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Abstract

We propose several methods for estimating edge-sparse and node-
sparse graphical models based on lasso and grouped lasso penalties.
We develop efficient algorithms for fitting these models when the num-
bers of nodes and potential edges are large. We compare them to
competing methods including the graphical lasso and SPACE (Peng,
Wang, Zhou & Zhu 2008). Surprisingly, we find that for edge selec-
tion, a simple method based on univariate screening of the elements
of the empirical correlation matrix usually performs as well or better
than all of the more complex methods proposed here and elsewhere.

Running title: Applications of the lasso and grouped lasso

1 Introduction

A number of authors have proposed the estimation of sparse undirected
graphical models through the use of `1 (lasso) regularization. The basic
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model for continuous data assumes that the observations have a multivari-
ate Gaussian distribution with mean µ and covariance matrix Σ. With this
assumption, if the ijth component of Σ−1 is zero, then variables i and j are
conditionally independent, given the other variables. Moreover, the ij ele-
ment of Σ−1 is, up to a positive scalar, the regression coefficient of variable
j in the multiple regression of variable i on the rest, and vice-versa (Hastie
et al. 2009, for example). Thus it makes sense to impose an `1 penalty for
the estimation of Σ−1, to impose sparsity.

Meinshausen & Bühlmann (2006) take a simple approach to this prob-
lem; they estimate a sparse graphical model by fitting a collection of lasso
regression models, using in turn each variable as the response, and the others
as predictors. The component Σ̂−1

ij is then estimated to be non-zero if either
the estimated coefficient of variable i on j, or the estimated coefficient of
variable j on i, is non-zero (alternatively they use an and rule). They show
that asymptotically, this consistently estimates the set of non-zero elements
of Σ−1. Following the approach of Banerjee et al. (2008), Friedman et al.
(2007) proposed the graphical lasso algorithm which uses the blockwise co-
ordinate descent strategy, fitting a modified lasso problem in each descent
step. Their new procedure is extremely simple, and is substantially faster
than many competing approaches.

In this paper we propose a symmetrized version of the Meinshausen &
Bühlmann (2006) method, and also adapt the grouped lasso method of Yuan
& Lin (2007a) to the estimation of sparse graphical models. The result-
ing procedure provides fast approximations to the exact penalized maximum
likelihood estimate. In addition, we propose a different penalty which groups
all of the edges that are connected to a given node. The resulting graph is
sparse not in its edges but in its nodes: that is, some nodes have no edges
connecting them to the remaining nodes. In Section 2 we review some exist-
ing methods for estimating sparse graphical models and propose some new
ones. We carry out a comparative study of the accuracy of these procedures
in Section 3, and come to the surprising conclusion that simple correlation-
screening is competitive with the best for edge detection. In Section 4 we
propose some methods for estimating node-sparse graphs, in contrast to the
edge-sparse graphs that are the focus of Section 2. Section 5 discusses the
computational complexity of each of the methods, and finally Section 6 con-
tains some discussion.
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2 Estimation of sparse undirected graphs

The first approach that we discuss for sparse graphical modelling uses an `1

(lasso) penalty and was suggested by Yuan & Lin (2007b). Suppose that we
have N multivariate normal observations of dimension p, with mean µ and
covariance Σ. Following Banerjee et al. (2008), let Θ = Σ−1, and let S be
the empirical covariance matrix, the problem is to maximize the penalized
log-likelihood

log det Θ− tr(SΘ)− ρ||Θ||`1, (1)

over non-negative definite matrices Θ. Here tr denotes the trace and ||Θ||`1
is the `1 norm — the sum of the absolute values of the elements of Θ = Σ−1.
The first two terms in (1) gives, up to a constant, the Gaussian log-likelihood
of the data, partially maximized with respect to the mean parameter µ (also
the Wishart log-likelihood for Σ). Friedman et al. (2008) propose the “graphi-
cal lasso” procedure for this problem, an efficient implementation of blockwise
coordinate descent.

