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 The Selection of Prior Distributions by Formal Rules

 Robert E. KASs and Larry WASSERMAN

 Subjectivism has become the dominant philosophical foundation for Bayesian inference. Yet in practice, most Bayesian analyses
 are performed with so-called "noninformative" priors, that is, priors constructed by some formal rule. We review the plethora
 of techniques for constructing such priors and discuss some of the practical and philosophical issues that arise when they are
 used. We give special emphasis to Jeffreys's rules and discuss the evolution of his viewpoint about the interpretation of priors,
 away from unique representation of ignorance toward the notion that they should be chosen by convention. We conclude that the
 problems raised by the research on priors chosen by formal rules are serious and may not be dismissed lightly: When sample sizes
 are small (relative to the number of parameters being estimated), it is dangerous to put faith in any "default" solution; but when
 asymptotics take over, Jeffreys's rules and their variants remain reasonable choices. We also provide an annotated bibliography.

 KEY WORDS: Bayes factors; Entropy; Haar measure; Improper priors; Jeffreys's prior; Marginalization paradoxes; Noninfor-
 mative priors; Reference priors.

 1. INTRODUCTION

 Since Bayes (1763), and especially since Fisher (1922;

 see Zabell 1992), the scope and merit of Bayesian inference

 have been debated. Critics find arbitrariness in the choice

 of prior an overwhelming difficulty, whereas proponents are

 attracted to the logical consistency, simplicity, and flexibil-

 ity of the Bayesian approach and tend to view determination

 of a prior as an important but manageable technical detail.

 These days, most Bayesians rely on the subjectivist founda-

 tion articulated by De Finetti (1937, 1972, 1974, 1975) and

 Savage (1954, 1972). This has led to suggestions for per-

 sonal prior "elicitation" (Kadane, Dickey, Winkler, Smith,

 and Peters 1980; Lindley, Tversky, and Brown 1979; Savage

 1954), but these inherently problem-specific methods have

 not been extensively developed and have had relatively little

 impact on statistical practice. Thus as increased computing

 power has widened interest in Bayesian techniques, new ap-

 plications continue to raise the question of how priors are

 to be chosen.

 The alternative to elicitation is to try to find structural

 rules that determine priors. From time to time, especially

 during the 1960s and 1970s and again in the past several

 years, various such schemes have been investigated, and

 there is now a substantial body of work on this topic. Feel-

 ing the urgency of the problem and recognizing the diversity

 of the articles on this subject, we undertook to review the
 literature and appraise the many methods that have been

 proposed for selecting priors by formal rules. This article

 is the result of our efforts.

 Because the fundamental ideas and methods originate

 with Jeffreys, we begin in Section 2 with an overview of

 his work. We discuss Jeffreys's philosophy and explain the
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 techniques he used to construct priors in estimation and

 testing problems. An essential observation is that Jeffreys's

 viewpoint evolved toward seeing priors as chosen by con-

 vention, rather than as unique representations of ignorance.
 In Section 3 we list methods for constructing prior distribu-

 tions. In reviewing these, we observe that various different

 arguments lead to the priors suggested by Jeffreys or to

 modified versions of Jeffreys's priors.

 In Section 4 we discuss some of the philosophical and
 practical issues that arise when choosing priors convention-

 ally, by formal rules. Many of these issues are raised only
 when the priors derived by formal rules are improper. In

 Section 5.1, however, we argue that impropriety per se is
 not the practically important source of difficulties. When

 improper priors lead to badly behaved posteriors, it is a

 signal that the problem itself may be hard; in this situation
 diffuse proper priors are likely to lead to similar difficul-

 ties. In section 5.2 we add our opinion that reference priors
 are primarily useful with large samples but may also be
 helpful when the data analyst is unsure whether a sample

 is "large." In Section 5.3 we highlight some important out-
 standing problems. This is followed by an annotated bibli-
 ography.

 Because our discussion is fairly abstract, it may be worth
 keeping in mind some concrete examples. One important

 class, which is useful for this purpose, is that of the multi-
 variate normal distributions with mean ,u and variance ma-
 trix E. There are many special cases of interest. For in-
 stance, ,u and E may depend on some lower-dimensional
 parameter vector 0; when ,u = 1u(0) with E = *I, we
 obtain the standard nonlinear regression models, and the
 structure E- = (0) includes "components of variance," hi-
 erarchical, and time series models.

 We take for granted the fundamental difficulty in
 uniquely specifying what "noninformative" should mean.
 Thus we prefer to call the priors that we discuss reference

 priors. Because Bernardo (1979a) used the term "reference
 prior" for a prior chosen by a particular formal rule (as
 we describe in Sec. 3.5), we have struggled with alterna-
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 tive labels such as "conventional prior," "default prior," or
 "generic prior." In the end, however, we have returned to the
 terminology of Box and Tiao (1973, pp. 22-23), who fol-
 lowed Jeffreys (1955), because we feel it is the best word
 for the purpose. Our reasons should become clear in the
 next section.

 2. JEFFREYS'S METHODS

 The concept of selecting a prior by convention, as a "stan-
 dard of reference" analogous to choosing a standard of ref-
 erence in other scientific settings, is due to Jeffreys. Sub-
 sequent efforts to formulate rules for selecting priors may
 often be seen as modifications of Jeffreys's scheme. Thus
 we devote a section to a description of his methods. We be-
 gin with some philosophical background, then move on to
 specific rules. Jeffreys was careful to distinguish estimation
 and testing problems. We review his methods for choosing
 priors in testing problems in Section 2.3.

 2.1 Philosophy

 As is true of methods generally, Jeffreys's should be un-
 derstood in conjunction with the philosophy that generated
 them and in turn was defined by them.

 Jeffreys has been considered by many to have been an
 "objectivist" or "necessarist." Certainly there is a sense in
 which this label is accurate, and it was useful for Savage
 (1962a, 1962b) to distinguish Jeffreys's viewpoint from his
 own subjectivist viewpoint. But there is a subtlety in the
 opinions voiced by Jeffreys, as they evolved over time,
 that is fundamental and advances the discussion beyond
 the plateau that Savage surveyed. As we document later,
 Jeffreys believed in the existence of states of ignorance
 and subscribed to the "principle of insufficient reason," nei-
 ther of which play a part in subjectivist theory. But in his
 reliance on convention he allowed ignorance to remain a
 vague concept; that is, one that may be made definite in
 many ways, rather than requiring a unique definition. This
 provided a more flexible, vibrant framework that could sup-
 port modern practice.

 Savage (1962, p. 168) labeled "necessarist" the position
 that "there is one and only one opinion justified by any body
 of evidence, so that probability is an objective logical rela-
 tionship between an event A and the evidence B." Jeffreys's
 viewpoint in the first edition of Scientific Inference (1931,
 p. 10) puts him in this category:

 Logical demonstration is right or wrong as a matter of the logic itself, and
 is not a matter for personal judgment. We say the same about probability.
 On a given set of data p we say that a proposition q has in relation to
 these data one and only one probability. If any person assigns a different
 probability, he is simply wrong, and for the same reasons as we assign in
 the case of logical judgments.

 A similar passage may be found in the first edition of
 Theory of Probability (1939, p. 36).

 The historical basis for Savage's categorization is already
 clear, but there is a further reason for identifying Jeifreys
 as a "necessarist." This comes from considering the case
 in which there are only finitely many events (or values of

 a parameter, or hypotheses). One test for adherence to the
 necessarist viewpoint is whether in this case a uniform dis-
 tribution is advocated, according to what has been called
 (after Laplace 1820; see Sec. 3.1) the "principle of insuf-
 ficient reason." This principle requires the distribution on
 the finitely many events to be uniform unless there is some
 definite reason to consider one event more probable than
 another. The contentious point is whether it is meaningful
 to speak of a "definite reason" that does not involve sub-
 jective judgment.

 According to this test, Jeffreys continued to be a neces-
 sarist. He believed in the existence of an "initial" stage of
 knowledge, and thought it was important to be able to make
 inferences based on data collected at this stage. In the case
 of a particular hypothesis being considered, he described
 this stage (1961, p. 33) as one at which an investigator has
 "no opinion" about whether the hypothesis is true. He went
 on to state that "if there is no reason to believe one hypoth-
 esis rather than another, the probabilities are equal ... if we
 do not take the prior probabilities equal we are expressing
 confidence in one rather than another before the data are
 available ... and this must be done only from definite rea-
 son." Jeffreys added that the principle of insufficient reason
 is "merely a formal way of expressing ignorance."

 Note that a subjectivist would agree that assigning un-
 equal probabilities to two hypotheses would be "expressing
 confidence in one rather than another." But a subjectivist
 would not accept any restriction on, nor require any special
 justification for, the belief. To a subjectivist, the probability
 assessment is in just this sense supposed to be "subjective."
 Thus a subjectivist has no pressing need for a "way of ex-
 pressing ignorance."

 Despite Jeffreys's belief in an "initial" stage at which an
 investigator is ignorant, and his application of insufficient
 reason at this stage, we have in his later writings what might
 be regarded as Jeffreys's attempt to sidestep the major ob-
 stacle in the necessarist construction. In the second edition
 of Scientific Inference, the passage cited earlier, concerning
 probability as a uniquely determined logical relation, is ab-
 sent. Instead, Jeffreys took reasonable degree of belief as a
 primitive concept and said simply (1957, p. 22) that "if we
 like, there is no harm in saying that probability expresses a
 degree of reasonable belief." The choice of an initial assign-
 ment of probability then became a matter of convention, in
 the same way that the correspondence between a real-world
 object and a primitive concept in any axiom system is out-
 side the formal system and must rely on some external rule
 for its application. Thus Jeffreys maintained that his ap-
 proach did not assume that only one prior was logically
 correct. In explaining his position (1955, p. 277), he wrote:

 It may still turn out that there are many equally good methods ... if this
 happens there need be no great difficulty. Once the alternatives are stated
 clearly a decision can be made by international agreement, just as it has
 been in the choice of units of measurement and many other standards of
 reference.

 This section from the first edition of Theory of Proba-
 bility was altered in the second and third editions (1948,
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 pp. 36-37; 1961, pp. 36-37), stating "in a different world,
 the matter would be one for decision by the International
 Research Council." Thus priors, like weights and measures,

 are defined by convention. As long as we agree on these

 conventions, the particular choice is not crucial.

 It is clear from these passages that Jeffreys did not insist

 on unique representations of ignorance, so that statements

 such as "according to Jeffreys's conception there is only

 one right distribution" (Hacking, 1965, p. 203) are inaccu-
 rate. When Savage remarked (Savage et al., 1962, p. 21)
 that "it has proved impossible to give a precise definition

 of the tempting expression 'know nothing'," Jeffreys re-

 sponded (1963) "but who needs a definition?," by which we

 interpret him to mean that conventional rules suffice with-

 out incorporation of a formal definition into his axiomatic

 framework. On the other hand, although he did not claim

 that logic demanded a particular prior to represent igno-

 rance, Jeffreys did work to find "the best" rule in each of

 many cases. His principles for doing so were supposed to
 provide "a guide," but in some cases he thought these would

 "indicate a unique choice" (1961, p. 37). Ideally, that is, "in
 a different world," there could be agreement on a single

 prior for use under ignorance in each problem.

 The net effect of this reexamination is to make Jeffreys's

 approach seem somewhat less rigid and to recognize the

 importance of convention in his scheme. We have based

 our remarks on those of Kass (1982), who was responding
 to Zellner (1982).

 2.2 Rules for Priors in Problems of Estimation

 Jeffreys considered several scenarios in formulating his
 rules, and treated each separately. The simplest is the case
 of a finite parameter space, in which, as we said in Sec-

 tion 2.1, he adhered to the principle of insufficient reason
 in advocating the assignment of equal probabilities to each
 of the parameter values. Jeffreys then considered the cases
 in which the parameter space was a bounded interval, the

 interval (-oo, oo), or the interval (0, oo). For bounded in-
 tervals or for the whole real line, Jeffreys took the prior

 density to be constant. In the second case this of course
 entails that the prior be improper; that is, that it not in-

 tegrate. He did not consider this to raise any fundamental
 difficulties. For the third case, most commonly associated
 with an unknown standard deviation o-, he used the prior
 775((J) = 1/(. His chief justification for this choice was its
 invariance under power transformations of the parameter:
 If -y = (J2 and the change-of-variables formula is applied to
 wF1, then one obtains =r(Q) 1/a; thus applications of the
 rule to ar and a lead to the same formal prior.

 In a 1946 paper, Jeffreys proposed his "general rule."
 Writing the Fisher information matrix as 1(0). where

 1( )iJ ( E SaS

 and I is the log-likelihood, the rule is to take the prior to be

 woa(0) oc det (I(0)9172. (1l)

 (Here and throughout we use det(.) to denote the determi-

 nant.) It is applicable as long as I(0) is defined and positive

 definite. As is easily checked, this rule has the invariance

 property that for any other parameterization -y for which it
 is applicable,

 7r0(f)) = 7-(hX(0)) de(<0/*

 that is, the priors defined by the rule on ay and 0 transform
 according to the change-of-variables formula. Thus it does

 not require the selection of any specific parameterization,

 which could in many problems be rather arbitrary; in this

 sense it is quite general. Additional discussion of the rule

 is given in Section 3.1. (There are other priors that are pa-

 rameterization invariant; see Hartigan 1964.)

 Jeffreys noted that this rule may conflict with the rules

 previously stated, which depend on the interval in which a

 parameter lies. In particular, in the case of data that follow a

 N(p,, C2) distribution, the previous rule gives w(bt, a) = 1/a,
 whereas the general rule gives w(bt, o-) = 1/(2. The latter he
 found unacceptable (Jeffreys 1961, p. 182), because when

 extended to the case of k unknown means p, and com-
 mon variance aJ2, the resulting degrees of freedom in the

 marginal posterior t distributions of each pi, depend only on
 the total number of observations, regardless of the value of

 k. (Thus, for instance, for a given sample mean and pooled

 variance from 30 observations, there would be no greater

 uncertainty about pt, with 10 means being estimated than
 with only 1 mean estimated.) He solved this problem by
 stating that ,t and o should be judged independent a priori
 and so should be treated separately, which leads back to

 the more desirable wFu, o-) - 1/(J. When the general rule is
 applied while holding oa fixed, it gives the uniform prior on
 p,, and when it is applied while holding p, fixed, it gives the
 prior F ((X) cx 1/a.

 Jeffreys went further and suggested this modification for
 general location-scale problems. He also proposed that pri-
 ors in problems involving parameters in addition to loca-
 tion and scale pararneters be taken by treating the location
 parameters separately from the rest (1961, pp. 182-183).

 That is, if there are location parameters 1l,... Itk and an
 additional multidimensional parameter 0, then the prior he
 recommended becomes

 7(,pl . . .[, t,k, 0) c det(1(0) )1/2, (2)

 where I(0) is calculated holding 1ul,l. 1tk fixed. When
 there are also scale parameters involved, these become part
 of 0, and (2) is applied.

 Definition. We call (1) and (2) the prior determined by
 Jeifreys's general rutle, letting the context distinguish be-
 tween these two cases. To contrast (2) with the prior ob-
 tained by applying (1) when there are location parameters,

 we refer to (1) as the prior obtained from Jeffreys's nonlo-
 cationi rule. Thus what we call Jeffreys's nonlocation rule
 is a rule Jeifreys recommended not be applied to families
 having location parameters.

 Though the calculations are sometimes somewhat in-

 volved, it is straightforward to apply (2) to the class of
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 multivariate normal models mentioned in Section 1. When

 either p, or E depend on a parameter vector 0, the informa-
 tion matrix on 0 may be obtained via the chain rule from

 that on (,u, Y,) in the unrestricted case.

 We note that Jeffreys also suggested (1961, p. 185) that
 in the case of mixtures, the mixing parameters should be

 treated independently from the other parameters.

 2.3 Bayes Factors

 Jeffreys emphasized the distinction between problems of

 estimation and problems of testing. Importantly, in testing

 he did not advocate the use of the rules discussed in Section

 2.2, but instead recommended a different method.

 Suppose that Y = (Y1, ... , Y?,) follow a distribution in a
 family parameterized by (i3, Vb) having a density p(y 13, sb),
 and the hypothesis HO: ?b = V0 is to be tested against the
 unrestricted alternative HA: ?b E T. Jeffreys's method is
 based on what is now usually called the "Bayes factor,"

 B- f p(y13, Vbo)wo(/3) d13
 f p P(y113, V) F )(43, V)) d13 dV

 where Fo(/3) and ir(/3, Vb) are priors under HO and HA. The
 Bayes factor may be interpreted as the posterior odds of HO
 when the prior odds are 1:1. More generally, it is the ratio

 of posterior odds to prior odds, regardless of the prior odds

 on HO. (For an extensive review of modern methodology
 using Bayes factors, see Kass and Raftery 1995.)

