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Abstract
Graphical models are frequently used to explore networks, such as genetic networks, among a set
of variables. This is usually carried out via exploring the sparsity of the precision matrix of the
variables under consideration. Penalized likelihood methods are often used in such explorations.
Yet, positive-definiteness constraints of precision matrices make the optimization problem
challenging. We introduce non-concave penalties and the adaptive LASSO penalty to attenuate the
bias problem in the network estimation. Through the local linear approximation to the non-
concave penalty functions, the problem of precision matrix estimation is recast as a sequence of
penalized likelihood problems with a weighted L1 penalty and solved using the efficient algorithm
of Friedman et al. (2008). Our estimation schemes are applied to two real datasets. Simulation
experiments and asymptotic theory are used to justify our proposed methods.
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1. Introduction
Network modeling is often explored via estimating the sparse precision matrix, the inverse
covariance matrix, in which off-diagonal elements represent the conditional covariance
between the corresponding variables. The sparsity is often studied via penalized likelihood,
with an appropriately chosen penalty function. The results are usually summarized
graphically by linking conditionally dependent variables. This provides an understanding of
how variables, such as the coexpression of genes, are related to each other. A challenge in
network modeling is to optimize the penalized likelihood, subject to the positive-
definiteness constraint of the precision matrix. Further challenges arise in reducing the
biases induced by the penalized likelihood method.

Let X = (X1,X2,⋯,Xp)T be a p-dimension random vector having a multivariate normal
distribution with mean vector μ and covariance matrix Σ. The research on large covariance
matrix estimation has surged recently due to high-dimensional data, generated by modern
technologies such as microarray, fMRI, and so on. In many applications like gene
classifications and optimal portfolio allocations it is the precision matrix, denoted by Ω ≡
Σ−1, that is needed and plays an important role. It has a nice interpretation in the Gaussian
graphical model as the (i, j)-element of Ω is exactly the partial correlation between the ith
and jth components of X. In the Gaussian concentration graphical model with undirected
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graph (V, E), vertices V correspond to components of the vector X and edges E = {eij, 1 ≤ i, j
≤ p} indicate the conditional dependence among different components of X. The edge eij
between Xi and Xj exists if and only if wij ≠ 0, where ωij is the (i, j)-element of Ω Hence, of
particular interest is to identify null entries in the precision matrix.

There is significant literature on model selection and parameter estimation in the Gaussian
concentration graphical model. The seminal paper by Dempster (1972) discussed the idea of
simplifying the covariance structure by setting some elements of the precision matrix to
zero. Initially the methods of precision matrix estimation were based on two steps: 1)
identify the “correct” model; 2) estimate the parameters for the identified model. One
standard approach for identifying the model is the greedy stepwise forward-selection (or
backward-selection), which is achieved through hypothesis testing; see Edwards (2000) for
an extensive introduction. Drton and Perlman (2004) noted that it is not clear whether the
stepwise method is valid as a simultaneous testing procedure because its overall error rate is
not controlled. To improve this stepwise method, Drton and Perlman (2004) proposed a
conservative simultaneous confidence interval to select model in a single step. Using the
least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), Meinshausen
and Bühlmann (2006) proposed to perform a neighborhood selection at each node in the
graph. This neighborhood selection is computationally very fast and suitable for large-size
problems.

The instability of the aforementioned two-step procedures has been recognized by Breiman
(1996). Fan and Li (2001) proposed the penalized likelihood, which can achieve model
selection and parameter estimation simultaneously. This penalized likelihood was later
studied by d'Aspremont et al. (2005), Yuan and Lin (2007), Levina et al. (2007), Rothman et
al. (2008), and Friedman et al. (2008) in the context of precision matrix estimation. Yuan
and Lin (2007) solved the corresponding optimization problem using the MAXDET
algorithm (Vandenberghe et al., 1998) and focused on statistical properties of the estimates.
d'Aspremont et al. (2005) proposed two efficient first-order numerical algorithms with low
memory requirement using semidefinite programming algorithms, which obey the positive-
definiteness constraint of the precision matrix. Rothman et al. (2008) and Lam and Fan
(2007) showed that the Frobenius norm between the inverse correlation matrix and its L1

penalized likelihood estimator is , where S is the number of the non-zero
elements of the inverse of the correlation matrix. Consequently, the sparse inverse
correlation matrix is highly estimable and the dimensionality only costs an order of log p, a
remarkable improvement on the general result of Fan and Peng (2004). Using a coordinate
descent procedure, Friedman et al. (2008) proposed the graphical lasso algorithm to estimate
the sparse inverse covariance matrix using the LASSO penalty. The graphical lasso
algorithm is remarkably fast.