Peng, Wang, Zhou & Zhu (2008) take a symmetric regression approach,
called “SPACE”, in response to the asymmetry of Meinshausen & Bühlmann
(2006). They fit a model of the form:

X̂ = XB̂ (2)

where X is the N × p data matrix and B is p× p with zeros on the diagonal.
Assume the rows of X are multivariate normal, and let βij be the population
regression coefficient of Xi on Xj (in the multiple regression of Xi on the
rest). Then

βij = ρij

√

σjj

σii
(3)

where ρij is a partial correlation and σii are the residual variances. B

is filled with these βij, except the diagonal is zero. The SPACE method
reparametrizes βij in terms of the symmetric ρij and σii, and then minimizes

1
2
||X−XB||2F + λ

∑

i6=j

|ρij| (4)

Their algorithm alternates between estimating the σii and the ρij. In
principle they need also to ensure that −1 ≤ ρ̂ij ≤ 1, but they say that this
seems not to be a problem in practice.
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2.1 The symmetric lasso procedure

Here we also formulate and implement a method for symmetrizing the Meinshausen-
Bühlmann lasso approach. This method is closely related to the SPACE
procedure (Peng, Wang, Zhou & Zhu 2008) described above, which was the
catalyst for the work in this section.

Recall that if X = (X1, X2, . . . , Xp) has a multivariate Gaussian distribu-
tion with mean-vector 0 (for convenience) with covariance Σ, then Θ = Σ−1

captures the conditional distributions of each Xj given the rest. Namely

Xj|X−j ∼ N(
∑

i6=j

Xiβij, σ
jj), (5)

where

βij = −
θij

θjj
and (6)

σjj =
1

θjj
. (7)

On the other hand, if we assume that the conditional distribution of each
variable on the rest is linear, then if we fill in Θ according to the prescription
above, its inverse must be the covariance matrix of the variables.

We can express the negative log-product-likelihood for all these condi-
tional distributions as

l(Θ) =
1

2

p
∑

j=1

[

N log σjj +
1

σjj
||xj −XBj||

2
2

]

, (8)

where Bj is a p-vector with elements βij, except a 0 in the jth position. This
is also known as a pseudo log likelihood (Besag 1975).

From the symmetry of Θ this means that σjjβij = σiiβji, which is a
requirement in this joint linear model for the means. Alternatively we can
write

l(Θ̃) =
1

2

p
∑

j=1

[

N log σjj +
1

σjj
||xj + XΘ̃jσ

jj||22

]

, (9)

where Θ̃ is symmetric with zero on the diagonal. We propose to estimate a
sparse Θ̃ by solving

min
Θ̃,{σii}p

1

1
N

l(Θ̃) + λ
∑

i<j

|θ̃ij| s.t. θ̃ij = θ̃ji. (10)
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The algorithm we propose is coordinate descent for a decreasing sequence
of values for λ on the log scale, starting with a large enough value so that
Θ̃ = 0. Details are given in Appendix A.

Given σjj, j = 1, . . . , p and for fixed λ, there is a simple coordinate
update for θ̃ij:

θ̃ij =
S(−(sij + sji), λ)

σii + σjj
, (11)

where sij = xT
i r−i

j /N , and r−i
j is the partial residual for Xi in the regression

of Xj on the rest. S(·, λ) is the soft-thresholding operator. This derivation
assumes that the Xj have mean zero and variance 1, but can be modified to
accommodate other cases. Given Θ̃, solving for the σjj amounts to finding
roots of quadratic equations, one for each j. Hence for a fixed λ, iteration
would be needed to solve for both Θ̃ and the σjj. Full details of both steps
are given in Appendix A. We call this procedure the symmetric lasso.

As an approximation and potential speedup, we form a path of solutions,
and use the σjj from the previous λk−1 as the values for λk. The starting
values would be σjj = 1 (the estimates when Θ̃ = 0). On the other hand,
the estimates might not change much if the exact solutions for the σjj were
iterated at each λk. We call this latter procedure the approximate symmetric

lasso.