 Jeffreys's proposals for priors wO and X appear in secs.
 5.02, 5.1-5.3, and 6.2 of Theory of Probability. Generally, he
 used his estimation reference priors on the nuisance param-

 eter 3. As he showed, and Kass and Vaidyanathan (1992)

 elaborated on, when Vb and 3 are assumed orthogonal and
 a priori independent, the value of the Bayes factor is not

 very sensitive to the choice of w0. The prior on Vb, on the
 other hand, remains important.

 When Vb was a probability, as in a binomial problem, Jef-
 freys (1961, sec. 5.1) used a flat prior on (0, 1). For the
 normal location problem, in which 3 is the normal standard

 deviation and the null hypothesis on the mean Vb becomes
 Ho: Vb = 0, Jeffreys (1961, sec. 5.2) took the prior on Vb to be
 Cauchy. He argued that as a limiting case, the Bayes factor
 should become zero if the observed standard deviation were

 zero, because this would say that the location parameter was
 in fact equal to the observed value of the observations. This

 requires that the moments of the prior do not exist, and he

 said the simplest distributional form satisfying this condi-
 tion is the Cauchy. Furthermore, he liked this form because
 he felt it offered a reasonable representation of "systematic

 errors" in observations (as opposed to "random errors"); a
 nonzero location parameter would be treated as if arising

 from one among many such, corresponding to one series
 of observations among many series made under differing
 conditions.

 Jeffreys treated the general case, in which 3 and Vb are
 one-dimensional but the distribution for the data is arbi-

 trary, by assuming that the parameters are orthogonal and

 then drawing an analogy with the normal location prob-

 lem, taking the prior on ?b to be Cauchy in terms of the

 symmetrized Kullback-Leibler number (Jeffreys 1961, pp.
 275 and 277). He then used an asymptotic approximation

 to obtain a simple computable form.

 Kass and Wasserman (1995) have shown how Jeffreys's

 method may be generalized to arbitrarily many dimensions

 by replacing Jeffreys's requirement of parameter orthog-

 onality (i.e., that the information matrix be block diagonal

 for all parameter values) with "null-orthogonality" (i.e., that

 the information matrix be block diagonal when a) = V)O).
 The log of the resulting approximation has the form S + c,

 where c is a constant and S is the Schwarz criterion

 (Schwarz 1978),

 s lo (3o) - l(), V')) + I (m - mo)log n,
 2

 where i0 maximizes the null-hypothetical log-likelihood

 lo()3) = logp(yL1, Vbo), (), ?b) maximizes the unrestricted
 log-likelihood 1(3, sb), and m - mO = dim(Qf). In addition,
 Kass and Wasserman noted the disappearance of the con-

 stant c when a normal prior is used and pointed out the

 interpretation of such a prior is that "the amount of infor-

 mation in the prior on Vb is equal to the amount of informa-
 tion about Vb contained in one observation." They deemed
 this a reasonable prior to use and concluded that there is

 good motivation for using the Schwarz criterion (or some
 minor modification of it) as a large-sample testing proce-
 dure. Their results generalize some given previously for the
 special case of linear regression by Smith and Spiegelhal-

 ter (1980), Spiegelhalter and Smith (1982), and Zellner and
 Siow (1980). Raftery (1995) has proposed a heuristic that is
 different but similar in spirit, to produce a class of proper
 reference priors when considering alternative generalized

 linear models.

 I. J. Good has written extensively on Bayes factors. He

 followed Jeffreys in suggesting a Cauchy prior for the pa-
 rameter of interest, in that case the log of the concentra-
 tion parameter for a Dirichlet distribution (Good 1967). He
 suggested subjectively determining the choice of Cauchy
 location and scale parameters, but in his tabulations (Good
 1967, p. 414) used the standard Cauchy as a reference prior.

 In most cases, Jeffreys assumed that the initial probabili-

 ties of the two hypotheses were equal, which is a reference
 choice determined by "insufficient reason" (see Sec. 2.1).
 Alternatives have been proposed. Pericchi (1984), following
 on earlier work by Bernardo (1980), discussed maximizing
 expected information gain as a method of selecting between
 competing linear regression models. Here both parameters
 appearing within the models and the probabilities assigned
 to them are considered quantities about which an experi-
 ment provides information. The design matrices introduce
 an interesting complication to the problem, generally lead-
 ing to unequal probabilities.

 3. METHODS FOR CONSTRUCTING
 REFERENCE PRIORS

 In this section we describe most of the many methods

 that have been proposed for constructing reference priors.

 Whenever possible, we avoid technical details and present
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 the arguments in their simplest forms. As our summary
 shows, various alternative arguments lead back to Jeffreys's

 prior or some modification of it. Sometimes the parameter

 0 can be written in the form 0 = (w, A), where w is a param-
 eter of interest and A is a nuisance parameter. In this case

 reference priors that are considered satisfactory for mak-

 ing inferences about 0 may not be satisfactory for making

 inferences about w. Recent research on reference priors in-

 spired by this latter observation is highlighted in Sections

 3.5 and 3.7 and at the end of Section 3.2.

 3.1 Laplace and the Principle of Insufficient Reason

 If the parameter space is finite, then Laplace's rule, or

 the principle of insufficient reason, is to use a uniform prior

 that assigns equal probability to each point in the parame-

 ter space. Use of uniform probabilities on finite sets dates

 back to the origins of probability in gambling problems.
 The terminology comes from references by Laplace to a

 lack of sufficient reason for assuming nonuniform proba-

 bilities (e.g., Laplace, 1820). Howson and Urbach (1989, p.
 40) attributed its statement as a "principle" to von Kries
 (1886).

 This rule is appealing but is subject to a partitioning para-

 dox: It is inconsistent to apply the rule to all coarsenings

 and refinings of the parameter space simultaneously. Shafer

 (1976, pp. 23-24) gave a simple example. Let EG = {01, 02},
 where 01 denotes the event that there is life in orbit about
 the star Sirius and 02 denotes the event that there is not.

 Laplace's rule gives P({0i}) = P({02}) = 1/2. But now

 let Q = {wl1, w2, w3}, where w1 denotes the event that there
 is life around Sirius, w2 denotes the event that there are

 planets but no life, and w3 denotes the event that there are

 no planets. Then Laplace's rule gives P({wl}) - P({w2})
 = P({w3}) = 1/3. The paradox is that the probability of

 life is P({01 }) = 1/2 if we adopt the first formulation, but
 is P({wi }) = 1/3 if we adopt the second formulation.

 In practice, the partitioning paradox is not such a serious

 problem. One uses scientific judgment to choose a particu-

 lar level of refinement that is meaningful for the problem at

 hand. The fact that the space could in principle be refined

 further is not usually of great practical concern. Indeed, ac-
 cording to Stigler (1986, p. 103), Laplace assumed that the
 problem at hand had already been specified in such a way

 that the outcomes were equally likely. One could also ar-
 gue that in a decision problem, the structure of the problem

 determines the level of partition that is relevant (Chernoff
 1954).

 A natural generalization is to apply the principle of in-

 sufficient reason when the parameter space is continuous,

 and thereby obtain a flat prior, that is, a prior that is equal
 to a positive constant. A problem with this rule is that it
 is not parameterization invariant. For example, if 0 is given

 a uniform distribution, then 0 = eo will not have a uni-
 form distribution. Conversely, if we start with a uniform

 distribution for 0, then 0 = log q$ will not have a uniform
 distribution. To avoid a paradox, we need a way to deter-

 mine a privileged parameterization.

 Perhaps the oldest and most famous application of a uni-

 form prior on an infinite set is that of Bayes (1763) who

 used a uniform prior for estimating the parameter of a bi-

 nomial distribution. Stigler (1982) argued that Bayes' paper
 has largely been misunderstood. According to Stigler, the

 thrust of Bayes' argument was that Xn, the number of suc-
 cesses in n trials, should be uniform for every n > 1, which

 entails 0 having a uniform prior. This argument is supposed

 to be more compelling because it is based on observable

 quantities, although the uniform distribution on Xn is still
 subject to refining paradoxes.

 The partitioning paradox on finite sets and the lack of pa-

 rameterization invariance are closely related. In both cases

 we have two spaces, EG and Q, and a mapping, g: Q -+ E.
 We then have the choice of adopting a uniform prior on EG

 or adopting a uniform prior IL on Q, which then induces a
 prior X on EG, where X is defined by ir(A) = IL(g- (A)). In
 general, X will not be uniform. In the continuous case, the
 mapping g corresponds to some reparameterization. In the

 finite case, Q is a refinement of EG, and g relates the original
 space EG to its refinement. In the "life on Sirius" example,

 g is defined by g(wl) = 01,9(w2) = 02, and g(w3) = 02- In
 essence, the partitioning paradox is the finite-set version of

 the lack of parameterization invariance.

 3.2 Invariance

 Invariance theory has played a major role in the history of
 reference priors. Indeed, Laplace's principle of insufficient

 reason is an application of an invariance argument. In this
 section we review the key aspects of this approach to the

 selection of priors. Good descriptions of the role of invari-
 ance have been given by Dawid (1983), Hartigan (1964),
 and Jaynes (1968).

 The simplest example of invariance involves the permuta-

 tion group on a finite set. It is clear that the uniform prob-
 ability distribution is the only distribution that is invari-
 ant under permutations of a finite set. When the parameter

 space is infinite, the invariance arguments are more com-
 plicated. We begin with the normal location model. Sup-

 pose that a statistician, S1, records a quantity X that has a
 N(0, 1) distribution and has a prior in (0). A second statis-
 tician, S2, records the quantity Y = X + a, with a being

 a fixed constant. Then Y has a N(0, 1) distribution, where
 X = 0 + a, and let this statistician's prior be 1F2(q). Be-
 cause both statisticians are dealing with the same formal
 model-a normal location model-their reference priors
 should be the same. Thus we require that in = ir2. On
 the other hand, because 0 = 0 + a, -Fn and in2 can be related
 by the usual change-of-variables formula. The relationships
 between n1 and in2 should hold for every a, and this implies
 that they must both be uniform distributions.

 This normal location model may be reexpressed in terms

 of group invariance. Each real number a determines a trans-
 formation ha: R --I R defined by ha(X) = x + a. The set of
 all such transformations H = {ha; a E I1} forms a group
 if we define hahb = ha+b. We say that the model is in-
 variant under the action of the group, because X -'N(0, 1)

 and Y = ha(X) implies that Y N(ha(0), 1). The uni-
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 form prior p, is the unique prior (unique up to an additive
 constant) that is invariant under the action of the group;

 that is, IL(phaA) = /1(A) for every A and every a, where
 haA = {ha(0): 06 A}.

 Now suppose that X - N(0,u2). Let H = {ha,b;a
 E RI,b E R+}, where ha,b: R --I R is defined by ha,b(X)
 = a + bx. Again, H is a group. Define another group G

 = {ga,b; a E R, b E R+}, where ga,b: R x R+ - R x R+ is
 defined by ga,b(0, C) = (a + bO, bo-). Note that the group G
 is formally identical to the parameter space for this prob-
 lem. Thus every pair (0, u) E R x R+ identifies both
 an element of the normal family and a transformation
 in G. Now, as before, the model is invariant under the

 action of the group in the sense that if X - N(0, u2)
 and Y = ha,b(X), then Y N(,u, A2), where (L, A)
 = ga,b (0, u). The prior P that is invariant to left multi-
 plication, that is, P(ga,bA) = P(A) for all A and all (a, b)

 E R x ~R+ has density r(Cu, a) Cx I/oJ2. This is the same
 prior that we would get by using (1), but, as we discussed
 in Section 2, Jeffreys preferred the prior Q with density

 q(pu, a) Cx I/(J. It turns out that Q is invariant to right
 multiplication, meaning that Q(Aga,b) = Q(A) for all A

 and all (a, b) E R x R+, where Aga,b ={g90,ga,b; (0, a-)
 E A}. The priors P and Q are called left Haar measure and
 right Haar measure.

 The preceding arguments can be applied to more general
 group-transformation models in which the parameter space
 is identified with the group G. In the previous case we had
 two groups: one acting on the sample space and one acting
 on the parameter space. In many cases, it is convenient to
 think of these as the same group that happens to act differ-
 ently on the sample space and on the parameter space. For

 example, in the normal case we have ga,b(X) = a + bx on

 the sample space but ga,b(f(, a-) = (a + bO, ba) on the para-
 meter space. Assume first that G is transitive (i.e., for every

 01, 02 E 0), there exists g E G such that 02 = g0j) and acts
 freely (i.e., gO = 0 for some 0 E E) only if g is the identity)

 on both 0) and the sample space, with X Po if and only
 if gX Pgo. In this case the left and right Haar measures
 on G provide distributions on E) that are again unique (up
 to a multiplicative constant). Somewhat more complicated
 cases occur when the group action on the sample space is
 either nontransitive or nonfree. Here the sample space X
 may be identified with the product G x X/G, where X/G
 is the "coset space" (see, for instance, Chang and Villegas
 1986). In all of these situations, if the group is noncompact
 and noncommutative, then the left and right Haar measures
 may be distinct. (See Nachbin 1965 for details on Haar mea-
 sures.) There are various arguments in favor of one over the
 other. If we carry out the argument given earlier for the nor-
 mal location model more generally, then we are led to left
 Haar measure. Furthermore, Jeffreys's nonlocation prior (1)
 is the left Haar measure (see, e.g., Dawid 1983). This also
 follows from its derivation as a volume element determined
 by a Riemannian metric (see, e.g., Kass 1989). Generally,
 however, right Haar measure is preferred in practice. We
 now review some arguments that lead to this choice.

 Villegas (1981) made the following argument for the right
 Haar measure in the case in which G is transitive and acts
 freely. Let A be a measure on the group G. Choose a ref-
 erence point a E EG. This defines a mapping $a: G C -*
 by q5ag = ga, which induces a measure lFa = Aq$-' on EG.
 In other words, we can relate the elements of the group to
 the elements of the parameter space; a prior on the group
 induces a prior on the parameter space. If we insist that
 the measure lFa not depend on the choice of reference point
 a, then X must be the right Haar measure. The argument
 generalizes to the case in which the sample space X may
 be identified with the product G x X/G, and Chang and
 Eaves (1990, prop. 4) showed that different possible such
 decompositions lead to the same right-invariant prior.

 Another argument in favor of right Haar priors comes
 from the demonstration by Stone (1965, 1970) that a nec-
 essary and sufficient condition for an invariant posterior to
 be obtained as a limit, in probability, of posteriors based
 on proper priors is (under the assumption that the group is
 amenable) that the prior be right Haar measure. (See Sec.
 4.2.1 for more discussion on probability limits of proper
 priors.) Also, we note that posteriors based on right Haar
 measure arise formally in a type of conditional inference
 called structural inference, developed by Fraser (1968). Fur-
 thermore, the right Haar measure gives the best invariant
 decision rule in invariant decision problems (Berger 1985,
 Sec. 6.6.2). Related to this is a result proved by Chang and
 Villegas (1986) that repeated-sampling coverage probabili-
 ties and posterior probabilities agree when the prior on the
 group is right Haar measure (see Sec. 3.7).

 These invariance arguments may be replaced by weaker
 relative invariance arguments that require proportionality
 rather than equality for statements of invariance. In particu-

 lar, if we want -F(AIX = x) = (g-1 (A) 1g-I (X) = g-l (x))
 say, when 0) and 0' are related by a transformation g, then
 we need only that ir'(A) oc 7r(g-1(A)). The class of rela-
 tively invariant priors is much larger than the class of in-
 variant priors (see Hartigan 1964).

 Sometimes the group action is not of interest itself, but
 instead group elements correspond to nuisance parameters;
 that is, the full parameter vector is 0 (w, g), where g
 E G and w is the parameter of interest. Assuming that w
 is an index for the orbits of the group (i.e., the orbit of x
 is {gx; g E G}), Chang and Eaves (1990) recommended the

 prior ir(w)ir(gjw), where ir(glw) is right Haar measure and

 7r(w)=- limN/d~et(-U,(w))/~n.