The L1 penalty is convex and leads to a desirable convex optimization problem when the
log-likelihood function is convex. Recent innovation of the LARS algorithm (Efron, et al.,
2004) enables computation of the whole solution path of the L1 penalized regression within
O(n2p) operations. This is a remarkable achievement. However, such an algorithm does not
apply to the estimation of the precision matrix, whose parameters are subject to a positive-
definiteness constraint of the matrix.

It has been shown that the LASSO penalty produces biases even in the simple regression
setting (Fan and Li, 2001) due to the linear increase of the penalty on regression coefficients.
To remedy this bias issue, two new penalties were proposed recently: one is the non-concave
penalty, such as the Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li,
2001), and the other is the adaptive LASSO penalty due to Zou (2006). In this work, we will
study precision matrix estimation using these two penalty functions. Lam and Fan (2007)
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studied theoretical properties of sparse precision matrices estimation via a general penalty
function satisfying the properties in Fan and Li (2001). The bias presented in the LASSO
penalty is also demonstrated for sparse precision matrix estimation in Lam and Fan (2007).
Through the local linear approximation Zou and Li (2008) to the non-concave penalty
function, the non-concave penalized likelihood can be recast as a sequence of weighted L1
penalized likelihood problems. The weighting scheme is governed by the derivative of the
penalty function, which depends on the magnitude of the current estimated coefficient: the
larger magnitude the smaller weight. Therefore, the optimization of the penalized likelihood
with a non-concave penalty subject to the positive-definiteness constraint of Ω can be
elegantly solved by the efficient algorithm of Friedman et al. (2008). In this way, we
simultaneously solve the bias issue and reduce the computational burden.

Other recent work on Gaussian concentration graphical models includes Li and Gui (2006),
who introduced a threshold gradient descent (TGD) regularization procedure for sparse
precision matrix estimation; Schäfer and Strimmer (2005), who estimated the correlation
matrix via regularization with bootstrap variance reduction and used false discovery rate
multiple testing to select network based on the estimated correlation matrix; Bayesian
approaches considered in Wong et al. (2003) and Dobra et al. (2004); Huang et al. (2006),
who reparameterised the covariance matrix through the modified Cholesky decomposition
of its inverse and transferred covariance matrix estimation to the task of model selection and
estimation for a sequence of regression models; among others.

The rest of the paper is organized as follows. Section 2 describes the algorithm for precision
matrix estimation and three types of penalties in detail. Our methods are applied to two real
datasets: telephone call center data (Shen and Huang, 2005) and pCR development of breast
cancer (Hess et al., 2006), in Section 3. Section 4 uses Monte Carlo simulation to compare
the performance of three kinds of penalty function under consideration. Theoretical
properties of the SCAD and adaptive LASSO penalized approach are used to justify our
methods in Section 5. The Appendix collects all the technical proofs.

2. Methods
Suppose x1,x2,⋯,xn are from a Gaussian distribution with unknown mean vector μ0 and
covariance matrix Σ0, denoted as N(μ0, Σ0), where xi = (xi1,xi2,⋯,xip)T. Denote the sample

covariance matrix by , whose (j, k)-element  is given by 

where  is the sample mean of the jth component. Note that we use n instead of
n − p in the definition of the sample covariance matrix so that the log-likelihood function of
the precision matrix can be written in a compact format as in (2.1).

2.1. Penalized likelihood estimation
The precision matrix Ω = Σ−1 is estimated by maximizing twice the log-likelihood function,
which is given by

(2.1)

where  denotes the trace of the product matrix . When n > p, the global
maximizer of l(Ω) is given by .
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Denote the generic penalty function on each element by p(·). Under the penalized likelihood
framework, the estimate of the sparse precision matrix is the solution to the following
optimization problem

(2.2)

where ωij is the (i, j)-element of matrix Ω and λij is the corresponding tuning parameter.