2.2 The paired group lasso

In this section we propose another, more direct modification to the Meinshausen-
Bühlmann procedure, based on the grouped lasso.

2.2.1 Review of the grouped lasso

Suppose that we have a regression problem with N observations and p fea-
tures, and an N -vector of outcomes y. Let Xj be the feature matrix for the
pj features in the jth group. Then the grouped lasso minimizes

1
2
||y−

J
∑

j=1

Xjβj||
2 + λ

J
∑

j=1

||βj|| (12)

where βj is the coefficient vector for the jth group, and || · || = || · ||`2 is the
Euclidean norm. The actual expression in Yuan & Lin (2007a) has factors for
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different group sizes. In our generalization in the next section, the effective
group sizes are equal, so we omit the factors here.

The subgradient equations are

−XT
j (y −

∑

k

Xkβk) + λtj = 0,

where tj = βj/||βj|| if βj 6= 0, and tj is a vector with ||tj|| ≤ 1 otherwise. It
is natural to solve these equations by blockwise coordinate descent. We now
focus on the solution for one block, holding the other coefficients fixed.

Let rj = y −
∑

k 6=j Xkβ̂k be the partial residual for the jth group, and

let sj = XT
j rj. If ||sj|| ≤ λ then the solution for β̂j is zero; otherwise the

solution satisfies

β̂j = (XT
j Xj +

λ

||βj||
I)−1XT

j rj. (13)

This is like a ridge regression, with the ridge parameter depending on ||βj||.
As shown by Yuan & Lin (2007a), if XT

j Xj = I, then this solution has a
simple form in terms of soft-thresholded least squares estimates:

β̂j = (1− λ/||sj||)sj. (14)

In the general case, a scalar equation can be derived for ||βj|| from (13);
then substituting into the right-hand side of (13) gives the solution. However,
this can lead to an unstable algorithm because of potential division by small
norms. Instead we find that coordinate descent within the block is more
stable; details are given in Friedman et al. (2010).

Yuan & Lin (2007a) assume this blockwise-orthonormality to simplify the
computational procedure.

2.2.2 Application to sparse graph estimation—the paired grouped

lasso

Here we propose a different method for sparse graph estimation that uses
the grouped lasso. Assume the columns of X are standardized to have mean
zero and unit norm. We start with the regression model (2), and solve

min
B

1
2
||X−XB||2F + λ

∑

j<i

||(βij, βji)|| (15)
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with the diagonal elements βii of B zero.
The gradient equations are:

−xT
i (xj −

∑

k 6=j

βkjxk) + λ
βij

||(βij, βji)||
= 0

−xT
j (xi −

∑

k 6=i

βkixk) + λ
βji

||(βij, βji)||
= 0 (16)

Let rij = xT
i (xj−

∑

k 6=i βkjxk) and rji = xT
j (xi−

∑

k 6=j βkixk), each regression
coefficients in light of the normalization of X. Then it can be shown that
the solutions (β̂ij, β̂ji) = 0 if ||(rij, rji)|| < λ and otherwise we have

(β̂ij, β̂ji) =

(

1−
λ

||(rij, rji)||

)

(rij, rji). (17)

Thus the algorithm cycles through all symmetric pairs (βij, βji), either setting
them to zero or soft-thresholding them as in (17). We call this the paired

group lasso.
If θij is the ijth element of the multivariate Gaussian inverse covariance

matrix, then as in (6) and (7) βij = −θijσ
jj and hence

||(βij, βji)|| = |θij|
√

σii2 + σjj2

Thus ||(βij, βji)|| = 0 ↔ |θij| = 0. The penalty is just a weighted lasso for
the parameters θij. The weights make sense: pairs i, j with larger residual
variances get larger penalty weights.

Alternatively, from (3)

||(βij, βji)|| = |ρij|

√

σjj

σii
+

σii

σjj
(18)

where ρij is the partial correlation between variables i and j. Hence the
paired-group-lasso penalty is also a weighted lasso for the parameters ρij;
compare with the SPACE criterion (4).