 Here, In (w) is the information matrix for Yn, the max-
 imal invariant of the G action. This is similar to the
 Berger-Bernardo approach (Sec. 3.5), except that Berger
 and Bernardo would use the nonlocation Jeffreys prior (and
 hence left Haar measure) for ir(glw). Datta and Ghosh
 (1995d) gave a careful description of the relationship be-
 tween the Chang-Eaves prior and the Berger-Bernardo
 prior. They also gave a thorough account of the proper-
 ties of these priors. A recent discussion of the invariance
 properties of several other priors was provided by Datta and
 Ghosh (1994).
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 3.3 Data-Translated Likelihoods

 Box and Tiao (1973, sec. 1.3) introduced the notion of
 "data-translated likelihood" to motivate the use of uniform

 priors. Let y be a vector of observations and let Ly (.) be
 a likelihood function on a real one-dimensional parameter
 space (. According to Box and Tiao (1973, Eq. 1.3.13), the
 likelihood function is data-translated if it may be written in
 the form

 LY(q) = f {b-t(y)} (4)

 for some real-valued functions f(.) and t(.), with the def-
 inition of f (.) not depending on y. When (4) is satisfied,
 Box and Tiao recommended using the uniform prior on (,
 because two different samples y and y* will then produce
 posteriors that differ only with respect to location. That is,
 the uniform prior produces posterior densities with the same
 shape for different samples. This feature of the uniform
 prior is, for Box and Tiao, what makes it "noninformative."

 Box and Tiao (1973) then introduced "approximate data-
 translated likelihood" to motivate Jeffreys's general rule.
 For a likelihood to be approximately data translated, Box
 and Tiao required it to be "nearly independent of the data y
 except for its location." Operationally, they discussed sam-
 ples of size n consisting of (iid) observations and began
 with the normal approximation to the likelihood

 Ly (0) _n (0; 0, &Jy), (5)

 where n(x; ,u, u2) is the normal density with argument x,
 mean p, and variance au2, and -2 - {ni(O)}-1, the in-
 verse of the expected Fisher information evaluated at the
 maximum likelihood estimate 0. They then took q to be
 a variance-stabilizing parameterization; that is, I(Q) = c-1
 for some constant c, so that

 Ly () -_n (Q; b, c/n). (6)

 The normal approximate likelihood of (6) has the form (4),
 so that the likelihood itself is, in a sense that Box and Tiao
 did not make explicit, approximately data translated. Based
 on the analogy with (4), they recommended using a prior
 that is uniform on q and noted that this prior is the one
 determined by Jeffreys's general rule.

 To see more clearly what Box and Tiao's approach en-
 tails, notice that from (4) the likelihood functions based on
 alternative data y and y* are translated images of one an-
 other in the sense that

 Ly(q) - Ly*(Q*) (7)

 for * = + {t(y*) - t(y)}. Clearly, if (7) holds, then the
 translation group may be defined on ( and on the image
 of t(.), so that the likelihood function is invariant under its
 action. Kass (1990) noted that, once seen from this group-
 theoretic perspective, the definition is revealed to be very
 restrictive. (If bI is the whole real line and the support of the
 distribution is independent of +b, then only the normal and
 gamma families yield exactly data-translated likelihoods.)
 The concept is easily modified by requiring the likelihood

 to be data translated only for each fixed value of an an-
 cillary statistic. When this is done, the definition extends
 to general transformation models. Kass then showed that
 in one dimension, likelihoods become approximately data
 translated to order Q(n-1), which is stronger than the or-
 der O(n-1/2) implied by the data translatedness of the lim-
 iting normal distributions. A somewhat weak extension of
 the result was given for the multidimensional case: Like-
 lihoods may be considered approximately data translated
 along information-metric geodesics in any given direction,
 but it generally is not possible to find a parameterization in
 which they become jointly approximately data translated.
 (This is related to the inability to directly extend work
 of Welch and Peers 1963, as discussed in Stein 1985; see
 Sec. 3.7.)

 3.4 Maximum Entropy

 If E) 0 {01, . , 0n4 is finite and ir is a probability mass
 function on E), then the entropy of wr, which is meant to
 capture the amount of uncertainty implied by wr, is defined
 by E(ir) =- E ir(i)log ir(i). Entropy is a fundamental con-
 cept in statistical thermodynamics and information theory
 (Ash 1965; Shannon 1948; Wiener 1948). The functional
 E(7r) can be justified as a measure of uncertainty by appeal-
 ing to three axioms (Shannon 1948). Priors with larger en-
 tropy are regarded as being less informative, and the method
 of maximum entropy is to select the prior that maximizes
 &(ir). If no further constraints are imposed on the prob-
 lem, then the prior with maximum entropy is the uniform
 prior. Suppose now that partial information is available in
 the form of specified expectations for a set of random vari-
 ables, {E(X1) i ml,... ,E(Xr) = mr}. Maximumentropy
 prescribes choosing the prior that maximizes entropy sub-
 ject to the given moment constraints. The solution is the
 prior

 ir (0i) oc exp { Aj Xj (0i)}

 Jaynes (1957, 1968, 1980, 1982, 1983) has been the main
 developer of entropy-based methods. The maximum en-
 tropy method has been used very successfully in many prob-
 lems including, for example, spectral analysis and image
 processing. Furthermore, Jaynes has used entropy-based
 methods for constructing models as well as priors. (A recent
 review of entropy based methods may be found in Zellner
 1991; see also Press 1995, Zellner 1995, and Zellner and
 Min 1993.) There are, however, some problems with the
 theory. Seidenfeld (1987) gave an excellent review and cri-
 tique of maximum entropy. Here we review the main points
 discussed in Seidenfeld's paper.

 First, there is a conflict between the maximum entropy
 paradigm and Bayesian updating. Consider a six-sided die
 and suppose that we have the information that E(X) = 3.5,
 where X is the number of dots on the uppermost face of
 the die. Following Seidenfeld, it is convenient to list the
 constraint set: 0 = {E(X) =3.5}. The probability that
 maximizes the entropy subject to this constraint is Po with
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 values (1/6, 1/6, 1/6, 1/6, 1/6, 1/6). Let A be the event
 that the die comes up odd, and suppose we learn that A has
 occurred. There are two ways to include this information.
 We can condition Po to obtain Po (. A), which has values
 (1/3, 0, 1/3, 0, 1/3, 0), or we can regard the occurrence
 of A as another constraint; that is, E(IA) = 1, where IA
 is the indicator function for the event A. The probabil-
 ity Q maximizes the entropy subject to the constraint set

 C1 ={E(X) = 3.5, E(IA) = 1} has values (.22, 0, .32, 0,
 .47, 0), which conflict with Po(. A). One might conjecture
 that it is possible to refine the space under consideration
 so that a constraint expressed as an expectation on a ran-
 dom variable may be reexpressed as an event. In this larger
 space, perhaps the conflict will disappear. But Friedman and
 Shimony (1971) and Shimony (1973) have shown that gen-
 erally there is no such possible extension except in a trivial
 sense. They showed that an extended space for which the
 constraint is represented as an event and for which condi-
 tionalization is consistent with maximum entropy must be
 such that the constraint is given prior probability 1. Sei-
 denfeld showed that the Friedman-Shimony result applies
 not only to entropy, but also to minimum Kullback-Leibler
 shifts from any given base measure; maximum entropy is
 obtained by taking the base measure to be uniform.

 The second problem is that maximum entropy is subject
 to the same partitioning paradox that afflicts the principle
 of insufficient reason. Consider again the die example. Af-
 ter rolling a die, we typically can see two or three visible
 surfaces. That is, in addition to the uppermost side of the
 die, we can see one or two side faces depending on the ori-
 entation of the die. Thus we can record not just the value of
 the upper face, but also whether the sum of all visible spots
 on side faces of the die is less than, equal to, or greater
 than the value showing. There are 14 such possible out-
 comes. For example, the outcome (3, equal) means the top
 face shows 3 and the sum of visible side faces equals 3.
 The original sample space can now be viewed as a parti-
 tion of this larger sample space. Maximum entropy leads to
 a probability Q that assigns probability 1/14 to each out-
 come. The marginal of Q for the six original outcomes is
 not P0. The problem is, then, which probability we should
 use, Q or Po.

 Entropy methods can be extended to the continuous case

 by measuring entropy relative to a base density ,M. Thus the
 entropy of a density ir with respect to ,l is - f ir log ir d,u.
 Unfortunately, having to choose a base measure is almost
 as hard as choosing a prior so that this solution is rather
 circular. Indeed, in the finite case a uniform measure has
 implicitly been chosen as a base measure. Jaynes (1968)
 suggested using base measures based on invariance argu-
 ments.

 3.5 The Berger-Bernardo Method

 Bernardo (1979a) suggested a method for constructing
 priors that involved two innovations. The first was to de-
 fine a notion of missing information, and the second was
 to develop a stepwise procedure for handling nuisance pa-
 rameters. Since Bernardo's original paper, there has been

 a series of papers, mostly by Berger and Bernardo, refin-
 ing the method and applying it to various problems. For
 this reason, we refer to this method as the Berger-Bernardo
 method.

 When there are no nuisance parameters and certain reg-
 ularity conditions are satisfied, Bernardo's prior turns out
 to be (1). When there is a partitioning of the parameter
 into "parameters of interest" and "nuisance parameters,"
 this method will often produce priors that are distinct from
 (1). We first discuss the notion of missing information, then
 discuss the stepwise procedure.

 3.5.1 Missing Information. Let X (XI, .... XI)
 be n iid random variables and let Kn(7r(O Ixvn), ir(O))
 be the Kullback-Leibler distance between the poste-

 rior density and the prior density, Kn (ir(O Ixn), ir(O))
 f ir(O xn)1og(7r(O xn)/7r(O)) dO. Loosely, this is the

 gain in information provided by the experiment. Let K1n

 = E(Kn(7r(O xIn), 7r(O))) be the expected gain in informa-
 tion, where the expectation is with respect to the marginal
 density m(xn) f p(xn O)ir(O) dO. Bernardo's (1979a) idea
 was to think of K"nr for large n as a measure of the miss-
 ing information in the experiment, an idea that has its
 roots in work of Good (1960, 1966) and Lindley (1956).
 Bernardo (1979a) suggested finding the prior that maxi-

 mizes Ky - 1imn,zK1n and called the result "the" refer-
 ence prior. Because the term "reference prior" had already
 been used by Box and Tiao (1973) following Jeffreys, we
 prefer to use it in its more general sense and stick to the
 term Berger-Bernardo prior. Hartigan (1983, sec. 5.2) used
 the term maximal learning prior The reason for not per-
 forming the foregoing optimization for finite n is that the
 priors turn out to have finite support (Berger, Bernardo, and
 Mendoza 1989).

 Now a technical problem arises-namely, that K"' is usu-
 ally infinite. (In fact, the infinities can occur for finite n;
 see Hartigan 1979.) To circumvent this problem, Bernardo
 found the prior 1rn that maximizes K"nr. He then found the
 limit of the corresponding sequence of posteriors and fi-
 nally defined the Berger-Bernardo prior (he used the term
 "reference prior") as the prior that produces the limiting
 posterior via Bayes theorem. With sufficient regularity, this
 prior turns out to be (1) for continuous parameter spaces
 and the uniform prior for finite parameter spaces.

 Another way around the infinities is simply to stan-
 dardize Kn. Using asymptotic normality, we have K1n
 = (d/2)1og(n/2ire) + f ir(O)1og(/ det(1)/r(O)) dO + o(1)
 as n -- oc, where d is the dimension of 0 (see Clarke
 and Barron 1990 and lbrigamov and H'asminsky 1973).
 Define the standardized expected distance Knr = Knr
 -(d/2)1og(n/2ire) and the standardized missing informa-
 tion by K' = limn,oK{n=r fir(O)log( det(I)/r(O)) dO.
 It is easy to show that the standardized missing information
 is maximized by (1). (More precisely, it is maximized by (1)
 if the space is truncated to an appropriate compact set.)

 When the data are not iid, there is some question about
 how to do the asymptotics. An example is the AR(1) pro-
 cess where Xt - pXt_i + et and e? N(O, 1). This ex-

 ample has generated much debate among econometricians.
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 Phillips (1991) argued in favor of the Jeffreys's prior. His
 article was followed by a series of papers in which sev-
 eral authors discussed the merits of various approaches.
 A recent discussion of this example was given by Berger

 and Yang (1994a). There are two ways to do the asymp-
 totics. One can consider n vectors X1,.. , x , where each

 XT = (X1,... ., XT) is a single run of T observations from
 the process. Maximizing missing information and letting
 n go to infinity gives the prior determined by Jeffreys's
 general rule. This prior depends on T and so has strong
 sample-space dependence. Also, Jeifreys's prior seems to
 put too much weight in the region of the parameter space
 that corresponds to nonstationarity. If asymptotic missing
 information is maximized instead for T -? oo, then the

 prior is either 7r(p) oc { - p2}1 when the parameter
 space is restricted to p E {-1, 1} or is discrete, with mass

 at the endpoints if the parameter space is [a, b] with a < -1
 or b > 1. Berger and Yang also considered an alternative
 prior, which they called the symmetrized reference prior.
 This is defined by

 { {2Vr 1-p2}1 if IPI < 1,

 {27rrpjp2-11}-1 if pI > 1.

 For p E [-1,1] this is the Berger-Bernardo prior, and
 the prior outside this range is obtained by the mapping
 p -* l/p. Berger and Yang (1994a) compared the sampling
 properties of the point and interval estimates based on these
 priors and found that the symmetrized reference prior per-
 formed better in mean squared error and reasonably well in
 terms of coverage (see Section 3.7). More importantly, this
 is an interesting example showing that the prior can depend

 on how the asymptotics are carried out.

 3.5.2 Nuisance Parameters. Suppose that 0 = (W, A),
 where w is the parameter of interest and A is a nuisance
 parameter. In this case Bernardo suggested modifying his
 procedure. Ignoring some technical problems, the method is

 as follows. First, define ir(Alw) to be the Berger-Bernardo
 prior for A with w fixed. Next, find the marginal model

 p(xlw) = fp(xlw, A)7r(Alw) dA. (The technical problem is
 that the integral may diverge, necessitating restriction to
 a compact set or a sequence of compact sets.) Now take
 ir(w) to be the Berger-Bernardo prior based on the marginal

 model p(xIw). The recommended prior is then ir(w)r (AIw).
 Assuming some regularity conditions, it can be shown

 that the Berger-Bernardo prior is

 rr(w, A) o( jw (A)exp {Jjw (A)log S(w, A) dA}

 where j (A) is the nonlocation Jeffreys prior for A when w

 is fixed (not to be confused with j(Alw), the conditional of
 the nonlocation Jeffreys prior) and S = V/I2jj. Here I
 is the Fisher information matrix and 122 is the portion of
 the I corresponding to the nuisance parameters.

 As an example, we consider the Neyman-Scott (1948)

 problem discussed by Berger and Bernardo (1992b), Datta

 and Ghosh (199Sc), and Ghosh (1994). The data consist of

 n pairs of observations: Xij - N(/-,i Ia2), i 1 ... ,n j
 = 1, 2. The nonlocation Jeffreys prior is rr(,u1, n, ,n, c) oC
 ,-(n+l). Then E(u2 x) s2/(2n - 2), where S2

 = = ZJ-1(x%j-xi)2 and xi = (xil + xi2)/2. Now

 E(U21x) = s2/(2n -2) is inconsistent, because s2/n
 converges to .2. By treating ca as the parameter of in-
 terest, the Berger-Bernardo method leads to the prior

 1r (/t 1 p . . . I An, () Cx o-1 in accordance with Jeffreys's gen-
 eral rule (2); this gives a posterior mean of s2/(n - 2),
 which is consistent. There are other Bayesian ways to han-
 dle this problem. For instance, one might introduce a hier-

 archical model by putting a distribution on the pii's and then
 apply Jeffreys's general rule to the hyperparameters, based
 on the marginal distribution of the data. But this is an ex-

 ample in which the Berger-Bernardo method yields a prior
 that seems reasonable when judged by the long-run sam-
 pling behavior of the posterior (see Berger and Bernardo
 1992b). A detailed discussion of a large class of priors for
 this problem (including minimaxity properties and cover-
 age matching properties) was given by Datta and Ghosh
 (1995c).

 The Berger-Bernardo method has now been applied to

 many examples, including exponential regression (Ye and
 Berger 1991), multinomial models (Berger and Bernardo
 1992a), AR(1) models (Berger and Yang 1994a), and the
 product of normal means problem (Berger and Bernardo
 1989; Sun and Ye 1994a, 1995), to name just a few. Wolfin-
 ger and Kass (1996), use the Berger-Bernardo prior for
 variance components, which becomes the prior of Jeffreys's

 general rule applied to the REML likelihood function.
 In the foregoing discussion, we have lumped the param-

 eters into two groups: parameter of interest and nuisance

 parameters. Berger and Bernardo (1991, 1992a, 1992b) and
 Ye and Berger (1991) have extended the method to deal with
 parameters that have been lumped into any number of or-
 dered groups. The ordering is supposed to reflect the degree
 of importance of the different groups. Generally, different
 orderings produce different priors.