The LASSO penalty proposed by Tibshirani (1996) achieves sparsity in the regression
setting. Essentially, the LASSO penalty uses the L1 penalty function: pλ(|x|) = λ|x|. Friedman
et al. (2008) applied the LASSO penalty to (2.2) and proposed the graphical lasso algorithm
by using a coordinate descent procedure, which is remarkably fast. Moreover, this algorithm
allows a “warm” start, from which we can use the estimate for one value of the tuning
parameter as the starting point for the next value.

Numerical examples show that the LASSO penalty can produce a sparse estimate of the
precision matrix. However, the LASSO penalty increases linearly in the magnitude of its
argument. As a result, it produces substantial biases in the estimates for large regression
coefficients. To address this issue, Fan and Li (2001) proposed a unified approach via non-
concave penalties. They gave necessary conditions for the penalty function to produce
sparse solutions, to ensure consistency of model selection, and to result in unbiased
estimates for large coefficients. All three of these desirable properties are simultaneously
achieved by the SCAD penalty, proposed by Fan (1997). Mathematically, the SCAD penalty
is symmetric and a quadratic spline on [0,∞), whose first order derivative is given by

(2.3)

for x ≥ 0, where λ > 0 and a > 2 are two tuning parameters. When a = ∞, (2.3) corresponds
to the L1 penalty. Based on an argument of minimizing the Bayes risk, Fan and Li (2001)
recommended the choice a = 3.7, which will be used in all of our numerical examples. Using
the SCAD penalty, we are seeking to solve the following optimization problem

(2.4)

where we set λij = λ for convenience.

Zou (2006) proposed another method to achieve the aforementioned three desirable
properties simultaneously. It is called the adaptive LASSO penalty, and requires a weight for
each component. The adaptive LASSO penalty is essentially a weighed version of the
LASSO penalty with some properly chosen weights. For our setting, we define the adaptive

weights to be  for some γ > 0 and any consistent estimate . Putting
the adaptive LASSO penalty into (2.2), we get
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(2.5)

This method was proposed by Zou (2006) in the regression setting. According to our
numerical experience, estimation results do not differ much for different γ. So, for simplicity
we fix γ = 0.5 in all our numerical analysis. Furthermore, the initial estimate  can be
chosen as the inverse sample covariance matrix for the case p < n or the precision matrix
estimate derived from the LASSO penalty for the case p ≥ n. Note that the inverse sample
covariance matrix when p < n may not be consistent if we allow p to grow with n. This
requirement of a consistent initial estimate is a drawback of the adaptive LASSO. In the next
subsection we elucidate the connection of the non-concave penalty to the adaptive LASSO
penalty.

2.2. Iterative reweighted penalized likelihood
To reduce the biases for estimating non-zero components, Fan and Li (2001) pointed out a
necessary condition that the penalty function pλ(·) should be non-decreasing over [0,∞)
while leveling off near the tail. Hence the penalty function needs to be concave on [0,∞). At
the time, in the absence of the innovative LARS algorithm (Efron, et al., 2004), they
proposed the LQA algorithm, which conducts the optimization iteratively and in each step
approximates the SCAD penalty via a quadratic function. Hunter and Li (2005) studied the
LQA in a more general framework in terms of the MM (minorize-maximize) algorithm and
showed its nice asymptotic properties. The SPICE of Rothman et al. (2008) is also based on
the LQA algorithm. For both the LQA and MM algorithms, Friedman et al. (2008)'s
graphical lasso algorithm can not directly be applied because the penalty is locally
approximated by a quadratic function.

In this work, to take advantage of the graphical lasso algorithm of Friedman et al. (2008), we
resort to the local linear approximation (LLA), proposed in Zou and Li (2008), which is an
improvement of the LQA in Fan and Li (2001). In each step, the LLA algorithm locally
approximates the SCAD penalty by a symmetric linear function. For any ω0, by Taylor
expansion, we approximate pλ(|ω|) in a neighborhood of |ω0| as follows

where , which is non-negative for ω ∈ [0,∞) due to the monotonicity of
pλ(·) over [0,∞). Denote the k-step solution by . Consequently, at step k, we are
optimizing, up to a constant,

(2.6)

where  and  is the (i, j)-element of . The optimization problem (2.6) can
be easily solved by the graphical lasso algorithm proposed by Friedman et al. (2008).