2.3 Timing comparisons

In this section we compare the aforementioned procedures in a small simula-
tion study. There are 3 scenarios with varying sample size N and number of
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Method N = 500 N = 100 N = 1000
p = 500 p = 1000 p = 100

Graphical Lasso 183.8 767.5 0.40
Meinshausen-Bühlmann Lasso 12.3 245.0 0.15
Paired Group Lasso 3.0 32.0 0.03
SPACE 416.3 280.6 3.70
Symmetric Lasso 10.3 66.0 0.06
Symmetric Lasso—approximate 7.0 42.3 0.02

Table 1: Timings for six different methods on three problems. Timings are

in seconds, averaged over 3 runs.

variables p, as shown in Table 1. In the first scenario the data were generated
from N(0, Σ) and about 20% of the entries of Σ were non-zero. In the other
two scenarios, we chose Σ = I. Timings were computed over 30 values of the
corresponding regularization parameter, and the range of regularization pa-
rameters was chosen so that each method produced approximately the same
number of non-zero estimates. The convergence threshold was chosen to be
0.001 for all methods, except for SPACE, which does not offer control of this
parameter. All programs were coded in double precision Fortran, called from
the R language, except for SPACE which was coded in C and R. This latter
program did its loop over regularization parameters in R, which puts it at a
slight speed disadvantage. The results shown in Table 1 show that the paired
group lasso, symmetric lasso, and approximate symmetric lasso procedures
are much faster than the competitors. By coupling together the models for
each symmetric pair (βij, βji), they both achieve speedups over the simple
lasso (Meinshausen-Bühlmann) approach. We do not know why SPACE is
so slow in our experiments. In principle it should have similar speed to the
symmetric lasso; perhaps the extensive use of updating formulas in our im-
plementation produced a substantial gain in efficiency. In the next section
we study the accuracy of these methods and some others, for edge detection
in sparse graphs.
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3 A comparative study of accuracy

3.1 Data generation

Here we used p = 400 variables and N = 200 observations generated from a
multivariate normal distribution with mean zero and covariance matrix Σ =
Θ−1. The inverse matrix Θ was taken to be very sparse with approximately
p out of the p(p− 1)/2 off–diagonal elements having non zero value θij = θ,
and the rest being zero valued.

The non zero elements of Θ had three patterns: random, hubs, and
cliques.

Random. Here each off–diagonal element was randomly set to a 6= 0 with
probability 0.005 resulting in 447 non zero elements.

Hubs. The rows/columns are partitioned into disjoint groups {Gk}
K
1 each

associated with a “central” row k in that group. The non zero off–
diagonal elements of Θ are taken to be θik = θ for i ∈ Gk and θik = 0
otherwise. Here there were K = 20 groups each with 20 members
resulting in 380 non zero off–diagonal elements of Θ.

Cliques. The rows are partitioned into disjoint groups and θij = θ (i 6= j)
for i, j ∈ Gk. Here there were 20 groups each with 7 members resulting
in 420 off–diagonal elements of Θ.

3.2 Performance measures

The goal of the exercise is to correctly identify the non zero elements of Θ
given the empirical correlation matrix Σ̂ derived from multivariate normal
data (p = 400, N = 200) generated from Σ = Θ−1. Suppose there are
nz nonzero off-diagonal elements in Θ, and z = p(p − 1)/2 − nz zero el-
ements. The figure of merit we use is the fractional area under the ROC
curve starting from zero false positives up to nz false positives, relative to
perfect classification (all true positives correctly identified before any false
positives). Specifically,

AUCf =

∫ nz/z

0
t(f) df

nz/z
(19)
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where f is the false positive rate specifying a point on the curve and t(f) is
the true positive rate at f . By construction AUCf = 1 for perfect selection
(t(f) = 1 ∀f > 0). For random selection of positives (t(f) = f), AUCf =
nz/z.

