remains computationally rapid even on big data sets owing to 
the linear models underlying the bias correction procedure.

We have demonstrated the advantage of BC-GLASSO relative to a leading approach 
through simulation studies. In particular, BC-GLASSO consistently outperforms the 
competing method under a variety of network structures and different setups for the 
sequencing depths. The strength of BC-GLASSO is manifested by a greater accuracy 
in the inferred network as well the reduced bias of the covariance estimator. We have 
also applied BC-GLASSO to infer the microbial interaction network in a data set from 
the American Gut Project, where BC-GLASSO has detected a group of genera from 
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the Enterobacteriaceae family which have extensive interactions with the rest of the 
microbiome.

In our presentation of BC-GLASSO, the �i ’s are assumed to follow N(�,�) . We 
note that the normality assumption on �i is not essential. In fact, even without spe-
cific distributional assumptions on the �i’s, all theoretical derivations and properties 
reported in this paper on the covariance estimator, 𝜎̂kl , in BC-GLASSO remain valid 
so long as �i ’s are assumed to i.i.d. with some mean � and covariance � . The use of 
graphical lasso in the second step of BC-GLASSO, however, does assume normality 
of �i’s.

One caveat of our approach from the perspective of biological interpretation is that 
the interaction network excludes up to K possible edges that theoretically could exist 
in the community being studied. Specifically, potential interactions between the refer-
ence taxon and all other taxa are not modeled by our method and thus cannot be ana-
lyzed and interpreted by users. If users are interested in understanding how particular 
taxa relate, then they would want to avoid using such taxa as a reference given that our 
approach specifically excludes such reference taxa from the final interaction network. 
Without extensive prior biological information, we recommend picking as the reference 
a taxon which is present in the majority of the samples and whose relative abundance is 
least dispersed across samples.

Microbiome studies often record metadata on the samples including covariates such 
as the age, sex, and dietary information of a subject. Some of these covariates have 
been associated with the abundance of a taxon in the microbiome. It can be helpful 
for such associations to be accounted for when estimating the microbial interaction 
network. To this end, a potential approach is to extend GC-GLASSO to incorporate 
covariates in the hierarchical model. This may be done, for example, by allowing � to 
depend on covariates. This is beyond the scope of this paper but may present worth-
while opportunities for future research.

Although BC-GLASSO is motivated by problems that arise in microbiome research, 
it can be applied to compositional count data from other types of applications so long 
as the total count varies substantially across samples. Examples include ecological data 
on species abundance [31], where it may be of interest to estimate the ecological rela-
tionship between species, and RNA-Seq data, where it may be of interest to infer the 
regulatory relationship between genes.
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Appendix: Justification of Estimation Bias in (9)

For i = 1,… , n , taking the Taylor’s expansion of Xi,k∕Mi at its conditional mean Pi,k 
leads to the following high-order terms

Therefore, Ẑi,k = log(Xi,k∕Xi,K+1) can be written as

which is also given in (7).
We can approximate E(Ẑi,k) and E(Ẑi,kẐi,l) as follows.

and E(Ẑi,kẐi,l) ≈ I1 + I2 + I3 + I4 , where

In addition, let 𝜈k = E(Ẑ
⋅,k) for k = 1,… ,K , then it can be evaluated as

Therefore, E[(Ẑi,k − 𝜈k)(Ẑi,l − 𝜈l)] can be approximated by
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M2
i
P2
i,k

−
X2
i,K+1

M2
i
P2
i,K+1

)]
= −

1

2Mi

E

[
Zi,l

(
1

Pi,k

−
1

Pi,K+1

)]
.

𝜈k = E(Ẑ
⋅,k) =

1

n

n∑

i=1

E(Ẑi,k) = 𝜇k −
1

2n

n∑

i=1

1

Mi

E

(
1

Pi,k

−
1

Pi,K+1

)
.



	 Statistics in Biosciences

1 3

The above approximation ignores the following term:

which is small compared to the other terms when all Mi ’s are large.
Finally, E(𝜎̂i,kl) can be written as

By Cauchy–Schwartz’s inequality,

Thus, when n is large, these terms can be omitted compared to the first term so that 
E(𝜎̂i,kl) can be approximated by

where Ckl = E(P−1
1,K+1

) −
1

2
Cov(Z1,k,P

−1
1,l

− P−1
1,K+1

) −
1

2
Cov(Z1,l,P

−1
1,k

− P−1
1,K+1

).

E[(Ẑi,k − 𝜈k)(Ẑi,l − 𝜈l)]

≈ E(Ẑi,kẐi,l) − 𝜈kE(Ẑi,l) − 𝜈lE(Ẑi,k) + 𝜈k𝜈l

= 𝜎kl +
1

Mi

E

(
1

Pi,K+1

)
−

1

2Mi

E

[
Zi,k

(
1

Pi,l

−
1

Pi,K+1

)]
−

1

2Mi

E

[
Zi,l

(
1

Pi,k

−
1

Pi,K+1

)]

+
1

2Mi

𝜇kE

(
1

Pi,l

−
1

Pi,K+1

)
+

1

2Mi

𝜇lE

(
1

Pi,k

−
1

Pi,K+1

)

+

[
1

2n

n∑

i=1

1

Mi

E

(
1

Pi,k

−
1

Pi,K+1

)][
1

2n

n∑

i=1

1

Mi

E

(
1

Pi,l

−
1

Pi,K+1

)]

≈ 𝜎kl +
1

Mi

E

(
1

Pi,K+1

)
−

1

2Mi

Cov

(
Zi,k,

1

Pi,l

−
1

Pi,K+1

)
−

1

2Mi

Cov

(
Zi,l,

1

Pi,k

−
1

Pi,K+1

)
.

[
1

2n

n∑

i=1

1

Mi

E

(
1

Pi,k

−
1

Pi,K+1

)][
1

2n

n∑

i=1

1

Mi

E

(
1

Pi,l

−
1

Pi,K+1

)]
,

E(𝜎̂i,kl) = E[(Ẑi,k − Ẑ
⋅,k)(Ẑi,l − Ẑ

⋅,l)]

= E[(Ẑi,k − 𝜈k)(Ẑi,l − 𝜈l)] − E[(Ẑi,k − 𝜈k)(Ẑ⋅,l − 𝜈l)]

− E[(Ẑ
⋅,k − 𝜈k)(Ẑi,l − 𝜈l)] + E[(Ẑ

⋅,k − 𝜈k)(Ẑ⋅,l − 𝜈l)].

E[|(Ẑi,k − 𝜈k)(Ẑ⋅,l − 𝜈l)|] ≤
√

E[(Ẑi,k − 𝜈k)
2]

√
Var(Ẑ

⋅,l);

E[|(Ẑ
⋅,k − 𝜈k)(Ẑi,l − 𝜈l)|] ≤

√
E[(Ẑi,l − 𝜈l)

2]

√
Var(Ẑ

⋅,k);

E[|(Ẑ
⋅,k − 𝜈k)(Ẑ⋅,l − 𝜈l)|] ≤

√
Var(Ẑ

⋅,k)

√
Var(Ẑ

⋅,l).

E(𝜎̂i,kl) ≈ E[(Ẑi,k − 𝜈k)(Ẑi,l − 𝜈l)] ≈ 𝜎kl +
Ckl

Mi

,
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