At each step, (2.6) is equivalent to a weighted version of the L1-penalized likelihood, leading
to a sparse solution. The weighting scheme is governed by the derivative of the penalty
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function and the magnitude of the current estimate: the larger magnitude the smaller weight.
In Theorem 5.1, we show that the penalized likelihood objective function is increasing
through each iteration in the LLA algorithm. Due to the sparsity in each iteration, Zou and
Li (2008) studied the one-step LLA algorithm and showed that, asymptotically, the one-step
algorithm performs as well as the fully iterative LLA algorithm as long as the initial solution
is good enough. As a result, we simply use the one-step LLA algorithm in this work. In our
implementation, the initial value is taken as either the inverse sample covariance matrix or
the LASSO estimate of the precision matrix. The latter is equivalent to use (2.6) twice
starting with the primitive initial value , resulting in the LASSO estimate  in the
first step as SCAD′λ,a(0) = λ. This also demonstrates the flexibility of the SCAD penalty: an
element being estimated as zero can escape from zero in the next iteration, whereas the
adaptive LASSO absorbs zeros in each application (the estimate is always sparser than the
initial value).

2.3. Tuning parameter selection
As in every regularization problem, the tuning parameter λ controls the model complexity
and has to be tuned for each penalty function. In this work, we use the popular K-fold cross-
validation method to do the tuning parameter selection. First divide all the samples in the
training dataset into K disjoint subgroups, also known as folds, and denote the index of
subjects in k-th fold by Tk for k = 1, 2,⋯,K. The K-fold cross-validation score is defined as:

where nk is the size of the k-th fold Tk and  denotes the estimate of the precision

matrix based on the sample  with λ as the tuning parameter. Then, we choose λ*
= argmaxλCV(λ) as the best tuning parameter, which is used to obtain the final estimate of

the precision matrix based on the whole training set . Here the maximization of
CV(λ) with respect to λ is achieved via a grid search.

3. Application to real data
In this section, we apply our estimation scheme to two real datasets and compare the
performance of three different penalty functions: the LASSO, adaptive LASSO and SCAD.

3.1. Telephone Call Center Data
In this example, our method is applied to forecast the call arrival pattern of a telephone call
center. The data come from one call center in a major U.S. northeastern financial
organization, containing the information about the arrival time of every call at the service
queue. Phone calls are recorded from 7:00AM until midnight for each day in 2002, except 6
days when the data-collecting equipment was out of order. More details about this data can
be found in Shen and Huang (2005).

We take the same data preprocessing as in Huang et al. (2006): 1) divide the 17-hour period
into 102 10-minute intervals; 2) count the number of calls arriving at the service queue
during each interval; 3) focus on weekdays only; 4) use the singular value decomposition to
screen out outliers that include holidays and days when the recording equipment was faulty.
Finally we have observations for 239 days. Denote the data for day i by Ni = (Ni1,⋯,Ni,102)′,
for i = 1,⋯,239, where Nit is the number of calls arriving at the call center for the t-th 10-
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minute interval on day i. Define  using the variance stabilization transform for
i = 1,⋯,239 and t = 1,⋯,102. We apply the penalized likelihood estimation method with
three different penalty functions: the LASSO, adaptive LASSO and SCAD, to estimate the
102 × 102 precision matrix. As in Huang et al. (2006), we use the estimated precision matrix
to forecast the number of arrivals later in the day using arrival patterns at earlier times of the

day. Denote yi = (yi1,⋯,yi,102)′. Then form the partition , where  and 
represent the arrival patterns in the early and the later time of day i. Here we can take

 and . The corresponding partition of the mean and
covariance matrix is

With the multivariate normality assumption, the best mean squared error forecast of 

using  is

which is also the best linear predictor for non-gaussian data.

To evaluate the forecasting performance, we split the 239 days into training and testing
days. The data from the first 205 days, corresponding to January to October, is used as the
training dataset to estimate the mean vector μ and the precision matrix Ω = Σ−1. The
remaining 34 days are used for testing. We define the average absolute forecast error
(AAFE) by

where yit and  are the observed and the predicted values, respectively. In Figure 1, we
compare the AAFE performance using the sample covariance matrix and the penalized
estimates with the LASSO, adaptive LASSO, and SCAD penalties. In Table 1, we give the
average AAFE of the 34 days we set aside for testing and also the number of the nonzero
elements in the precision matrix estimate of the four methods. Here and in all following
numerical studies, we let the element ωij of precision matrix be zero if |ωij| < 10−3, because
the default threshold for convergence in graphical lasso algorithm is 10−4. We have tried
several other thresholding levels such as 10−2 and 10−4, and obtained similar conclusions in
both real data analysis and simulations.