3.3 Methods

Six methods were considered; in addition to the methods discussed earlier,
we consider a few simple alternative approaches. The univariate correlation

method simply ranks the off–diagonal elements of the empirical correlation
matrix Σ̂ on their absolute values in descending order and identifies nonzero
elements of Θ in that order. For the graphical lasso, the Meinshausen &
Bühlmann (2006) approach using the and criterion, the symmetric lasso, and
the paired group lasso, the positives are identified in the order they become
non zero as the regularization parameter λ is relaxed from ∞ ≥ λ ≥ 0.

The statewise approach is derived from the symmetric lasso log-likelihood
criterion (8). Here each successive element is identified to be non zero in
turn as the one whose corresponding component of the gradient of the log-
likelihood is largest in absolute value. The log-likelihood is then minimized
with respect to all non zero elements including the newly added one. State-

wise is an approximation to forward statewise regression and the most aggres-
sive selector among those being considered. The least aggressive is univariate

correlation since it corresponds to the symmetric elastic net using the ridge
penalty

1

2
`(Θ) + λ

∑

i6=j

(θ2
ij + ε · |θij|) with ε→ 0. (20)

3.4 Results and Summary

Tables 2–5 show the average values of AUCf (19) for each of the six methods
for different configurations of the inverse matrix Θ as averaged over 20 trials.
The quantities in parentheses are the standard deviation of the mean as
estimated over the 20 trials. The caption for each table summarizes the
results found for that configuration.

In terms of speed univariate correlation is by far the fastest method fol-
lowed by paired group lasso and symmetric lasso which are considerably
slower. Graphical lasso is by far the slowest method with statewise and
Meinshausen & Bühlmann being somewhat faster than graphical lasso.
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Method AUCf (std. error)
univariate correlation 0.554 (0.0051)
graphical lasso 0.558 (0.0051)
Meinshausen & Bühlmann 0.555 (0.0050)
symmetric lasso 0.550 (0.0051)
paired group lasso 0.550 (0.0051)
statewise 0.494 (0.0049)

Table 2: RANDOM. Results for the random configuration with the 447 ran-
domly selected non zero elements in Θ set to θ = −0.2 resulting in positive
correlations in Σ = Θ−1. The results for θ = 0.2 (negative correlations) are
the same within uncertainty. Here one sees that all methods except statewise

do equally well.

Method AUCf (std. error)
univariate correlation 0.700 (0.0065)
graphical lasso 0.704 (0.0067)
Meinshausen & Bühlmann 0.710 (0.0068)
symmetric lasso 0.609 (0.0060)
paired group lasso 0.622 (0.0061)
statewise 0.409 (0.0048)

Table 3: HUB. Results for the 20 × 20 hub configuration where each of
the 380 non zero elements was set to θ = −0.175. Results for positive
values θ = 0.175 are again the same within uncertainty. Here univariate

correlation, graphical lasso and Meinshausen & Bühlmann do equally well,
symmetric lasso and paired group lasso are somewhat inferior, and statewise

has the worst performance.

Thus, the dominating methods over the situations considered here are
univariate correlation and statewise. The former provides the best perfor-
mance, or very close to it, in all settings except positive cliques where state-

wise dominates. The positive clique setting might be considered somewhat
pathological, in that all coefficients in a clique are positive, but at the same
time, the positive variables within each clique are all negatively correlated
with each other. The statewise method wins in that case because it is the
most aggressive.

11



Method AUCf (std. error)
univariate correlation 0.409 (0.0082)
graphical lasso 0.392 (0.0077)
Meinshausen & Bühlmann 0.339 (0.0064)
symmetric lasso 0.324 (0.0063)
paired group lasso 0.323 (0.0064)
statewise 0.186 (0.0025)

Table 4: CLIQUE (−). Results for the 20× 7 clique configuration with each
of the 420 non zero elements set to θ = −0.1 (positive correlations). Here
the comparative performance of the methods is similar to that of the random
configuration (Table 2) except that Meinshausen & Bühlmann is here similar
to paired group lasso and symmetric lasso.