 3.5.3 Related Work. Ghosh and Mukerjee (1992a) and
 Clarke and Wasserman (1993, 1995) proposed other priors
 based on Bernardo's missing information idea. Specifically,
 they worked directly with kg0(w), the standardized missing
 information for w; that is, the asymptotic expected Kullback
 distance between the marginal prior 7r(w) and the marginal

 posterior ir(WlXn) minus a standardizing constant,

 Kjo(w) =]r((w,A)log W(P dwdA,

 where S {=LHI 22K-1}1/2,I is the Fisher information ma-
 trix and I22 is the part of the Fisher information matrix
 corresponding to A. Ghosh and Mukerjee (1992a) showed

 that maximizing Kr (w) subject to the condition that ir(AIw)
 j,(A) gives the Berger-Bernardo prior. Thus the Berger-

 Bernardo prior maximizes the missing information for w
 subject to the condition that given w, the missing informa-
 tion for A is maximized. But it seems reasonable to examine

 priors that maximize kg0 (w).
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 Ghosh and Mukerjee conjectured, and Clarke and
 Wasserman showed, that priors that maximize Kgl (w) typ-
 ically are degenerate. Clarke and Wasserman proposed

 a trade-off prior 7re, that maximizes K7 (w) - caK(j,ir),
 where the latter term is a penalty term measuring distance

 from a prior j, where j is usually taken to be the Jef-
 freys prior or the nonlocation Jeffreys prior. (Recall that

 K(j, ir) = f jlog(j/ir).) The interpretation is that we are
 trying to make the distance between the prior for w and the
 posterior for w far apart, but we add a penalty term to en-
 sure that the prior does not depart too far from j. Without

 the penalty term, degenerate priors can result. Generally, 7re,
 cannot be written in closed form, but Clarke and Wasserman

 (1993) gave an algorithm for computing it. Ghosh and Muk-

 erjee suggested shrinking the conditional prior ir(Alw) to-
 ward a uniform prior. Later, Clarke and Wasserman (1995)

 proposed maximizing Kj (w) - caK(7r,j), thus switching
 K(j,ir) to K(r,j). The solution is 7r,a xhH-'/(a+),
 where h = Slbj(w,A),H f fhdA, and, as before, S
 - 11/1122 . This reduces to j when ae -> oo; if S is a
 function of w only, then it reduces to the Berger-Bernardo
 prior when a = 0. More generally, 7re, converges to a de-
 generate distribution when ae % 0 but, strangely, may still
 agree with the Berger-Bernardo prior when a = -1.

 The Berger-Bernardo program involves maximizing
 missing information for A given w, then forming the

 marginal model and maximizing missing information for
 w. If w is the parameter of interest, then perhaps we should

 maximize missing information for w given A. This would

 ensure that missing information is maximized for w what-

 ever the value of the nuisance parameter. This might be
 called a reverse Berger-Bernardo prior. Berger (1992) noted
 that such a scheme may give results that are similar to the

 coverage matching methods (see Sec. 3.7). Unfortunately,
 the prior will then depend on the parameterization of the

 nuisance parameter. The relationships between the Berger-
 Bernardo prior and the reverse Berger-Bernardo prior have

 been studied by Datta and Ghosh (1994, 1995b).

 3.6 Geometry

 The straightforward verification of invariance of Jef-

 freys's general rule hides its origin. In outline, Jeffreys
 (1956, 1961) noted that the Kullback-Leibler number be-
 haves locally like the square of a distance function deter-

 mined by a Riemannian metric; the natural volume element
 of this metric is det(I(0))1/2, and natural volume elements
 of Riemannian metrics are automatically invariant to repa-
 rameterization. (See Kass 1989, secs. 2.1.2 and 2.1.3, for
 explication of this argument in the case of multinomial dis-
 tributions.)

 Jeffreys treated the procedure formally, but Kass (1989,
 sec. 2.3) elaborated, arguing that natural volume elements
 provide appropriate generalizations of Lebesgue measure
 by capturing intuition favoring "flat" priors and that the in-
 formation metric may be motivated by statistical consider-

 ations. Thus Jeifreys's rule is based on an appealing heuris-
 tic. The key idea here is that natural volume elements gen-

 erate "uniform" measures on manifolds, in the sense that

 equal mass is assigned to regions having equal volumes,
 and this uniformity seems to be what is appealing about
 Lebesgue measure. Because Fisher information is central

 in asymptotic theory, it seems a natural choice for defining

 a metric to generate a distribution that would serve as a

 pragmatic substitute for a more precise representation of a

 priori knowledge.

 It is also possible to use this geometrical derivation to

 generate alternative priors by beginning with some discrep-

 ancy measure other than the Kullback-Leibler number, and
 defining a Riemannian metric and then a natural volume el-

 ement. Specification of this idea was given by George and

 McCulloch (1993) and Kass (1981). It was also mentioned
 by Good (1969).

 3.7 Coverage Matching Methods

 One way to try to characterize "noninformative" priors
 is through the notion that they ought to "let the data speak

 for themselves." A lingering feeling among many statisti-

 cians is that frequentist properties may play a role in giving
 meaning to this appealing phrase. From this viewpoint, it

 may be considered desirable to have posterior probabilities

 agree with sampling probabilities. Indeed, some statisticians
 argue that frequency calculations are an important part of

 applied Bayesian statistics (see Rubin 1984, for example).
 To be specific, suppose that 0 is a scalar parameter and

 1(x) and u(x) satisfy Pr(l(x) < 0 < u(x) x) = 1 - at, so

 that Ax = [1(x), u(x)] is a set with posterior probability
 content 1 - ae. One can also consider the frequency prop-

 erties of Ax (in the sense of confidence intervals) under
 repeated sampling given 0. In general, the frequentist cov-

 erage probability of Ax will not be 1 - ae. But there are
 some examples where coverage and posterior probability

 do agree. For example, if X N(0, 1) and 0 is given a
 uniform prior, then Ax = [x - n1/2za/2, x + n- 1/2za/2]
 has posterior probability 1 - ae and also has coverage

 1 - ae, where Pr(Z > zc) c if Z N(O,1). Jef-
 freys (1961) noted the agreement between his methods and
 Fisher's methods in many normal theory problems (see also
 Box and Tiao 1973). Lindley (1958) showed that for a scalar
 parameter and a model that admits a real-valued sufficient
 statistic, the fiducial-based confidence intervals agree with
 some posterior if and only if the problem is a location
 family (or can be transformed into such a form). A gen-
 eralization of this result (eliminating the need for a one-
 dimensional sufficient statistic) was obtained by Welch and
 Peers (1963) by conditioning on an ancillary. A very gen-
 eral result for group transformation models, essentially due
 to Stein (1965) and proved elegantly by Chang and Villegas
 (1986), is that repeated-sampling coverage probabilities and
 posterior probabilities agree when the prior on the group is
 right Haar measure (see Sec. 3.2).

 Some authors seem to applaud the agreement between
 certain frequentist and Bayesian inference regions, but re-
 frain from justifying a particular prior on the basis of

 its production of correct frequentist coverage probabilities.

 Jeifreys (1961) is in this group, as are Box and Tiao (1973)
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 and Zellner (1971). Others, however, such as Berger and

 Bernardo (1989) and Berger and Yang (1994a, 1994b) used

 coverage properties to discriminate among alternative can-

 didate prior distributions.

 Sometimes it is not possible to get exact agreement (see

 Bartholomew 1965) and instead we might seek approxi-

 mate agreement. Let B, be a one-sided posterior region
 for a scalar parameter with posterior probability content

 1 - a. Welch and Peers (1963) showed that under cer-

 tain regularity conditions, the confidence coverage of B,

 is 1 - a + O(n-1/2). But if (1) is used, then the region has
 coverage 1 - a + Q(n-m). Hence another justification for

 (1) is that it produces accurate confidence intervals.

 This work was further examined and extended by Peers

 (1965, 1968), Stein (1985), and Welch (1965). Recently,

 there has been interest in extending the Welch-Peers results

 to multiparameter problems when the parameter 0 has been

 partitioned into a parameter of interest w and nuisance pa-

 rameters A (A1, ... A, k). Some progress was made on this
 by Peers (1965) and Stein (1985). Based on Stein's paper,
 Tibshirani (1989) showed that a prior that leads to accu-
 rate confidence intervals for w can be obtained as follows.

 Let I denote the Fisher information matrix and let I be the

 log-likelihood function. Write

 Ill 112

 121 122 j

 where I11 = -E(021/&W2),122 is the k x k matrix with
 ijth entry -E(02l/0A&0A3), 121 is the k x 1 matrix with
 jth entry --E (21/Uw&Aj), and 112 is the 1 x k matrix
 with ith entry -E(02l/0Ai0w). Now, reparameterize the
 model as (w, /), where -y = (-Y, . Yk) is orthogonal to
 w. Here -y, -yy(w, A1, . . ., Ak) . Orthogonality means that
 112 = 121 0 (see Cox and Reid 1987). Tibshirani sug-

 gested that the prior 7(w, ,y) o g(A)l/2 produces accurate
 confidence intervals for w, where g(A) is an arbitrary, pos-
 itive function of A. The resulting intervals were rigorously
 shown to be correct to order 0(n-r) by Nicolau (1993).

 For comparison, note that (1) is (w, -y) oc 11/2I 12 and
 the Berger-Bernardo prior (Sec. 3.5) is F(w, -y) o f(w)I122
 for some function f(w). It is interesting that these confi-
 dence based methods seem to produce priors of the form
 that would be obtained from the Berger-Bernardo scheme
 if roles of the parameter of interest and nuisance parameter

 were switched; Berger (1992) commented on this fact.
 Ghosh and Mukerjee (1992a) suggested requiring that

 Po(w < w,(X))ir(Aw) dA = 1- a + O(n-Q )

 where wc, is such that P(w < wc,(X) IX) 1 - a + O(n-1).
 This leads to the condition

 Mukerjee and Dey (1993) found priors that match fre-

 quentist coverage to order o(n-r ) and gave a differen-

 tial equation that must be solved to find the prior. Tib-

 shirani's method generally has solutions that leave part of

 the prior unspecified, but in many cases the Mukerjee-

 Dey method completely specifies the prior up to a con-

 stant. Ghosh and Mukerjee (1993) found priors such that

 P(W < tIX) = P(W < tIO) + o(n-l/2) for all 0 and
 t = (tI. ... , tp)' where W = (WI, . , Wrj)', WI is an ap-
 propriately standardized version of <01 - 01) and TVi is

 a type of standardized regression residual of </(0 - 02)
 on (0 - ,), . .., m(0- - 0-1). The priors are char-
 acterized as having to satisfy a certain differential equa-

 tion. The idea is that VV is an attempt to list the param-
 eters in order of importance in the spirit of the work by

 Berger and Bernardo. (Ghosh and Mukerjee [1993] reported
 that in the balanced case of the three-parameter "variance

 components" model, which we discuss in Section 4.2.5, the

 Berger-Bernardo priors satisfy their asymptotic coverage

 matching criterion for some particular orderings of the pa-
 rameters, but not for others.) Datta and Ghosh (1995a) de-
 rived a differential equation characterizing priors for cov-

 erage matching up to order Q(n-1) for a single parameter
 of interest.

 Severini ( 991) showed that under certain circumstances,
 some priors will give HPD regions that agree with their

 nominal frequentist coverage to order n-3/2. Similar calcu-

 lations, but for which there is a scalar nuisance parameter,

 were considered by Ghosh and Mukerjee (1992b). DiCiccio
 and Stern (1994) found conditions on the prior so that cov-
 erage and posterior probability content agree to order n-2

 when both the parameter of interest and the nuisance pa-
 rameter are vectors. Connections between the Welch-Peers

 approach and frequentist approaches based on the signed
 square root of the likelihood ratio statistic have been made

 by DiCiccio and Martin (1993). On a related topic, Severini
 (1993) showed how to choose intervals for which Bayesian
 posterior probability content and frequentist coverage agree
 to order n-3/2 for a fixed prior. Also, connections can be
 made between priors that produce good frequentist intervals
 and priors for which Bayesian and frequentist Bartlett cor-

 rections to the likelihood ratio statistic are o(1) (see Ghosh
 and Mukerjee 1992b). Coverage matching methods were
 also studied by Datta and Ghosh (1995b, 1995c). There have
 also been attempts to match frequentist and Bayesian pro-

 cedures in testing problems. We do not attempt a review
 here (see, for example, DeGroot 1973 and Hodges 1992).

 3.8 Zellner's Method

 Let Z(0) = - f p(x 0)logp(x 0) dx be the information
 about X in the sampling density. (Zellner called this quan-
 tity I(0).) Zellner (1971, 1977, 1995, 1996) and Zellner and
 Min (1993) suggested choosing the prior wF that maximizes
 the difference G = fZ(0)7(0)dO - fw(0)log(7(0))dO.
 (Note that the negative entropy of the joint density

 of x and 0 is fZ(0)7(0) dO + fw7(0)log(w(0))dO. Also
 note that C ffwS7(O|X)log[p(xO0)/w7(0)]m(x) dodx,
 where m(x) =fXp(xO0)w(0) dO.) The solution is <0)
 oc exp{Z(0) }. Zellner called this prior the maximal data
 information prior (MDIP). This leads to some interesting
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 priors. In location-scale problems, it leads to right-Haar

 measure. In the binomial (n, 0) model, it leads to the prior

 7w(0) a 00(1 - 0)1-0, which has tail behavior between that
 of (1), which in this case is w(0) oc 0-1/2(1-_0)-1/2I and the
 uniform prior. MDIP priors for the Weibull were provided

 by Sinha and Zellner (1990). Recently, Moulton (1993) ob-
 tained MDIP priors for the t family and the power expo-
 nential family.

 Zellner's method is not parameterization invariant. But

 Zellner (1991) pointed out that invariance under specific

 classes of reparameterizations can be obtained by adding
 the appropriate constraints. For example, if we are inter-

 ested in the transformations r1 -hi(0), i 1.. . m, then
 he suggested maximizing

 G - J 7(0)Z(0)dO - Jw(0)logw(0) dO

 + E 7i Tlr,r1)Z(Tl,) dTli - 7ri (T,) log 7ri (Ti) dTI,

 subject to 7w(0) dO = 'i(ri) dTl,. The solution is

 w (0) oc exp{Z(0) + log|h' (0) /(m + 1)}.

 The resulting prior then has the desired invariance proper-
 ties over the given transformations. Other side conditions

 such as moment constraints can be added as well. Zellner's
 prior can be related to (1) in the following way (Zellner, per-
 sonal communication): maximize Zellner's functional sub-
 ject to the condition that the expected value of the log

 square root of the determinant of the Fisher information
 equals a constant. This leads to a prior proportional to
 )(0)exp{Z(0)}, where A is a constant and j is Jeffreys's
 nonlocation rule.

 3.9 Decision-Theoretic Methods

 Several authors have used decision theoretic arguments
 to select priors. Chernoff (1954) derived the uniform prior
 on finite sets by way of eight postulates for rational deci-
 sion making. Partitioning paradoxes are avoided, because
 his argument is restricted to sets with fixed, given number
 of outcomes. Good (1969, 186) took a different approach.
 He defined U(GIF) to be "the utility of asserting that a dis-
 tribution is G when, in fact, it is F." He showed that if U
 takes on a particular form, then (1) is the least favorable
 prior distribution. Clarke and Barron (1994) showed that
 (1) achieves the asymptotic minimax cumulative risk when
 the loss function is Kullback-Leibler distance. Good also

 related these ideas to Jeffreys's geometrical argument; see
 Section 3.6.

 Hartigan (1965) called a decision d(x) unbiased for the
 loss function L if

 E00(L(d (x), 0) |0o) ? E00(L(d(cv),0So) 0o)

 for all 0, Oo. Hartigan showed that if 0 is one-dimensional,

 then a prior density wr is asymptotically unbiased if and only

 if

 7w(O) = E(&/00 log f(x 0))2/(02/&y32L(O, 0))1/2

 If the loss function is Hellinger distance, then this gives (1).
 Hartigan also extended this to higher dimensions. (A ref-
 eree has provided us with an interesting historical footnote.
 Apparently, Hellinger did not propose the distance that we
 now call "Hellinger distance." It was introduced by Bhat-
 tacharyya [1943] and independently by Kakutani [1948],
 who called it Hellinger distance. See also Chentsov 1990.)

 Gatsonis (1984) considered estimating the posterior dis-
 tribution as a decision problem using L2 distance as a loss
 function. The best invariant estimator of the posterior in a
 location problem is the posterior obtained from a uniform
 prior. He also showed that this estimate is inadmissible for
 dimension greater than 3.