Figure 1 and Table 1 show clearly that the forecasts based on the penalized estimates are
better than that based on the sample covariance matrix. Among the three penalized
estimates, the estimate associated with the SCAD penalty performs the best, followed by the
adaptive LASSO, and finally the LASSO forecast. Moreover, we can see that the sample
precision matrix is a non-sparse precision matrix and leads to a much more complex
network than the penalized ones. Comparing to the LASSO, the adaptive LASSO leads to a
simpler network and the SCAD provides an even simpler network, resulting in the smallest
forecasting errors. The reason is that the SCAD penalty results in the least biased estimate
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among three penalized schemes. This allows the data to choose a larger penalty parameter λ
for the SCAD penalty and set more spurious zeros to zero. This phenomenon will also be
observed and demonstrated in the simulation studies.

3.2. Breast Cancer Data
As a second example, we focus on selecting gene expression profiling as a potential tool to
predict them breast cancer patients who may achieve pathologic Complete Response (pCR),
which is defined as no evidence of viable, invasive tumor cells left in surgical specimen. As
in Kuerer et al. (1999), pCR after neoadjuvant chemotherapy has been described as a strong
indicator of survival, justifying its use as a surrogate marker of chemosensitivity.
Consequently, considerable interest has been developed in finding methods to predict which
patients will have a pCR to preoperative therapy. In this study, we use the normalized gene
expression data of 130 patients with stage I-III breast cancers analyzed by Hess et al. (2006).
Among the 130 patients, 33 of them are from class 1 (achieved pCR), while the other 97
belong to class 2 (did not achieve pCR).

To evaluate the performance of the penalized precision matrix estimation using three
different penalties, we randomly divide the data into training and testing sets of sizes 109
and 21, respectively, and repeat the whole process 100 times. To maintain similar class
proportion for the training and testing datasets, we use a stratified sampling: each time we
randomly select 5 subjects from class 1 and 16 subjects from class 2 (both are roughly 1/6 of
their corresponding total class subjects) and these 21 subjects make up the testing set; the
remaining will be used as the training set. From each training data, we first perform a two-
sample t-test between the two groups and select the most significant 110 genes that have the
smallest p-values. In this case, the dimensionality p = 110 is slightly larger than the sample
size n = 109 for training datasets in our classification study. Due to the noise accumulation
demonstrated in Fan and Fan (2008), p = 110 may be larger than needed for optimal
classification, but allows us to examine the performance when p > n. Second, we perform a
gene-wise standardization by dividing the data with the corresponding standard deviation,
estimated from the training dataset. Finally, we estimate the precision matrix and consider
the linear discriminant analysis (LDA). LDA assumes that the normalized gene expression
data in class-k is normally distributed as N(μk,Σ) with the same covariance matrix, where k =
1, 2. The linear discriminant scores are as follows:

where  is the proportion of the number of observations in the training data belonging
to the class k, and the classification rule is given by argmaxkδk(x). Details for LDA can be
found in Mardia et al. (1979). Based on each training dataset, we can estimate the with-in
class mean vectors by

and precistion matrix Σ−1 using the penalized loglikelihood method with three different
penalty functions: the LASSO, adaptive LASSO and SCAD. Tuning parameters in different
methods are chosen via six-fold cross-validation based on the training data. Note that the
sample size n is smaller than the dimensionality p in this case. As a result, the sample
covariance matrix is degenerate and cannot be used in the LDA.
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To compare the prediction performance, we used specificity, sensitivity and also Matthews
Correlation Coefficient(MCC). They are defined as follows:

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,
and false negatives, respectively. MCC is widely used in machine learning as a measure of
the quality of binary classifiers. It takes true and false, positives and negatives, into account
and is generally regarded as a balanced measure, which can be used even if the classes are of
very different sizes. The larger the MCC is, the better the classification is. More details can
be found in Bladi et al. (2000). Means and standard deviations (in parentheses) of the
specificity, sensitivity, MCC, and the number of non-zero elements in  over 100 repetitions
are reported in Table 2. To visually interpret the gene network derived by our penalized
likelihood methods, we applied our whole estimation scheme to all the 130 datasets: 1) use a
two sample t-test to select 110 genes; 2) use the penalized likelihood estimation scheme to
derive the precision matrix estimates. Next we try to show the corresponding gene networks
derived by using three different penalties. To gain a better view, we only plot the gene
networks of the 60 genes with the smallest p-values among the 110 genes in Figure 2.