Method AUCf (std. error)
univariate correlation 0.146 (0.0030)
graphical lasso 0.146 (0.0030)
Meinshausen & Bühlmann 0.159 (0.0032)
symmetric lasso 0.156 (0.0032)
paired group lasso 0.156 (0.0032)
statewise 0.664 (0.0086)

Table 5: CLIQUE (+). Results for 20 × 7 cliques with the 420 non zero
elements set to θ = 0.5 (negative correlations). Here statewise dominates
with the other methods being equally inferior.

4 Estimation of node-sparse graphs

In this section we propose several methods for estimation of graphs that
are sparse in a different way than those described earlier. In the previous
section we considered methods that deleted edges from the graph. Here we
propose methods for deleting all of the edges that connect to a given node,
by applying the grouped-lasso penalty to entire rows and columns of the
correlation matrix.
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4.1 The graphical grouped lasso

Here we assume the same notation as in (1) in Section 2, and propose maxi-
mizing the penalized log-likelihood

J(Θ) = log detΘ− trSΘ− λ
∑

i

||Θ−i,i||`2 (21)

over non-negative definite matrices Θ. Here ||Θ−i,i||`2 is a group-lasso penalty
applied to the ith row of Θ, but omitting the diagonal element. By the
symmetry of Θ, it applies to the ith column as well. Expression (21) is
the penalized Gaussian log-likelihood of the data, partially maximized with
respect to the mean parameter µ.

Let W = Θ̂−1 be the solution to this convex optimization problem, and
θi be the ith row of Θ with θii set to zero.

The subgradient equation is

W − S − (λ/2)R

where the components of the p × p matrix R are defined by rij = (ui)j +
(vj)i, ui = d||θi||/dθi = (θi/||θi||) if θi 6= 0 and ||ui|| < 1 otherwise; vj =
d||θj||/dθj = (θj/||θj||) if θj 6= 0 and ||vj|| < 1 otherwise.

The subgradient equation for one row/col can be written as

wi,−i − si,−i − (λ/2)θi,−i{1/||θi,−i||+ 1/||θj,−j||}j 6=i = 0 (22)

Using the relation W−i,−iθi,−i + wi,−iθii = 0, this can be written as

W−i,−iβi,−i − si,−i + (λ/2)βi,−i{1/||βi,−i||+
θi,i

θj,j
(1/||β−j,j||)}j 6=i = 0 (23)

(1) and (23) are equivalent if we set wi,−i = Wiiβi,−i, since θi,−i = −β̂i,−iθii

and thus
βi,−i

||βi,−i||
= −

θi,−i

||θi,−i||
It turns out that the solution to (23) may have

β−j,j ≈ 0 so we need to check for this explicitly. The algorithm is detailed
below.
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Graphical Grouped Lasso Algorithm

1. Start with W = S +λI. The diagonal of W remains unchanged
in what follows.

2. For each i = 1, 2, . . . p, 1, 2, . . . p, . . ., iteratively solve the equa-
tion

(W−i,−i + (λ/2) ·D)βi,−i = si,−i

for βi,−i, where D = diag({1/||βi,−i||+
θi,i

θj,j
(1/||β−j,j||)}j 6=i). Let

the overall solution matrix be Θ̂. Let Θ̂0 be the solution with
θ−i,i = θ−i,i = 0. If J(Θ̂0) < J(Θ̂), set β−i,i = 0

Fill in the corresponding row and column of W using wii =
W−i,−iβ̂−i,−i.

3. Continue until convergence

Unfortunately this algorithm is slow for large problems, since it requires
an iterative solution for each row and column. For this reason we explore
next some alternative models.