 Bernardo's method (Sec. 3.5) may also be given a de-
 cision theoretic interpretation. Specifically, the Kullback-
 Leibler distance can be justified by viewing the problem

 of reporting a prior and posterior as a decision problem.
 Bernardo (1979b) showed that Kullback-Leibler divergence
 is the unique loss function satisfying certain desiderata. Pol-

 son (1988, 1992a, 1992b) also discussed this approach.
 Kashyap (1971) considered the selection of a prior as a

 two-person zero-sum game against nature. Using the aver-
 age divergence between the data density and the predictive
 density as a loss function, he showed that the minimax so-

 lution is the prior 7(0) that minimizes Elog[p(y O)/7(O)j,
 where the expectation is with respect to the joint measure
 on y and 0. Asymptotically, this leads to (1) and is very
 similar to Bernardo's (1979a) approach.

 3.10 Rissanen's Method

 Consider the problem of finding a reference prior for
 e = {1, 2, ... .}. Many familiar techniques, like maximum
 entropy (see Sec. 3.4) do not give meaningful answers for
 finding a prior on e. Jeffreys (1961, p. 238) suggested
 Q(n) oc 1/n, though he did not derive it from any for-
 mal argument. Rissanen (1983) used the following coding
 theory motivation for a prior. We warn the reader that the
 motivation for the argument that follows is of a much dif-
 ferent nature than the other methods considered here. (The
 interested reader is encouraged to refer to Rissanen 1983
 for more details.)

 Suppose that you have to construct a code; that is, you
 must assign a binary string to each integer. We assume that
 your code is a prefix code, which means that no code word is
 allowed to be a prefix of another code word. This condition
 ensures that a decoder can detect the beginning and the end

 of each code word. Let L = (L(1), L(2),...) be the code
 word lengths. An adversary will choose an integer from
 a distribution P. Your task is to assign the codes so that
 the code lengths are as short as possible. More formally,

 you must try to minimize the inverse of the code efficiency,

 which is defined as the ratio of the mean code length to the
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 entropy. This optimization problem can be expressed as

 min sup lim z1 P(i)L(i)
 L p N-*oo -E 1 P(i)lg P(i

 The optimization is carried out subject to certain regu-

 larity conditions. Rissanen (1983) showed that there is

 a code that satisfies the minimization condition with

 code lengths Lo(n) = log*(n) + log2c, where log*(n)
 - log2n + log210g2n + *.*, where only the finitely

 many terms of the sum that are positive are included and

 c 2.865064. Rissanen then suggested adopting Q(n)
 = 2-Lo W as a universal prior for the integers. It can be
 shown that this prior is proper. Because Q(n) oc (1/n)
 x (1/ log2n) x (1/ log210g2n) -., we see that this will be
 close to the improper prior suggested by Jeffreys.

 Rissanen's prior is interesting and might well be useful

 in some cases. There are some difficulties with the prior,

 however. First, the motivation for turning the code length L
 into a prior is not clear. Second, because the prior is proper,

 we can find a constant no such that Q({1,.}.,no}) 1.
 (This is true for any proper prior.) In certain problems it

 will not be appropriate to assign a high probability to this
 particular set. Indeed, one reason for using improper priors

 is to avoid assigning high probability to any finite set.

 3.1 1 Other Methods

 Novick and Hall (1965) defined an "indifference prior"

 by identifying a conjugate class of priors and then selecting

 a prior from this class that satisfies two properties: that the
 prior should be improper, and that a "minimum necessary

 sample" should induce a proper posterior. In a binomial
 problem, for example, with the class of beta priors, they

 obtained the prior {p(1 - p)}-1 as in indifference prior.
 This prior is improper, but a single success and a single

 failure induce a proper posterior. Novick (1969) considered
 extensions to multiparameter problems.

 Hartigan (1971; 1983, sec. 5.5) defined the similarity of

 events E and F by S(E, F) = P(E n F)/(P(E)P(F)).
 For random variables X and Y with joint density fx,y
 and marginal densities Jx and fy, the definition is s(x, y)
 - fx,y(x,y)/(fx(x)fy(y)) whenever the ratio is well de-
 fined. Then (1) can be justified in two ways using this ap-
 proach: It makes present and future observations have con-

 stant similarity asymptotically, and it maximizes the asymp-

 totic similarity between the observations and the parameter.
 Piccinato (1978) considered the following method. A

 point 4o is a representative point of the probability P if

 0(, P) is minimized by 40, where 0 is some discrepancy
 measure; an example is p(4, P) = f t- X12 dP. A predic-
 tive distribution f(ylx) is conservative if the data point is
 always a typical point. The prior is called noninformative if
 it produces a conservative prediction. In a binomial problem

 with conjugate priors, and using the mean as a typical point,
 we get the prior {O(1 - O)}-1. A normal with a normal-
 gamma prior gives wCuy, c) o C-3.

 Using finitely additive priors for an exponential family,

 Cifarelli and Regazzini (1987) showed that a large class

 of priors give perfect association between future and past

 observations in the sense that there are functions , Rn

 -?> R such that

 P(XN _< X: O/n (XI, : Xn) <_ X)

 P(XN < X) = P(n(XI... ? Xn) < X)

 for all N > n,n = 1,2,... and x C IR. These might be
 regarded as reference priors. Under certain conditions, they

 showed that the only prior that gives E(XNI XI, Xn)
 = Xn is the uniform prior on the natural parameter. In
 a related paper (Cifarelli and Regazzini 1983), these au-

 thors showed that the usual conjugate priors for the ex-

 ponential family are the unique priors that maximize the

 correlation between XN and Xn subject to fixed values of

 var (E (Xn IO)) /var (Xn).
 Spall and Hill (1990) defined a least informative prior by

 finding the prior that maximizes expected gain in Shannon

 information. They approximated this by only looking over

 convex combinations of a set of base priors. As shown by

 Berger et al. (1989), maximizing this measure can lead to

 discrete priors; indeed, this is why Berger and Bernardo

 maximized this quantity asymptotically.

 4. ISSUES

 In this section we discuss four general issues, beginning

 in Section 4.1 with the interpretation of reference priors,

 where we argue that it is not necessary to regard a ref-
 erence prior as being noninformative for it to be useful.

 Reference priors are often improper and may depend on
 the experimental design. We discuss consequences of these

 characteristics in Sections 4.2 and 4.3. Finally, we consider
 the possibility of performing sensitivity analysis in conjunc-
 tion with the use of reference priors in Section 4.4.

 4.1 Interpretation of Reference Priors

 At the risk of oversimplification, it seems useful to iden-

 tify two interpretations of reference priors. The first inter-
 pretation asserts that reference priors are formal represen-

 tations of ignorance. The second asserts that there is no
 objective, unique prior that represents ignorance; instead,

 reference priors are chosen by public agreement, much like
 units of length and weight. In this interpretation, reference
 priors are akin to a default option in a computer package.
 We fall back to the default when there is insufficient infor-

 mation to otherwise define the prior.
 Let us pursue the second interpretation a bit further. In

 principle, we could construct a systematic catalog of refer-

 ence priors for a variety of models. The priors in the cata-
 log do not represent ignorance, but are useful in problems
 where it is too difficult to elicit an appropriate subjective
 prior. The statistician may feel that the reference prior is,
 for all practical purposes, a good approximation to any rea-
 sonable subjective prior for that problem.

 The first interpretation was at one time the dominant in-
 terpretation and much effort was spent trying to justify one

 prior or another as being noninformative (see Sec. 2). For

 the most part, the mood has shifted toward the second in-

 terpretation. In the recent literature, it is rare for anyone

This content downloaded from 138.38.187.162 on Mon, 07 Aug 2017 10:59:52 UTC
All use subject to http://about.jstor.org/terms



 1356 Journal of the American Statistical Association, September 1996

 to make any claim that a particular prior can logically be
 defended as being truly noninformative. Instead, the focus
 is on investigating various priors and comparing them to
 see if any have advantages in some practical sense. For ex-

 ample, Berger and Bernardo (1989) considered several pri-
 ors for estimating the product of two normal means. Rather
 than defending any particular prior on logical grounds, they

 instead compared the frequency properties of the credible

 regions generated by the priors. This is an example of using
 an ad hoc but practically motivated basis for defending a

 reference prior instead of a formal logical argument.
 A slight variant on the second interpretation is that, al-

 though the priors themselves do not formally represent ig-

 norance, our willingness to use a reference prior does rep-

 resent our ignorance-or at least it is acting as if we were

 ignorant. That is, according to this interpretation, when we

 decide to use a reference prior, the decision itself may be
 regarded as an admission of ignorance in so far as we are

 apparently unable (or we act as if we were unable) to de-
 termine the prior subjectively.

 4.2 Impropriety

 Many reference priors are improper; that is, they do
 not integrate to a finite number. In this section we discuss

 five problems caused by improper priors: incoherence and
 strong inconsistencies, the dominating effect of the prior,
 inadmissibility, marginalization paradoxes and impropriety
 of the posterior.

 4.2.1 Incoherence, Strong Inconsistencies, and Noncon-

 glomerability. An example from Stone (1976, 1982) nicely
 illustrates potential inconsistencies in using improper pri-
 ors. Suppose that we flip a four-sided die (a triangular pyra-
 mid) many times. The four faces of the die are marked with
 the symbols {a, b, a'-,b b-'}. Each time that we toss the die
 we record the symbol on the lowermost face of the die
 (there is no uppermost face on a four-sided die). The tosses
 result in a string of letters. Any time that the symbols a

 and a-l are juxtaposed in our list, they "annihilate" each
 other; that is, they cancel each other out. This also occurs
 for b and b-'. For example, if we tossed the die four times
 and obtained (a b b- a), then the resulting string is (a a),
 because b and b-1 annihilate each other. Denote the result-
 ing string by 0. (To avoid annoying edge effects, we assume
 that the length of 0 is large, so that the possibility of a null
 string is eliminated.) Now we suppose that one additional
 toss of the die is made and the resulting symbol is added to

 0. The annihilation rule is applied if appropriate, resulting
 in a new string x. The problem is to infer 0 from x.

 Having seen x, we note that there are four possible val-
 ues for 0, each with equal likelihood. For example, suppose
 that x = (a a). The extra symbol added by the last toss was
 either a, a- 1, b, or b-1, each with probability 1/4. So 0 is
 one of (a), (a a a), (a a b-1), or (a a b), each having likeli-
 hood 1/4. If we adopt a flat prior on 0 and formally apply
 the Bayes rule, then the posterior will give probability 1/4

 to each of these points and zero probability elsewhere. De-

 note the mass function of this posterior by wr(O x). Let A
 be the event that the last symbol selected resulted in an

 annihilation. We see that P(Alx) = 3/4 for every x. On
 the other hand, for fixed 0, a new symbol results in anni-

 hilation with probability 1/4; that is, P(AJO) = 1/4 for ev-
 ery 0. These two probability statements are contradictory.

 Because P(Alx) = 3/4 for every x: it seems we should
 conclude that P(A) = 3/4. But because P(A 0) = 1/4 for
 every 0, it seems we should conclude that P(A) = 1/4.
 Stone called such a phenomenon a strong inconsistency. It
 is also an example of a super-relevant betting procedure

 (Robinson 1979a, 1979b) and was related to a consistency
 principle by Bondar (1977).

 To see what went wrong, let us think about the improper

 prior as a limit of proper priors. Let wp be uniform on all
 strings of length p. It can be shown that for fixed x,7p (Al x)
 tends to 3/4 as p -* xc. It is tempting to argue that the pos-
 terior is valid, because it approximates the posterior using

 the proper prior 7rp. But 7rp induces a marginal probability

 MP on x rnp(x) = f (x 0)wr(0). Let XI, be the set of
 x's of length p or p + 1. When x C XP, w0(Olx) is concen-
 trated on a single point, and so wx(0lx) is a terrible approx-
 imation to -Fp(Olx). Recall that 7(01x) gives equal mass to
 four points. The total variation distance between 7(. lx) and
 7rp(. x) is thus 3/4 for x C Xp. (Recall that the total varia-
 tion distance between probability distributions P and Q is

 supA P(A) - Q(A)I, the sup being taken over all measur-
 able sets.) Stone showed that mp)(Xp) tends to 2/3. This
 is the essence of the problem: Although 7p( lx) converges
 to 7(. x) for fixed x, it does not follow that the two are
 close with increasingly high probability. This led Stone to

 suggest that we should seek posteriors with the property
 that the total variation distance between the formal poste-

 rior based on an improper prior and the posterior from a

 proper prior should tend in probability to zero for some
 sequence of proper priors (see Stone 1963, 1965, 1970).

 It turns out that strong inconsistencies and Stone's pro-

 posal for avoiding them are closely tied to the notion of
 coherence developed in a series of papers by Heath, Lane,
 and Sudderth (HLS) (Heath and Sudderth 1978, 1989; Lane
 and Sudderth 1983). Their notion of coherence is slightly
 stronger than the notion of coherence introduced by de
 Finetti (1937, 1972, 1974, 1975). In the HLS framework,
 probabilities are allowed to be finitely, rather than count-
 ably, additive. To see the difference between finitely addi-

 tive priors and improper priors, let P,, be the uniform mea-
 sure on [-n,n] and define P by P(A) - lim,,Pn(A)
 for all A for which the limit exists. P is an example of a
 finitely additive prior on the real line that is diffuse in the
 sense that it gives zero probability to every compact set. On
 the other hand, P is proper, because P(IR) - 1. Compare
 this to Lebesgue measure ,u, which gives positive measure
 to many compact sets but is improper because p(IR) = oo.
 One way to connect these two concepts in practice is to
 start with an improper prior and, as in the example just
 considered, generate a finitely additive prior by way of a
 limit of truncated proper priors.

 Formally, the HLS approach, which is inspired by Freed-

 man and Purves (1969), begins with a sample space X

 and a parameter space C-). Let 13(X) and L3(Ei) be C fields
 on these spaces. A model is a collection of probabilities
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 {po; 0 c 6} on 3(X). An inference is a collection of prob-
 abilities {q,; x c X} on B (0). For a bounded function X
 and a probability P, write P(5) = f X dP.

 A prior 7r on 0) defines a marginal m on the sample space

 X by way of the equation m(X) = fpo(9)r(dO) for all
 bounded b: X -* RF. An inference is coherent if it is not

 possible to place a finite number of bets, using odds based

 on qx, to guarantee an expected payoff that is greater than
 a positive constant, for every 0. Heath and Sudderth (1978)

 showed that an inference {qx; x c X} is coherent if and
 only if there exists a prior 7r such that

 f f (0, x)po (dx)7r (dO) = f (0, x)qx (dO)m (dx)

 for all bounded b: 0 x X -* Rt that are measurable with re-

 spect to 13(O) x 13(X), where m is the marginal induced by
 the prior 7r. This means that the joint measure can be dis-
 integrated with respect to the 0 partition or the x partition

 without contradiction. We call qx a posterior of -r. Heath
 and Sudderth (1989, thm. 3.1) proved that an inference

 {qx; x c X} is coherent if and only if it can be approximated
 by proper priors in the sense that inf f llqx - 4xflm (dx)
 = 0, where the infimum is over all (proper but possibly

 finitely additive) priors -r, where qx is the posterior of -r, m
 is the induced marginal and 11 11 is total variation norm. This
 is Stone's proposed condition, except that HLS allow for

 finitely additive distributions. Coherence in the HLS sense

 is essentially the same as requiring that there be no strong
 inconsistency (see Lane and Sudderth 1983). It is worth not-
 ing that incoherence can arise in standard statistical models.

 For example, Eaton and Sudderth recently showed that the

 right Haar prior for MANOVA models gives an incoherent

 posterior (1993a) and gave another example of incoherence
 for commonly used priors (1993b).

 In fact, incoherence and strong inconsistencies are man-
 ifestations of a phenomenon called nonconglomerability,

 which plagues every probability measure that is finitely
 but not countably additive. A probability P is conglom-
 erable with respect to a partition 13 if for every event

 A,k1 < P(AIB) < k2 for all B C B implies that k1
 < P(A) < k2. The Stone example exhibits nonconglom-

 erability for the following reason. Because P(Alx) = 3/4
 for all x, conglomerability would imply P(A) = 3/4. Sim-
 ilarly, P(A 0) = 1/4 for all 0 implies P(A) = 1/4. This
 contradiction implies that the x partition, the 0 partition,

 or both partitions must display nonconglomerability. The
 import of HLS coherence is to rule out nonconglomerabil-

 ity in the 0 and x margins. But we should not be sanguine

 just because conglomerability holds in these two margins.
 For one thing, HLS coherence is not always preserved un-

 der conditioning or under convex combinations (Kadane,
 Schervish, and Seidenfeld 1986). Furthermore, HLS coher-
 ence guarantees protection from nonconglomerability only
 in the 0 and x partitions of the joint space 0) x X. There is
 no guarantee that other strong inconsistencies cannot occur

 in other margins. In fact, every finitely additive probability

 that is not countably additive displays nonconglomerabil-

 ity in at least one margin (Hill and Lane 1986; Schervish,

 Seidenfeld, and Kadane 1984).