From the table, we can see that the adaptive LASSO and SCAD improve over the LASSO in
terms of the specificity and MCC, while all three penalties give similar sensitivity.
Furthermore, when we look at the number of non-zero elements of the precision matrix
estimates, using three different penalties, we can see again that by using the adaptive
LASSO and SCAD penalties, we can get much simpler models which are often more
desirable. From Figure 2, it is clear that compared with the network derived using LASSO
penalty, the ones derived using the adaptive LASSO and SCAD penalties both show some
small clusters, indicating block diagonal precision matrices. This interesting phenomenon
worths further study.

4. Monte Carlo simulation
In this section, we use simulations to examine the performance of the penalized log-
likelihood approach proposed in Section 2, to estimate the precision matrix with different
penalties. In the first three examples, we set the dimensionality p = 30. Three different data
generating settings for the 30 × 30 precision matrix Ω are considered in Examples 4.1, 4.2
and 4.3. In Example 4.4 and Example 4.5, we consider the corresponding high dimensional
case with p = 200 for Example 4.1 and Example 4.2, respectively. In each example, we first
generate a true precision matrix Ω which will be fixed for the whole example. Next we
generate a dataset of n = 120 i.i.d. random vectors distributed as N(0, Ω−1). For each
simulated dataset and each penalty, a 6-fold cross-validation scheme is used to tune the
regularization parameter as discussed in Section 2.3.

To compare the performance of different estimators corresponding to three penalty functions
under consideration: the LASSO, adaptive LASSO and SCAD, we use two types of loss
functions: the entropy loss and the quadratic loss (Lin and Perlman, 1985) defined by
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respectively, where  is an estimate of the true precision matrix Σ. To evaluate the
performance of the three different penalties concerning sparsity, we report two types of error
regarding zero elements: zero1 means the number of type-I errors (i.e., the true entry of the
precision matrix is non-zero but the corresponding estimate is zero) and zero2 the number of
type-II errors (i.e., the true entry is zero but its estimator is non-zero). Ideally, we would like
to have small zero1 and zero2. We also calculate the relative error percentages: perc1 = 100
× zero1/N1 and perc2 = 100 × zero2/N2, where N1 and N2 are the number of zeros and non-
zeros of the true precision matrix respectively. Results of loss1, loss2, zero1, zero2, perc1 and
perc2 over the 100 simulations are reported for each simulation example. We will
summarize the performance at the end of this section.

Example 4.1 Tridiagonal Case(n = 120, p = 30)
In this first example, we consider the case with a tridiagonal precision matrix, which is
associated with the autoregressive process of order one, (i.e., AR(1) covariance structure). In
this case, the covariance matrix Σ is a p × p matrix with (i, j)-element σij = exp (−a|si − sj|)
where s1 < s2 < ⋯ < sp for some a > 0. Here, we choose

The precision matrix is set as Ω = Σ−1. The performance of three penalties over 100
repetitions is reported in Table 3, which presents the means of zero1, zero2, loss1, loss2,
perc1 and perc2 with their corresponding standard errors in parentheses.

It is not realistic to plot the individual sparsity pattern of the estimates for all the repetitions.
Instead we plot the average sparsity pattern, the relative frequency matrix, for each penalty.
More specifically, the (i, j)-element of the relative frequency matrix is defined as the relative
frequency of non-zero estimates of the (i, j)-element of the precision matrix Ω throughout
the 100 repetitions. For example, the diagonal elements ωii have estimates that are always
non-zero and as a result their corresponding relative frequencies are always one. We plot
this average sparsity pattern using different penalties in panels B, C, and D of Figure 3. The
true precision matrix is given in panel A of Figure 3. We render this kind of sparsity pattern
graph using the gray-scale version of “imagesc” function in Matlab.