4.2 Principal components: edge-in model

This approach is a regression-based method that estimates a kind of sparse
principal components. Using the notation of Section 2, we assume

X̂ = XB̂ (24)

where X is N × p and B is p× p with zeros on the diagonal. We minimize

1
2
||X−XB||2F + λ

p
∑

j=1

||βj,j|| (25)

with βj,j the jth column of B and βjj = 0 for all j. Since this model predicts
each column xj from the other columns, the grouping defined by the penalty
consists of all coefficients for a given response variable. That is, it penalizes
all edges pointing into a given node j, hence we call it the “edge-in” model.

To optimize this criterion, we apply the regression version of grouped
lasso using each column of X as a response. This has one group X−j (X
with the jth column removed) and response xj. The condition for a column
to be zero is ||XT

−jxi|| < λ. Unfortunately this again requires an iterative
solution for each row.
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4.3 Principal components: edge-out model

Here we minimize

1
2
||X−XB||2F + λ

p
∑

i=1

||βi,−i|| (26)

with βi,−i the ith row of B and βii = 0 for all i. This model penalizes all edges
coming from a given node i. A related idea is explored in Peng, Bergamaschi,
Han, Noh, Pollack & Wang (2008), where it is applied to two different sets
of genomic measurements.

It turns out that there is a simple, fast algorithm for the edge-out model,
due to the implicit orthogonality between the different outcome variables for
a given predictor i. The gradient equations are:

−xT
i (xj −

∑

k 6=i

βkjxk) + λ
βi,−i

||βi,−i||
= 0 (27)

for i, j = 1, . . . p. Let ri,−i = xT
i (xj−

∑

k 6=i βkjxk), Then βi,−i = 0 if ||ri,−i|| <
λ and otherwise we have βi,−i = (1 − λ/||ri,−i||)ri,−i, Thus we simply cycle
through rows i = 1, 2, . . . , p, 1, 2, . . ., zeroing out or soft-thresholding the non-
diagonal elements of that row. The relevant quantities can be updated to
speed up the computation.

4.4 Examples

Among these three procedures, we have implemented a fast version of just
the edge-out algorithm. For the three problems of Table 1, total elapsed
time for the edge-out procedure over a path of 30 λ values were 6.3, 12.1,
and 0.1 seconds, respectively. Hence its speed is competitive with the fastest
methods for the sparse graph problem.

We next apply the graphical grouped lasso and edge-out model to a flow
cytometry dataset on p = 11 proteins and n = 7466 cells, from Sachs et al.
(2003). The results for the graphical grouped lasso and the edge-out model
are shown in Figures 1 and 2 respectively. We see that the graphical grouped
lasso has a very narrow range of sparsity, as λ varies, while the edge-out model
seems to produce more potentially interpretable groups. The latter graphs
might suggest a controlling role for proteins P38 and PKC.
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Figure 1: Networks derived from protein data using the graphical grouped lasso.
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Figure 2: Networks derived from protein data using the edge-out model.
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Algorithm Sparsity Type Computational Complexity
Correlation Data matrix

1. Graphical lasso Edge-sparse O(p3) O(p3)
2. Symmetric graphical lasso Edge-sparse O(p2) + O(kp) O(p2N) + O(kN)
3. Paired group lasso Edge-sparse O(p2) + O(kp) O(p2N) + O(kN)
4. Graphical grouped lasso Node-sparse O(p3)
5. Edge-out Node-sparse O(p2) + O(kp2) O(p2N) + O(kNp)

Table 6: Summary of the algorithms proposed in this paper, along with their

computational scaling. n is the number of observations, p is the number of

variables, and k is the number of non-zero variables in the estimated model.

5 Computational complexity

We summarize in Table 6 the new procedures proposed in this paper. For two
of the methods we have implemented separate versions, that take as input
either a p× p correlation matrix or an N × p data matrix.

In procedures 2,3 and 5, updating formulae are used to great advantage,
dramatically reduce the computation. These three procedures will be added
to the R graphical lasso package glasso and will be available in the CRAN
collection.