 The HLS approach is only one among many ways of

 strengthening De Finetti's notion of coherence. Other re-

 lated ideas have been considered by many authors, among

 them Akaike (1980), Berti, Regazzini, and Rigo (1991),

 Buehler (1959), Buehler and Feddersen (1963), Bondar

 (1977), Brunk (1991), Dawid and Stone (1972, 1973),

 Hartigan (1983), Pierce (1973), Regazzini (1987), Robin-

 son (1978, 1979a,b), Seidenfeld (1981), and Wallace (1959).
 One particular alternative worth mentioning is the notion

 using uniform approximations. For example, Mukhopa-

 dhyay and Das Gupta (1995) showed the following. Con-

 sider a location family that possess a moment-generating

 function. Let qrx be the posterior using a flat prior. For ev-

 ery ? > 0, there exists a proper, countably additive prior q

 with posterior qx such that d(7rx, qX) < ? for all x. (This
 implies HLS coherence.) A similar result was given by

 Mukhopadhyay and Ghosh (1995) where the existence of
 a moment-generating function is not assumed. It remains

 an open question how far this approach can be taken.

 4.2.2 The Dominating Effect of the Prior Sometimes

 reference priors can overwhelm the data even though the

 posterior is HLS coherent. This point was made force-

 fully by Efron (1970, 1973) in his examination of the
 many normal means problem, which we now describe.

 Our description closely follows work of Perlman and Ras-

 mussen (1975). Let Xi N(Oi, 1) independently, where
 i = 1, ... In, and consider the problem of estimating

 ZO?. If we adopt a flat prior on 0= (01,... On)"
 then the posterior for 0 is multivariate normal with mean

 X = (XI, . . ., Xn)Y and covariance equal to the identity ma-
 trix I. This posterior is coherent in the sense described in

 Section 4.2.1. The posterior Q(d<Ix) for ( is a noncentral
 x2 with n degrees of freedom and noncentrality parame-
 ter Y = EiX2; we denote this by (x _X(Y). Hence A~~~~~~~~~~~~

 EQXI,.Xn) = Y + n. There are reasons for
 thinking that ( is too large, as we now discuss.

 Let 0 have a N(0, al) prior. The posterior Qa(d Ix) for (
 is such that ( [a/(a + 1)] . X2 (aY/(a + 1)). The posterior
 Q approximates Qa when a is large in the sense that the
 total variation distance between Q and Qa is small when a

 is large but the means of Q and Qa are quite different. To
 see this, note that the expected value of (a = EQa (.) with
 respect to the marginal ma for x induced by the N(0, al)

 prior satisfies E((a) = E(fo), where 0 = Y - n is the
 uniformly minimum variance unbiased estimator (UMVUE)
 for this problem. This suggests that we can expect (a

 to be close to 4o. Perlman and Rasmussen (1975) con-

 firmed this intuition by showing 1fo - a p = 0 i(,;H)
 I I

 and 1 -(aj = o0(r) + 2n. In summary, Q(dIx) and
 Qa (dI x) tend to be close in distributional distance, but their
 means are not close. (There is no contradiction between

 these two statements: If Z1 - N(1, a2) and Z2 lN(0, a2),
 then E(Z1) -E(Z2) =1 for all a but the total variation dis-
 tance between the two distributions tends to 0 as a -* oc.)
 This shows that closeness in distributional distance, which

 is what coherence is all about, may not be strong enough to
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 avoid undesirable properties. Efron (1973) emphasized the

 difficulty in the following terms: Even when a is large, the
 prior can overwhelm the data. Furthermore, if we adopted

 a different prior that did not overwhelm the data, there still

 might be a different function of the parameters, ( = max Oi,
 for example, where the posterior once again might be driven
 by the prior rather than by the data.

 Similar problems occur with interval estimation for (.

 Under the posterior Q, a one-sided oa-level credible region

 for ( is [(,,n (Y) 00), where p(X2(Y) > )a ,n(Y)) = a.
 Stein (1959) showed that the coverage probability of this
 interval tends to zero as n -* oc. The strong disagree-

 ment with the confidence level suggests that something is

 amiss. (In his proof, Stein made the reasonable assumption

 that ( = o(nr2); Pinkham [1966] showed that if instead

 ( = Mnr + o(l), where M > 0 and h > 2, then the cov-

 erage and posterior probability agree asymptotically.)
 These results are disquieting. The difficulty is that in

 high-dimensional problems, the effects of the prior may be

 subtle; it may have little influence on some functions of the

 parameters but may have an overwhelming effect on oth-
 ers. The message from this and similar examples is that im-
 proper priors must be used with care when the dimension of

 the parameter space is large. Of course, that does not imply
 that proper priors are necessarily any better in these prob-
 lems. Indeed, the remarks by Efron (1973) were made to

 emphasize the practical difficulties with diffuse proper pri-

 ors that may accompany theoretical difficulties found with
 improper priors. We return to this point in Section 5.1.

 4.2.3 Inadmissibility. Under certain conditions, Bayes

 estimators based on proper priors lead to admissible esti-

 mators, but improper priors can lead to inadmissible Bayes
 estimators. Consider the many normal means problem from

 the previous subsection. Stein (1956) showed that the pos-
 terior mean using a flat prior is an inadmissible estimator
 of 0 under squared error loss if n > 3. Thus if L(0, 6)

 = Z(O - _6)2, then the Bayes estimator arising from the
 flat prior, namely X = (X1. ., Xn)', is such that there ex-
 ists another estimator 'y = (1,... , 'Yn)I with the property
 that EoL(0, ay) < EoL(0, X) for every 0, with strict inequal-
 ity for at least one 0. (In fact, one can construct estimates
 that uniformly beat X.)

 Although X is inadmissible in the many normal means
 problem, it is extended admissible (Heath and Sudderth
 1978). This means that there do not exist an E > 0 and

 an estimator 60 such that EoL(0, 6o) < EoL(0, X) - E for
 all 0. (This follows from the fact that X is minimax.) In
 general, every Bayes rule is extended admissible (even if
 the prior is only finitely additive). If the loss function is
 bounded and the set of decision rules is convex, then ev-

 ery extended admissible rule is Bayes (Heath and Sudderth
 1978, thm. 2). But, as we have seen, this does not guarantee
 admissibility.

 Eaton (1992) gave conditions under which the Bayes rule
 from an improper prior produces admissible decision rules

 for a class of decision problems called "quadratically regu-

 lar decision problems." He showed that these conditions are

 equivalent to the recurrence of a Markov chain with tran-

 sition function R(dO I ) = fx Q (dO x)P (dx I r1), where X is
 the sample space, Q(dOIx) is the posterior, and P(dx 0) is
 the sampling model. He showed that some prediction prob-
 lems are included in this class of decision problems.

 Another approach to choosing priors is to look for priors

 that are on the "boundary between admissibility and inad-
 missibility." This approach was considered by Berger and
 Strawderman (1993).

 4.2.4 Marginalization Paradoxes. Suppose that we

 have a model p(xjoa,3) and prior ir(oa,/) and that the
 marginal posterior 7r(alx) satisfies 7r(alx) = 7r(alz(x))
 for some function z(x). Further suppose that f(z a, /)

 = f (zIa). It seems that we should be able to recover ir(a Ix)
 from P(zla) and some prior wx(a). Indeed, if 7r(oa, f) is
 proper, then this will be the case, as we show. On the

 other hand, in some situations using improper priors, one

 obtains p(zla,/) = p(zla), but p(zla)7r(a) is not pro-
 portional to 7r(oajz(x)) for any ir(oa), in violation of that
 seemingly desirable recoverability condition. Dawid, Stone,
 and Zidek (1973) called this a "marginalization paradox"
 and presented many examples. Here we consider their ex-
 ample 1.

 Xl... . ,X,. are independent exponential random vari-
 ables. The first ( have mean l/i7 and the rest have mean
 l/(cQ7), with c =& 1 known and ( c {1, ... , n - 1}. The prior
 for r1 is taken to be uniform. Let zi = xi/xl, i = 1, ..., n. It
 turns out that the posterior is a function of z = (Zl, , Zn)
 only. The probability density for z is

 )-n
 n

 A(z|n,) )=APZO()X ( zi + CEzi) c ,
 1 (+i

 which is a function of ( only. But there is no choice of prior

 ir(() that makes p(zj(~)-x() proportional to ir((Jx), because

 7r((lx) X(7r() IEzi +c E Zi c-(.
 \1 (+i

 This contradiction can happen only if the prior is im-
 proper. To see this, we reproduce the proof from Dawid et
 al. (1973) that proper priors are immune to this paradox. Let
 the data be x = (y, z). By assumption, 7r(ol x) is a function
 of the data through z only, so we can write ir(a Ix) a(z, a)
 where

 a(z,a) f fp(y, zla, /)7r(a, /)do (8)
 a( fa ffp(y, zla, 0)wx(a, 3) do3da (8

 Now p(y, zla, /) = p(zal, )p(ylz, a, ) = p(zla)p(ylz,
 al, /). Substitute this into (8) to conclude that

 p(zal) z, a, /)w(al, /3) d/3

 =a(z, a) J J P(Y, z a, /3)wr(a, /3) d/3 da. (9)
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 Because the prior is proper, we may integrate both sides of

 (9) with respect to y to get

 p(z cv)r(cv) = a(z, a) Jp(z ca)7r(a) da.

 Thus p(zlv)7(cv)/J p(zl)7(cv) de = a(z, a) ( 7(cvx), so
 the marginal can be recovered from p(zlcv) and ir(cv).

 An analysis of the problem was presented by Dawid et al.

 (1973) and the ensuing discussion (see also Hartigan 1983,
 pp. 28-29). Of course, the problem is that we cannot ex-

 pect the rules of probability to hold when the measure has

 infinite mass. Sudderth (1980) showed that the marginaliza-

 tion paradox cannot happen with finitely additive priors. An

 interesting debate about the meaning of this paradox was

 presented by Jaynes (1980) and discussed by Dawid et al.

 (1973).

 4.2.5 Improper Posteriors. Sometimes, improper pri-

 ors lead to improper posteriors. Consider the following hi-
 erarchical model:

 Yij,, NGu2,u2)

 /1IT N(P, T2)

 for i 1,... n, where u2 is known. A seemingly natural
 choice for a prior is 7(,u, T) oc 1/T, but this leads to an
 improper posterior (see, e.g., Berger 1985, p. 187).

 In this problem application of Jeffreys's general rule,

 based on the marginal distribution of the data, that is,

 ylt - N(/,u, 2 + T2), leads to a proper posterior (cf. the
 discussion of one-way ANOVA in Box and Tiao 1973). It
 does so in many other problems as well, but there are coun-
 terexamples (in which Jeffreys's general rule leads to an im-
 proper posterior) and there are as yet no simple general con-
 ditions to ensure propriety. Ibrahim and Laud (1991) gave
 conditions that guarantee proper posteriors from Jeffreys's

 general rule for generalized linear models. Dey, Gelfand,
 and Peng (1993) extended this work for some overdispersed
 generalized linear models. (Related results were given by
 Natarajan and McCulloch, 1995.) Berger and Strawderman
 (1993) gave conditions in the problem of estimating many
 normal means, and Yang and Chen (1995) provided useful
 conditions for certain hierarchical normal models. Results

 that apply in greater generality have not been discovered.
 For the most part, characterizing improper priors that give

 proper posteriors remains an open problem.

 Improper posteriors will sometimes reveal themselves by

 creating obvious numerical problems, but this is not always

 the case. Because of increased computing power, analysts

 use models of ever greater complexity, which in turn makes
 it more difficult to check whether the posterior is proper. It
 would be helpful to have a diagnostic for detecting impro-
 priety.

 In principle one may avoid improper posteriors by using

 diffuse proper priors, but in practice this may not really
 solve the problem. In situations where intuitively reasonable

 priors produce improper posteriors, unless the likelihood

 function is highly peaked there may be extreme posterior

 sensitivity to the choice of the proper prior. We discuss

 this phenomenon further in Section 5.1. On the other hand,

 we argue in Section 5.2 that when the likelihood function

 is highly peaked, an improper posterior need not be very

 worrisome.

 4.3 Sample Space Dependence

 Another problem with reference priors is that they are

 often dependent on the sample space, sometimes called

 "design dependent" or "experiment dependent." For exam-

 ple, if we obtain several replications of a Bernoulli exper-

 iment, then (1) will depend on whether we used binomial

 sampling or negative binomial sampling. This is not only

 odd from the subjectivist viewpoint but is generally con-

 sidered undesirable, because it violates the likelihood prin-

 ciple, which states that two experiments that produce pro-

 portional likelihoods should produce the same inferences

 (Berger and Wolpert 1988). Indeed, reference prior analyses

 generally violate the likelihood principle, because the def-

 inition of a reference prior usually involves an expectation

 over the sample space. Jeffreys's rule involves the expected

 information, for example. It could be argued that the choice

 of design is informative and so the prior should depend on
 the design. Nonetheless, design dependence leads to some

 problems.

 Aside from violating the likelihood principle, sample

 space-dependent priors lead to situations where the pos-

 terior depends on what order the data are received. Yet for

 a fixed prior, we get the same posterior no matter what

 order the data are processed, assuming independence. Sup-

 pose that X1 is the number of successes in n tosses of

 a biased coin with success probability p. Then (1) gives

 r(p) Dc p- /2(l _ p)-1/2 and the posterior is wFi(pIXi)
 oc pXl-l/2(1 - p)n-Xi-1/2. Now suppose that we flip
 the coin until another head appears and suppose that this

 takes r tosses. Using wr1 as a prior and updating to in-
 clude the new information, we get the posterior 12 (p X1, r)
 OC p Xi?/2(I - p) .Xi?r1/2 On the other hand, if
 we did the experiment in reverse order, then we would
 begin with (1) for the negative binomial, namely, 7r(p)

 Dx p- 1(1 _ p)-1/2. Updating sequentially on X2,
 then X1 gives the posterior 12(pIX1,r) oc pXil+-l(1
 - p) n-X +r- l-1/2: so we get a different posterior depend-
 ing on what order that we process the data.

 Another type of sample space dependence is illustrated
 by right Haar priors (Sec. 3.2). Consider the following

 example from McCullagh (1992). Let xi,... ,xn have a
 Cauchy(,, v) distribution. The right Haar prior is wr(Q, v)
 ac 1/. Now, let y, = 1/cx,i 1 l,... n. Then the yi's
 are distributed as Cauchy(v,T), where v = [/G(u2 + u2)
 and T - u/(Gu2 + u2). Right Haar measure for (v,T) is
 7r(v,T) Dc IjT. Transforming to (,u,), we get 7r(,u,)
 Dx 1/(Gf(Q2 + u2)), which differs from the first prior. Thus
 our choice of prior will depend on how we choose to repre-

 sent the sample space. Put another way, we can get different

 right Haar priors depending on how we label the sample

 space.
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 4.4 Sensitivity Analysis

 There now exists a substantial literature on sensitivity

 analysis in Bayesian inference. Recent accounts with exten-

 sive references include work of Berger (1984, 1990, 1994),

 Walley (1991), and Wasserman (1992). Most of this work
 is directed at quantifying the sensitivity of the posterior

 to the choice of prior and assumes that prior is a proper,

 subjectively elicited prior or that at least some features of

 the prior have been subjectively elicited. There is virtually

 no work on sensitivity analysis with respect to reference
 priors.

 Sensitivity analysis often proceeds by embedding the
 prior wr in a large class of similar priors F. The simplest
 class of priors is the i-contaminated class defined by

 F(7r) = {(1 - 6)7r + EQ; Q E P},

 where P is the set of all priors and E E [0,1] represents
 the uncertainty in the prior. Of course, this class is familiar
 in non-Bayesian robustness too (see Huber 1981 and Tukey

 1960, for example). If g(O) is some function of interest, then
 it is straightforward to compute

 EE (gIy)= inf Ep(gIx)
 P cJ'E (7r)

 and

 EE(gIy)= sup Ep(gIx).
 PerQ (X)

 These bounds may be plotted by E so we can assess the

 sensitivity to the prior. Now consider a N(O, 1) model with
 wr(O) oc c. An obvious way to use existing sensitivity tech-
 niques would be to regard the posterior to be the limit of

 the posteriors obtained from the sequence of priors lFa as
 a -* oc, where lFa is uniform on [-a, a]. As noted in Section
 4.2.1, this notion can be made rigorous by using probabil-
 ity limits of posteriors, though we will not worry about that

 here. If we define E.(O y) by

 E(OIy)= lim sup Ep(OIy)
 a-*oo PCEQ (ra)

 and define E.(01y) analogously, then it turns out that
 EE(01y) = -oc and E.(01y) = oo. Because the bounds are
 always infinite, the E-contaminated class cannot be used to
 assess sensitivity when starting with this uniform improper
 prior.