Example 4.2 General Case (n = 120, p = 30)
In the second example, we consider a general sparse precision matrix and use the data
generating scheme of Li and Gui (2006). More specifically, we generate p points randomly
on the unit square and calculate all their pairwise distances. For each point, define its k
nearest neighbors as those with k smallest distances to this point. By choosing different
number k, we can obtain graphs for this model with different degrees of sparsity. For each
“edge”, the corresponding element in the precision matrix is generated uniformly over [−1,
−0.5] ⋃ [0.5, 1]. The value of the i-th diagonal entry is set as a multiple of the sum of the
absolute values of the i-th row elements excluding the diagonal entry. Here we chose a
multiple of 2 to ensure that the obtained precision matrix is positive definite. Finally, each
row is divided by the corresponding diagonal element so that the final precision matrix has
diagonal elements of ones. Numerical results are summarized in Figure 4 and Table 4.

Example 4.3 Exponential Decay Matrix (n = 120, p = 30)
In this example, we consider the case that no element of the precision matrix is exactly zero.
The (i, j)-element of the true precision matrix is given by ωij = exp(−2|i − j|), which can be
extremely small when |i−j| is large. Numerical results over 100 repetitions in the same
format as Example 4.1 are reported in Table 5 and Figure 5. Notice in Figure 5, panel A
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shows the sparsity pattern, since we apply the threshold to the true precision matrix as to the
three estimates.

Example 4.4 High Dimensional Tridiagonal Case (n = 120, p = 200)
The previous three examples belong to the classical setting with dimensionality p smaller
than the sample size n. Next we investigate the high dimensional case with p > n. In this
example, we keep all the data generation process of Example 4.1 except that we increase the
dimensionality p to 200. The simulation result is reported in Table 6 and Figure 6.

Example 4.5 High Dimensional General Case (n = 120, p = 200)
In this example, we use the same setting as that of Example 4.2 but increase p to 200 as we
did in Example 4.4. The simulation results are summarized in Table 7 and Figure 7.

Throughout all these different examples, we can see that the LASSO penalty, in general,
produces more non-zero elements in the estimated precision matrix than the adaptive
LASSO and SCAD penalties. This is due to the bias inherited in LASSO penalty that
prevents data from choosing a large regularization parameter. Adaptive LASSO produces
the most sparse pattern due to its the specific choice of the initial estimate. Based on Tables
3–7, improvements are observed for the adaptive LASSO and SCAD penalties over the
LASSO penalty in terms of the two types of loss functions (especially the second type) and
as well as the two types of errors regarding zero elements.

5. Theoretical properties
In this section, we provide some theoretical justifications. We first prove that the penalized
log-likelihood function is increasing in each iteration using the LLA algorithm. The oracle
properties of the SCAD and adaptive LASSO penalties will be established in our context.

Without loss of generality, we may consider the case that the random vector is normally
distributed with mean zero, i.e., X ~ N(0, Σ0), where 0 is a vector of zeros and Σ0 is the true
unknown p × p covariance matrix. The corresponding true precision matrix is . Our
sample consists of n independent and identically distributed observations x1, x2,⋯,xn. In this
case, the sample covariance matrix is defined by

(5.1)

Note here p is assumed to be fixed and we study asymptotic properties of our penalized
estimates with the SCAD and adaptive LASSO penalties as the sample size n → ∞.

THEOREM 5.1 For a differentiable concave penalty function pλ (.) on [0, ∞], the penalized log-
likelihood function is increasing through each iteration in the LLA approximation.

See Appendix for the proof of Theorem 5.1.

THEOREM 5.2. For n i.i.d. observations x1, x2,⋯,xn from N(0, Σ0), the optimizer  of the SCAD
penalized log-likelihood function (2.4) with sample covariance given by (5.1) has the oracle
property in the sense of Fan and Li (2001), when λ → 0 and  as n → ∞. Namely,

(1) Asymptotically, the estimate  has the same sparsity pattern as the true
precision matrix Ω0.
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(2) The non-zero entries of the  are -consistent and asymptotically normal.

See Appendix for the proof of Theorem 5.2.

THEOREM 5.3. When  and  asn → ∞, the oracle property also holds for

the adaptive LASSO penalty with weights specified by  for some γ > 0 and any

an-consistent estimator , i.e., .