6 Discussion

In paper we have proposed some new techniques for the estimation of edge-
sparse and node-sparse graphical models based on lasso and grouped lasso
penalties. In the edge-sparse setting, there was a surprising finding: we
presented a simulation study showing that for detection of the presence or
absence of edges, a simple method based on univariate screening of the cor-
relations performs as well or better than all of the more complex competing
methods. However for estimation of the correlation matrix and its inverse,
only the graphical lasso produces positive definite estimates of both matrices.
SPACE and the symmetric lasso yield estimates of the inverse correlation ma-
trix that are usually positive definite: an additional O(p3) operation would
be required to obtain an estimate of the correlation matrix.
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A Derivation of symmetric lasso

We calculate the gradient of `(Θ̃) in (8) with respect to θ̃ij. Bear in mind
that both βij = −θ̃ijσ

jj and βji = −θ̃jiσ
ii involve θ̃ij (by the symmetry), so

the gradient is

∂`(Θ̃)

θ̃ij

=
∂ 1

2σjj ||xj + XΘ̃jσ
jj||22

∂θ̃ij

+
∂ 1

2σii ||xi + XΘ̃iσ
ii||22

∂θ̃ji

(28)

= xT
i (xj +

∑

`/∈[i,j]

x`θ̃`jσ
jj) + xT

j (xi +
∑

`/∈[i,j]

x`θ̃`iσ
ii) (29)

= xT
i r−i

j + Nθ̃ijσ
jj + xT

j r
−j
i + Nθ̃jiσ

ii (30)

= N ·
[

sij + sji + (σjj + σii)θ̃ij

]

. (31)

Define

C(Θ̃) =
1

N
`(Θ̃) + λ

∑

i<j

|θ̃ij|. (32)

Hence
∂C(Θ̃)

∂θ̃ij

= sij + sji + (σjj + σii)θ̃ij + λ · Sign(θ̃ij). (33)

Setting (33) equal to zero results in the soft-thresholding in (11). The term
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sij can be written as

sij = xT
i r−i

j /N (34)

= cij +

p
∑

`=1

`6=i

ci`θ̃`jσ
jj (35)

= cij +

p
∑

`=1

ci`θ̃`jσ
jj − θ̃ijσ

jj (36)

= xT
i rj/N − θ̃ijσ

jj (37)

= cij + zijσ
jj − θ̃ijσ

jj. (38)

Here cij = xT
i xj/N is the ijth entry of the correlation matrix, and we have

defined the type of fitted value zij =
∑p

`=1 ci`θ̃`j. Note that the θ̃ijs in
(34)–(37) are the old values, whereas in (31) it is the new value about to be
updated. Hence each time a coefficient changes, we have to update r`j for all
` (O(p) operations).

Given Θ̃, we can estimate σjj again by minimizing (32), separately for
each j.

Hence we solve

min
σ

log σ +
1

Nσ
||xj + XΘ̃jσ||

2
2. (39)

Expanding the RHS we get

log σ +
1

σ

[

cjj +
2

N
〈xj,XΘ̃j〉σ +

1

N
||XΘ̃j||

2
2σ

2

]

(40)

= log σ +
1

σ
+ C + qjσ, (41)

where

qj =

p
∑

`=1

p
∑

`′=1

c``′ θ̃`j θ̃`′j (42)

Setting the derivative to zero we get

1

σ
−

1

σ2
+ qj = 0, (43)

or
qjσ

2 + σ − 1 = 0, (44)

20



with only possible solution

σjj =
−1 +

√

1 + 4qj

2qj
. (45)

Since from (38) zij =
∑p

`=1 ci`θ̃`j, we see that qj is given by

qj =

p
∑

`=1

θ̃`jz`j. (46)

Updating

When θ̃ij changes, the jth column of {z`j} changes:

z`j ← z`j + ci`∆ij, (47)

where ∆ij = θ̃new
ij − θ̃old

ij . This is an O(p) operation, although it occurs only

k times, where k is the number of non-zero θ̃ijs.
From the symmetry of cij, and the definitions of zij and qj, it can be

shown that the change in qj can be computed in O(1) operations:

qj ← qj + 2zij∆ij + ∆2
ij. (48)
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