 This does not rule out the possibility of finding some
 other neighborhood structure that produces finite bounds
 for improper priors. DeRobertis and Hartigan (1981) found
 such a class defined in the following way: Let Fk be the set
 of all prior densities p such that

 p(0)7r(o) < k
 P (0) 7(0) -

 for almost all 0, b, where k varies from 1 to o0. We call this
 a density ratio class. (They considered a more general class,
 but we confine our attention to this special case.) Again it

 is easy to compute upper and lower bounds on posterior ex-

 pectations. Even when wr is improper, the bounds are usually
 finite and are easy to calculate. But this class achieves this

 pleasant behavior at the cost of being unrealistically small.

 For example, a Fk neighborhood of a N(O, 1) will never

 contain a N(a, 1) density if a * 0, no matter how large
 k is.

 All this leads to the following question: Is there a class

 that is larger than the density ratio class and that gives non-

 trivial bounds on posterior expectations if we interpret the

 posterior as a limit of posteriors from proper priors? The

 answer is no. Wasserman (1995) showed that subject to cer-

 tain regularity conditions, any class that gives finite bounds

 for improper priors is contained in a density ratio class.

 Because density ratio classes are already too small, this im-

 plies that there is no sufficiently large class that gives non-

 trivial bounds. Thus current methods for performing formal

 sensitivity analysis cannot be directly applied to improper
 reference priors.

 5. DISCUSSION

 Reference priors are a part of Bayesian statistical prac-

 tice. Often, a data analyst chooses some parameterization

 and uses a uniform prior on it. This is a particular choice of
 reference prior, however, and thus begs the questions and

 developments we surveyed here.

 Jeffreys's notion was that a prior could be chosen "by

 convention" as a "standard of reference." (We did not
 wish to imply an interchangeability of alternatives and thus

 avoided the term "conventional prior"; for a philosophical

 discussion of the notion of conventionality see Sklar 1976,
 pp. 88-112.) The term "reference prior" is intended to con-
 note standardization. There is a sense in which these priors

 serve as "defaults"; that is, choices that may be made au-
 tomatically without any contemplation of their suitability
 in a particular problem. Indeed, it is entirely possible that

 in future Bayesian software such default selections will be

 available (e.g., as reported in Wolfinger and Kass 1996).
 This should not undermine or replace inherently subjective

 judgment, but rather acknowledges the convenience that

 standardization provides.
 As we have seen, there are situations in which refer-

 ence priors lead to posteriors with undesirable properties.
 These include incoherence, inadmissibility of Bayes es-
 timators, marginalization paradoxes, sample space depen-
 dence, impropriety, and unsuspected marginal effects in
 high-dimensional problems. In practice, the most serious

 and worrisome of these are probably the latter two, though
 the others have collectively sent a strong signal of caution.

 5.1 The Use of Diffuse Proper Priors

 One response to the worries about reference priors in
 applications has been to use a proper prior that is quite dif-
 fuse. Box and Tiao (1973, p. 23) called such a prior locally
 uniform, meaning that its density is slowly varying over the
 region in which the likelihood function is concentrated. One
 might, for instance, truncate an improper reference prior so

 that its domain is compact and it becomes proper. An alter-

 native is to use a probability distribution, such as a normal,

 that has a very large spread.
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 As a practical device, this approach will work fine in
 many problems. But it does not have any fundamental abil-
 ity to avoid the difficulties that arise in using reference pri-
 ors. To specify the meaning of "quite diffuse," one must,
 for instance, determine the size of the compact set defining
 the domain in the truncation case or pick the spread when
 using a distribution such as a normal. It is certainly possi-
 ble to make a choice so that the resulting proper prior wr* (0)
 succeeds in approximating the "uniformity" of a reference
 improper prior wr(0) (e.g., when 0 is one-dimensional, taking
 the normal standard deviation to be 1010 times the largest
 imaginable value of 0). But then the posterior based on
 wr* (0) will also approximate the formal posterior that would
 be obtained from wr(0). Although it is true that mathemat-
 ically the posterior based on wr*(0) will be proper, compu-
 tationally the two posteriors will behave in much the same
 way, and thus any serious data analytical difficulties present
 with the original posterior will remain with its modification.

 One kind of difficulty that a diffuse proper prior fails
 to avoid involves possible effects of prior domination, out-
 lined in Section 4.2.2. A second involves improper posteri-
 ors. To be more specific about the latter, let us return to the
 normal hierarchical model mentioned in Section 4.2.5 and
 consider what might happen if we try to replace the prior
 wrQ(u, T) OC 1/T (equivalently, a uniform prior on (,u, log T)),
 which leads to an improper posterior, with a diffuse proper
 prior. Suppose that we observe a small sample that pro-
 duces a likelihood mildly peaked at the boundary T = 0,
 providing modest information that T is small. We would
 like to express our knowledge about T using the posterior,
 but a ramification of impropriety is that we will be unable
 to obtain an inference interval for T having 95% posterior
 probability. Suppose that we try to get around this prob-
 lem by using a diffuse proper prior, say a normal with large
 variances on (,t, log T). Although that maneuver does create
 a proper posterior, it is of no practical use in this situation,
 because the posterior interval that we construct will be ex-
 tremely sensitive to our choice of prior variance on log T;
 we will find no range of variance values for which the lo-
 cation of our inference interval remains about the same.
 This limited-data situation is not unrealistic and rare, but
 rather quite common; in many hierarchical modeling prob-
 lems there is not much information about certain second-
 stage variance parameters, which may be nearly zero. Thus
 introducing diffuse proper priors on all unknown parame-
 ters can be dangerous in many frequently encountered set-
 tings.

 On the other hand, as we said, it is often possible to
 choose the spread in a proper prior to be suitably large
 while still obtaining reasonable results. But, as we indicate
 in the next section, this occurs when the improper prior
 itself will provide satisfactory results even if it leads to
 an improper posterior. Our point is that the introduction of
 diffuse proper priors does not provide an automatic solution
 to a serious problem: When difficulties with reference priors
 arise for a particular model it should serve as a warning
 about the likelihood function that care will be needed with
 proper priors as well. As we have said, we consider this

 an important practical matter and thus do not accept facile
 arguments implying that difficulties may be safely ignored
 by using proper priors.

 5.2 Reference Priors with Large Samples

 A more positive side to the viewpoint articulated by Box
 and Tiao (1973) appears when we consider what they called
 "data-dominated" cases, which could also be called large-
 sample cases; they occur when the posterior is dominated
 by a peaked likelihood function. Box and Tiao emphasized
 these situations, as did Jeffreys (in many places in his 1961
 book, for example). Here the difficulties associated with ref-
 erence priors will be greatly diminished, and results using
 any of the various possible choices for them will not be
 much different.

 Let us carry this observation a step further by consider-
 ing the case in which a reference prior leads to an improper
 posterior yet it is not hard to find a suitable proper prior that
 leads to sensible results. We return once again to the one-
 dimensional normal hierarchical model discussed in Sec-
 tions 4.2.2 and 5.1, for which the prior wrC(u, T) = T1 leads
 to an improper posterior. If the sample size is reasonably
 large and the data provide information that T is positive,
 then the likelihood function will have a sharp peak away
 from the boundary T = 0. In this situation, if one ignores a
 region for T near the boundary, then the posterior becomes
 integrable and well behaved; this amounts to substituting
 for the improper prior a proper version obtained by trun-
 cation to a compact set. (The set becomes compact if we
 also ignore very large values of T and both large and small
 values of ,.) Alternatively, we could use a normal prior
 on (,u, log T) that has very large variances. In principle, the
 choice of compact set, or the choice of normal variances,
 could be very influential on the results-as it would be in
 the small-sample scenario discussed in Section 5.1. But in
 this situation, in which the data provide a lot of information,
 there would be much leeway in the choice: A 95% poste-
 rior probability interval for T would, for instance, be quite
 stable for various alternative choices among these replace-
 ment priors. Furthermore, numerical procedures for poste-
 rior calculations to produce a 95% probability interval, for
 example, would likely perform well with the original prior,
 producing seemingly sensible results. Here the impropriety
 of the posterior becomes a mere technicality that may be
 ignored. We note that Jeffreys (1961, p. 212) also was not
 worried when he discussed an improper posterior distribu-
 tion for a median.

 To summarize our viewpoint, we see a dichotomy be-
 tween large-sample and small-sample problems. The dis-
 cussion of "default" methods should be confined primarily
 to problems of the former kind, whereas the latter require
 much more serious attention, beyond what reference anal-
 ysis can yield. In practice, it may not be immediately ap-
 parent whether a particular posterior is likely to be data
 dominated. In such intermediate cases, well-chosen refer-
 ence priors (leading to proper posteriors, for example) may
 play an additional role by allowing a data analyst to obtain
 preliminary results that would help determine whether the
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 likelihood is highly peaked, and how much additional effort
 should be expended on getting inferences from a particular
 model.

 With this large-sample motivation in mind, we note that
 several of the methods that we discussed rely specifically on
 asymptotic theory. For example, Jeffreys's general rule and
 its geometrical interpretation, the Berger-Bernardo rule,
 coverage matching methods, and methods based on data-
 translated likelihoods are all built from asymptotic argu-
 ments. Importantly, these all lead to Jeffreys's general rule
 or some modification of it. Thus we believe that Jeffreys's
 general rule, together with its variants (such as the Berger-
 Bernardo rule for parameter subsets), remains an acceptable
 standard or, to repeat a phrase used previously, it is "the de-
 fault among the defaults."

 5.3 Open Problems

 If we regard Jeffreys's general rule as a reasonable stan-
 dard, then two problems present themselves: computation
 of it and verification that it leads to a proper posterior. For
 some models, such as the normal families mentioned in Sec-
 tion 1, it is not difficult to compute the prior of Jeffreys's
 general rule. But for others, such as in many nonnormal
 hierarchical models, it may not be clear how the prior may
 be efficiently computed.

 Although we have pointed out that results based on im-
 proper posteriors are sometimes quite sensible, they will
 remain worrisome unless the data analyst has good reason
 to think that the posterior is data dominated (and away from
 troublesome boundaries). Thus it would be very helpful to
 know whether Jeffreys's general rule, and related methods,
 lead to proper posteriors for particular models. Some work
 along these lines was cited in Section 4.2.5, but more gen-
 eral results are needed.

 Finally, we come to the biggest issue: How is one to know
 whether a particular posterior is data dominated and thus
 whether a reference analysis is acceptable? If this could
 somehow be determined by following a reasonably straight-
 forward procedure, then Bayesian statistical practice would
 advance substantially.

 One simple idea is to use two alternative reference meth-
 ods and check the results for agreement. But this is at best
 rather indirect and, moreover, may be more informative
 about the two alternative priors than about the data. A use-
 ful partial answer ought to involve asymptotics, because
 we would be trying to determine whether the sample size
 is sufficiently large, and for this one might check whether
 the posterior is approximately normal as suggested by Kass
 and Slate (1992, 1994). Once again, however, the latter
 approach fails to directly assess how much the posterior
 would change if an appropriate informative prior were to
 replace the reference prior. The negative results of Wasser-
 man (1995) mentioned in Section 4.4 also indicate the dif-
 ficulty of this problem. Ultimately, there seems to be no
 way around the exercise of some subjective judgment; the
 only completely reliable way to assess the effect of using
 an appropriate informative prior is to do so. Nonetheless,

 we believe that this aspect of judgment may be improved
 by statistical research and experience as are the many other
 data analytic judgments that statistical scientists must make.

 We hope that our classification, summary, and discussion
 will help others better understand this diverse literature,
 and that the outstanding problems that we have noted will
 receive further examination.

 [Received December 1993. Revised November 1995.]
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 Frequencies," Biometrika, 35, 297-303.

 Suggests the prior p-1 (1 - p)-1 for a binomial parameter p when
 the event is expected to be rare.

 Hartigan, J. A. (1964), "Invariant Prior Distributions," Annals of Mathe-
 matical Statistics, 35, 836-845.

 Defines a prior h to be relatively invariant if h(z0)(dz0/d0) = ch(6)
 for some c, whenever z is a 1-1 differentiable transformation satis-

 fying f (zxIz6)(dzx/dx) = f (xI0) for all x and 0. An asymptotic
 version leads to an asymptotically locally invariant (ALI) prior de-
 fined in the one-dimensional case by

 () logh(6) =-E(f f2)/ E(f2),

 where f, = [&/&O log f (x 0)] and f2 = [a2/ao2log f (x 0)]o . Some
 unusual priors are obtained this way. For example, in the normial
 (p, 2) model, we get r(, ao) = a-5.

 (1965), "The Asymptotically Unbiased Prior Distribution," Annals
 of Mathematical Statistics, 36, 1137-1152.

 See Section 3.9.

 (1966), "Note on the Confidence-Prior of Welch and Peers," Jour-
 nal of the Royal Statistical Society, Ser. B, 28, 55-56.

 Shows that a two-sided Bayesian 1- a credible region has confidence
 size 1 - a + Q(n-1) for every prior. This is in contrast to the result
 of Welch and Peers (1963) where, for one-sided intervals, the prior
 from Jeffreys's rule was shown to have confidence 1 - a + 0(n-1)
 compared to other priors that have confidence 1 - a + 0(1/V'n).

 (1971), "Similarity and Probability," in Foundations of Statistical
 Inference, eds. V. P. Godambe and D. A. Sprott, Toronto: Holt, Rinehart
 and Winston, pp. 305-313.

 See Section 3.11.
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 Hartigan, J. A. (1979), Discussion of "Reference posterior distributions
 for Bayesian inference" by J. M. Bernardo (1979), Journ(al of the Royal
 Statistical Society, Ser. B, 41, 113-147.

 (1983), Bayes Theory, New York: Springer-Verlag.
 Heath, D., and Sudderth, W. (1978), "On Finitely Additive Priors, Coher-

 ence, and Extended Admissibility," The Annals of Statistics, 6, 333-345.

 See Section 4.2.1.

 (1989), "Coherent Inference From Improper Priors and From
 Finitely Additive Priors," The Annals of Statistics, 17, 907-919.

 Gives conditions such that the formal posterior obtained from an im-
 proper prior are coherent in the sense of Heath and Sudderth (1978).

 Hill, B. M. (1980), "On Some Statistical Paradoxes and Nonconglomer-
 ability," in Bayesian Statistics, eds. J. M. Bernardo, M. H. DeGroot,
 D. V. Lindley, and A. F. M. Smith, Valencia: University Press, pp. 39-
 65.

 Hill, B. M., and Lane, D. (1985), "Conglomerability and Countable Addi-
 tivity," Sankhya, Ser. A, 47, 366-379.

 (1986), "Conglomerability and Countable Additivity," in Bayesian
 Inference and Decision Techniques, eds. P. Goel and A. Zellner, Am-
 sterdam: Elsevier, pp. 45-57.

 Hills, S. (1987), "Reference Priors and Identifiability Problems in Non-
 Linear Models," The Statistician, 36, 235-240.

 Argues that the contours of the Jeffreys's prior give clues about re-
 gions of the parameter space that are nearly nonidentifiable.

 Hodges, J. (1992), "Who Knows What Alternative Lurks in the Hearts
 of Significance Tests?," in Bayesian Statistics 4, eds. J. M. Bernardo,
 J. 0. Berger, A. P. Dawid, and A. F. M. Smith, Oxford, U.K.: Oxford
 University Press, pp. 247-266.

 Howson, C., and Urbach, P. (1989), Scientific Reasoning: The Bayesianl
 Approach, La Salle, IL: Open Court.

 Huber, P. J. (1981), Robust Statistics, New York: John Wiley.
 Ibrahim, J. G., and Laud, P. W. (1991), "On Bayesian Analysis of Gener-

 alized Linear Models Using Jeffreys's Prior," Journal of the American
 Statistical Association, 86, 981-986.

 Gives sufficient conditions for the propriety of the posterior and the
 existence of moments for generalized linear models. In particular,

 shows that Jeffreys's prior leads to proper posteriors for many models.

 Ibrigamov, I. A., and H'asminsky, R. Z. (1973), "On the Information Con-
 tained in a Sample About a Parameter," 2nd International Symposium
 on Information Theory, 295-309.

 Jaynes, E. T. (1957), "Information Theory and Statistical Mechanics I, II,
 Physical Reviev, 106, 620-630; 108, 171-190.

 (1968), "Prior Probabilities," IEEE Transactions on Systems Sci-
 ence and Cybernetics, SSC-4, 227-241.