See the supplementary file for the proof of Theorem 5.3.
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APPENDIX A: APPENDIX
PROOF OF THEOREM 5.1. Define

and

Then, given estimate , we have

(A.1)

Our goal is to prove that . At the kth-step, consider

By the concavity of pλ (.) over [0, ∞), we have

. Then, we have .

Finally, by noticing that  and using (A.1), we have

as desired.
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PROOF OF THEOREM 5.2. It is enough to check Conditions (A–C) of Fan and Li (2001). Since xi are
i.i.d. from N(0, Σ0). The probability density function for X is given by

. The log-likelihood function of the precision
matrix is given by

up to a constant, where tr(·) denotes the trace operator. This justifies the log-likelihood
function given in Section 2 as well.

Notice that

which reduces to (−1)i+j det Ω0,−ij/(det Ω0)−σ0,ij when i ≠ j and

 when i = j, where Ω0,−ij denotes the matrix after removing the
ith row and jth column from Ω0 and σ0,ij is the (i, j)-element of the covariance matrix Σ0.
Noting that , we have (−1)i+j det Ω0,−ij/(det Ω0) − σ0,ij = 0 for i ≠ j and

 when i = j as we have desired. That is,

. Similarly, we can show that

. So
Condition (A) is satisfied by noting that f(x, Ω) has a common support and the model is
identifiable.

To prove Condition (B), it is sufficient to prove that the log-det function is concave. More
explicitly, for the log-det function h(Ω) = log det Ω, we can verify concavity by considering
an arbitrary line, give by Ω = Z + tV, where Z, V ∈ Sp. We define g(t) = h(Z + tV), and
restrict g to the interval of values of t for which Z + tV ∈ Sp. Without loss of generality, we
can assume t = 0 is inside the interval, i.e.Z ∈ Sp. We have

where λ1,⋯,λp are the eigenvalues of Z−1/2VZ−1/2. Therefore, we have
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Since g″(t) ≤ 0, we conclude that h is concave.

Condition (C) is easy to satisfy because the third order derivative does not involve x.
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Fig 1.
Average absolute forecast error AAAEt against t = 52,⋯,102 using the sample estimate and
using three penalties: LASSO, adaptive LASSO, and SCAD.
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Fig 2.
Gene networks derived using three penalties: the LASSO(left panel), the adaptive
LASSO(middle panel), and the SCAD(right panel).
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Fig 3.
For the 100 samples in Example 4.1, the average sparsity pattern recovery for the LASSO,
adaptive LASSO, and SCAD penalties are plotted in panels B, C, and D, respectively, to
compare with the true sparsity pattern (panel A).
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Fig 4.
For the 100 samples in Example 4.2, the average sparsity pattern recovery for the LASSO,
adaptive LASSO, and SCAD penalties are plotted in panels B, C, and D, respectively, to
compare with the true sparsity pattern (panel A).
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Fig 5.
For the 100 samples in Example 4.3, the average sparsity pattern recovery for the LASSO,
adaptive LASSO, and SCAD penalties are plotted in panels B, C, and D, respectively, to
compare with the true sparsity pattern (panel A).
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Fig 6.
For the 100 samples in Example 4.4, the average sparsity pattern recovery for the LASSO,
adaptive LASSO, and SCAD penalties are plotted in panels B, C, and D, respectively, to
compare with the true sparsity pattern (panel A).
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Fig 7.
For the 100 samples in Example 4.5, the average sparsity pattern recovery for the LASSO,
adaptive LASSO, and SCAD penalties are plotted in panels B, C, and D, respectively, to
compare with the true sparsity pattern (panel A).
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Table 1

Average Result of call center prediction

sample LASSO adaptive LASSO SCAD

average AAFE 1.46 1.39 1.34 1.31

Nonzero elements in Σ^11
−1 10394 2788 1417 684
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Table 2

Result of pCR classification over 100 repetitions

specificity sensitivity MCC Nonzero elements in Ω^

LASSO 0.768(0.096) 0.630(0.213) 0.366(0.176) 3923(18)

adaptive LASSO 0.787(0.093) 0.622(0.218) 0.381(0.183) 1233(8)

SCAD 0.794(0.098) 0.634(0.220) 0.402(0.196) 674(12)
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