 Takes the position that objective priors exist and can often be found
 from the method of maximum entropy. Makes a connection between
 maximum entropy and frequency distributions. When a parameter
 is continuous, a base measure is needed. Recommends using group-
 invariant measures for this purpose when they are available. A critique

 of this approach was given by Seidenfeld (1987).

 (1980), "Marginalization and Prior Probabilities," in Bayesian
 Analysis in Econometrics and Statistics, ed. A. Zellner, Amsterdam:
 North-Holland, pp. 43-87.

 A rebuttal to the Dawid, Stone, and Zidek (1973) paper. Claims that
 the marginalization paradoxes are illusory and occur only because
 relevant information is ignored in the analysis. Specifically, the two
 conflicting posteriors in the marginalization paradox are based on dif-
 ferent background information I1 and 12, say. Jaynes's thesis is that
 if we are more careful about notation and write p(A x, I1) instead of

 p(Alx), then the paradox disappears. Further, he proposes that priors
 that are immune to the illusion of marginalization paradoxes are in-
 teresting in their own right. A rejoinder by Dawid, Stone, and Zidek
 follows.

 (1982), "On the Rationale of Maximum Entropy Methods," Pro-
 ceedings of IEEE, 70, 939-952.

 A discussion of maximum entropy methods for spectral analysis.
 Gives much attention to the observation that "most" sample paths
 give relative frequencies concentrated near the maximum entropy es-
 timate.

 (1983), Papers on Probability, Statistics and Statistical PhysicLs, ed.
 R. Rosenkrantz, Dordrecht: D. Reidel.

 A collection of some of Jaynes most influential papers. Includes com-
 mentary by Jaynes.

 Jeffreys, H. (1946), "An Invariant Form for the Prior Probability in Esti-
 mation Problems," Proceedings of the Royal Society of London, Ser. A,
 186, 453-461.

 Proposes his prior. (Material essentially contained in Jeffreys 1961.)

 (1955), "The Present Position in Probability Theory," British Jouir-
 nalfor Philosophy of Scien1ce, 5, 275-289.

 (1957), Scienitific Inferenice (2nd ed.) Cambridge, U.K.: Cambridge
 University Press.

 (1961), Theory of Probability (3rd ed.) London: Oxford University
 Press.

 An extremely influential text that lays the foundation for much of
 Bayesian theory. Jeffreys's rule is defined and hypothesis testing is
 studied in great detail. See Section 2.

 (1963), Review of The Founidationis of Statistical Inference, by
 L. J. Savage, M. S. Bartlett, G. A. Barnard, D. R. Cox, E. S. Pearson, and
 C. A. B. Smith, Technometrics, 5, 407-410.

 Kadane, J. B., Dickey, J. M., Winkler, R. L., Smith, W. S., and Peters, S. C.
 (1980), "Interactive Elicitation of Opinion for a Normal Linear Model,"
 Journal of the Amnericani Statistical Associationi, 75, 845-854.

 Kadane, J. B., Schervish, M. J., and Seidenfeld, T. (1986), "Statistical
 Implications of Finitely Additive Probability," in Bayesian Iniferenice and
 Decisioni Techniques, eds. P. Goel and A. Zellner, Amsterdam: Elsevier,
 pp. 59-76.

 Discusses various paradoxes that occur with finitely additive proba-
 bilities. Some of these problems are discussed in Section 4.2.1.

 Kakutani, S. (1948), "On Equivalence of Infinite Product Measures," The
 Annals of Mathematics, 2nd Series, 49, 214-224.

 Kashyap, R. L. (1971), "Prior Probability and Uncertainty," IEEE Trans-
 actions oni Information Theory, IT- 14, 641-650.

 See Section 3.9.

 Kass, R. E. (1981), "The Geometry of Asymptotic Inference," Technical
 Report 215, Carnegie Mellon University, Dept. of Statistics.

 (I 982), Comment on "Is Jeffreys a 'Necessarist'?," by A. Zellner,
 The American Statisticiani, 36, 390-391.

 (1989), "The Geometry of Asymptotic Inference," Statistical Sci-
 ence, 4, 188-234.

 See Section 3.6.

 (1990), "Data-Translated Likelihood and Jeffreys's Rule,"
 Biometrika, 77, 107-114.

 See Section 3.3.

 Kass, R. E., and Raftery, A. E. (1995), "Bayes Factors and Model Uncer-
 tainty," Journal of the American Statistical Association, 90, 773-795.

 Kass, R. E., and Slate, E. H. (1992), "Reparameterization and Diagnostics
 of Posterior Non-Normality" (with discussion), in Bayesiani Statistics 4,
 eds. J. M. Bernardo, J. 0. Berger, A. P. Dawid, and A. F. M. Smith,
 Oxford, U.K.: Clarendon Press, pp. 289-306.

 (1994), "Some Diagnostics of Maximum Likelihood and Posterior
 Normality," The Aninals of Statistics, 22, 668-695.

 Kass, R. E., and Vaidyanathan, S. (1992), "Approximate Bayes Factors aild
 Orthogonal Parameters, With Application to Testing Equality of Two
 Binomial Proportions," Journal of the Royal Statistical Society, Ser. B,
 54, 129-144.

 Kass, R. E., and Wasserman, L. (1995), "A Reference Bayesian Test for
 Nested Hypotheses and Its Relationship to the Schwarz Criterion," Jour-
 nal of the American Statistical Association, 90, 928-934.

 Keynes, J. M. (1921), A Treatise on Probability, London: Macmillan.
 Lane, D. A., and Sudderth, W. D. (1983), "Coherent and Continuous In-

 ference," The Annials of Statistics, 11, 1 14-120.

 Establishes that if either the sample space or parameter space is com-
 pact, then, assuming some weak regularity conditions, an inference is
 coherent if and only if the posterior arises from a proper, countably
 additive prior.

 Laplace, P. S. (1820), Essai Philosophique sur les Probabilites. English
 translation: Philosophical Essays on Probabilities (1951), New York:
 Dover.

 For extensive discussion of this and other early works involving

 "inverse probability" (i.e., Bayesian inference), see Stigler 1986,
 chap. 3.
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 Lindley, D. V. (1956), "On a Measure of the Information Provided by an
 Experiment," Annals of Mathematical Statistics, 27, 986-1005.

 (1958), "Fiducial Distributions and Bayes's Theorem," Journal of
 the Royal Statistical Society, Ser. B, 20, 102-107.

 Shows that for a scalar parameter and a model that admits a real-

 valued sufficient statistic, the fiducial-based confidence intervals agree

 with some posterior if and only if the problem is a location family
 (or can be transformed into such a form).

 (1990), "The 1988 Wald Memorial Lectures: The Present Position
 in Bayesian Statistics" (with discussion), Statistical Science, 5, 44-49.

 Lindley, D. V., Tversky, A., and Brown, R. V. (1979), "On the Reconcilia-
 tion of Probability Assessments" (with discussion), Journal of the Royal
 Statistical Society, Ser. A, 142, 146-180.

 McCullagh, P. (1992), "Conditional Inference and Cauchy Models,"
 Biometrika, 79, 247-259.

 Mitchell, A. F. S. (1967), Comment on "A Bayesian Significance Test for
 Multinomial Distributions," by I. J. Good, Journal of the Royal Statisti-
 cal Association, Ser. B, 29, 423.

 Points out that for the exponential regression model Eyx = a + /3px
 the uniform prior on a, ,B, log a, and p yields an improper posterior.
 Says that the nonlocation Jeffreys prior is unsatisfactory "on common-
 sense grounds" and proposes an alternative class of priors. (See also
 Ye and Berger 1991.)

 Moulton, B. R. (1993), "Bayesian Analysis of Some Generalized Error
 Distributions for the Linear Model," unpublished manuscript, Bureau of
 Labor Statistics, Division of Price and Index Number Research.

 Obtains Zellner's MDIP prior for the t family and the power expo-
 nential family.

 Mukerjee, R., and Dey, D. K. (1993), "Frequentist Validity of Poste-
 rior Quantiles in the Presence of a Nuisance Parameter: Higher-Order
 Asymptotics," Biometrika, 80, 499-505.

 Finds priors to match frequentist coverage to order o(n-1). It is as-
 sumed that 0 = (w, A) where the parameter of interest w and the
 nuisance parameter A are one-dimensional.

 Mukhopadhyay, S., and DasGupta, A. (1995), "Uniform Approximation of
 Bayes Solutions and Posteriors: Frequentistly Valid Bayes Inference,"
 Statistics and Decisions, to appear.

 See Section 4.2.1.

 Mukhopadhyay, S., and Ghosh, M. (1995), "On the Uniform Approxima-
 tion of Laplace's Prior by t-Priors in Location Problems," The Journal
 of Multivariate Analysis, to appear.

 See Section 4.2.1.

 Nachbin, L. (1965), The Haar Integral, New York: van Nostrand.
 Natarajan, R., and McCulloch, C. E. (1995), "A Note on the Existence of

 the Posterior Distribution for a Class of Mixed Models for Binomial
 Responses," Biometrika, 82, 639-643.

 Neyman, J., and Scott, E. L. (1948), "Consistent Estimates Based on Par-
 tially Consistent Observations," Econometrica, 16, 1-32.

 Nicolaou, A. (1993), "Bayesian Intervals With Good Frequentist Behavior
 in the Presence of Nuisance Parameters," Journal of the Royal Statistical
 Society, Ser. B, 55, 377-390.

 Novick, M. R. (1969), "Multiparameter Bayesian Indifference Procedures"
 (with discussion), Journal of the Royal Statistical Society, Ser. B, 31,
 29-64.

 Extends the procedure of Novick and Hall (1963) to multiparameter
 settings. Requires a consistency condition between conditionals of
 posteriors based on the multiparameter approach and the posterior
 from the single parameter approach. The prior for a bivariate normal
 depends on whether we cast the problem as a correlation problem or
 a regression problem.

 Novick, M. R., and Hall, W. J. (1965), "A Bayesian Indifference Proce-
 dure," Journal of the American Statistical Association, 60, 1104-1117.

 See Section 3.11.

 Peers, H. W. (1965), "On Confidence Points and Bayesian Probability
 Points in the Case of Several Parameters," Journal of the Royal Sta-
 tistical Society, Ser. B, 27, 9-16.

 Considers the problem of finding a prior that will give one-sided ae-
 level posterior intervals that have frequentist coverage ae + O(1/V'g)
 in multiparameter models. This extends work of Welch and Peers

 (1963).

 (1968), "Confidence Properties of Bayesian Interval Estimates,"
 Journal of the Royal Statistical Society, Ser. B, 30, 535-544.

 Finds priors to make various two-sided intervals-equal-tailed re-

 gions, likelihood regions and HPD regions-posterior probability con-

 tent and frequentist coverage match to order O(n-1).

 Peisakoff, M. P. (1950), "Transformation Parameters," unpublished doc-
 toral thesis, Princeton University.

 Pericchi, L. R. (1981), "A Bayesian Approach to Transformations to Nor-
 mality," Biometrika, 68, 35-43.

 Considers the problem of choosing priors for a normal problem when
 Box-Cox transformations are used. The goal is to avoid the data-

 dependent prior used by Box and Cox (1964). The resulting priors
 lead to inferences that mimic the maximum likelihood analysis.

 (1984), "An Alternative to the Standard Bayesian Procedure for
 Discrimination Between Normal Linear Models," Biometrika, 71, 575-
 586.

 Argues that in choosing between models M1, ... , Mk, the usual pos-
 terior tends to favor models having a small expected gain in informa-
 tion and thus offers an explanation for the Jeffreys-Lindley paradox.

 Suggests avoiding this situation via an unequal prior weighting of the
 models.

 Perks, W. (1947), "Some Observations on Inverse Probability, Including a
 New Indifference Rule," Journal of the Institute of Actuaries, 73, 285-
 334.

 Suggests taking the prior to be inversely proportional to the asymp-
 totic standard error of the estimator being used. When the estimator
 is sufficient, this amounts to Jeffreys's rule; Perks was not aware of

 Jeffreys's 1946 paper. Shows this rule to be invariant to differentiable
 transformations and treats the binomial case. In his motivational re-

 marks Perks seems to be groping for the concept of an asymptotic
 pivotal quantity. There is extensive philosophical discussion in the pa-

 per, and in contributions from discussants. Perks notes that when there
 is no sufficient estimator, his rule is not explicit, and that Jeffreys's
 paper, then in press, solved this problem.

 Perlman, M. D., and Rasmussen, U. A. (1975), "Some Remarks on Es-
 timating a Noncentrality Parameter," Communications in Statistics, 4,
 455-468.

 See Section 4.2.2.

 Phillips, P. C. B. (1991), "To Criticize the Critics: An Objective Bayesian
 Analysis of Stochastic Trends," Journal of Applied Econometrics, 6,
 333-364.

 See section 3.5.1.

 Piccinato, L. (1973), "Un Metodo per Determinare Distribuzioni Iniziali
 Relativamente Non-Informative," Metron, 31, 1-13.

 Derives priors that yield, for any experimental result, posteriors con-

 centrated on an empirical estimate of the parameter.

 (1977), "Predictive Distributions and Non-Informative Priors," in
 Transactions of the 7th Prague Conference on Information Theory,
 Prague: Publishing House of the Czechoslovak Academy of Sciences,
 pp. 399-407.

 See Section 3.11.

 Pierce, D. A. (1973), "On Some Difficulties in a Frequency Theory of
 Inference," The Annals of Statistics, 1, 241-250.

 Pinkham, R. S. (1966), "On a Fiducial Example of C. Stein," Journal of
 the Royal Statistical Society, Ser. B, 37, 53-54.

 See Section 4.2.2.

 Poirier, D. (1994), "Jeffreys's Prior for Logit Models," Journal of Econo-
 metrics, 63, 327-339.

 Polson, N. G. (1988), "Bayesian Perspectives on Statistical Modeling,"
 unpublished doctoral dissertation, University of Nottingham, Dept. of
 Mathematics.

 (1992a), "On the Expected Amount of Information From a Non-
 Linear Model," Journal of the Royal Statistical Society, Ser. B, 54, 889-
 895.

 (1992b), Discussion of "Non-Informative Priors," by J. K. Ghosh
 and R. Mukerjee, in Bayesian Statistics 4: Proceedings of the Fourth
 Valencia International Meeting, Oxford, U.K.: Clarendon Press, pp. 203-
 205.

 Press, S. J. (1996), "The de Finetti Transform," in Proceedings of the
 Fifteenth International Workshop on Maximum Entropy and Bayesian
 Methods, Boston: Kluwer Academic Publishers.
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 Considers finding priors and models that produce exchangeable se-

 quences of random variables such that the marginal distribution of the

 data has maximum entropy, possibly subject to moment constraints.

 Raftery, A. E. (1995), "Approximate Bayes Factors and Accounting for
 Model Uncertainty in Generalized Linear Models," Biometrika, to ap-
 pear.

 Regazzini, E. (1987), "De Finetti's Coherence and Statistical Inference,"
 The Annals of Statistics, 15, 845-864.

 Investigates conditions that guarantee that a posterior be coherent in

 the sense of de Finetti. This notion of coherence is weaker than that
 developed by Heath and Sudderth (1978, 1989) and Lane and Sudderth

 (1983).

 Rissanen, J. (1983), "A Universal Prior for Integers and Estimation by
 Minimum Description Length," The Annals of Statistics, 11, 416-431.

 See Section 3.10.

 Robinson, G. K. (1978), "On the Necessity of Bayesian Inference and the
 Construction of Measures of Nearness to Bayesian Form," Biometrika,
 65, 49-52.

 (1979a), "Conditional Properties of Statistical Procedures," The
 Annals of Statistics, 7, 742-755.

 (1979b), "Conditional Properties of Statistical Procedures for Lo-
 cation and Scale Parameters," The Annals of Statistics, 7, 756-771.

 Rosenkrantz, R. D. (1977), Inference, Method and Decision: Towards a
 Bayesian Philosophy of Science, Boston: Reidel.

 Rubin, D. B. (1984), "Bayesianly Justifiable and Relevant Frequency Cal-
 culations for the Applied Statistician," The Annals of Statistics, 12,
 1151-1172.

 Savage, L. J. (1962), 'Bayesian Statistics," in Recent Developments in In-
 formation and Decision Theory, eds. R. F. Machol and P. Gray, New
 York: Macmillan, reprinted in The Writings of Leonard Jimmie Savage-
 A Memorial Selection (1981), Washington, DC: American Statistical As-
 sociation and Institute of Mathematical Statistics.

 (1972), The Foundations of Statistics (2nd ed.), New York: Dover.
 Savage, L. J., Bartlett, M. S., Barnard, G. A., Cox, D. R., Pearson, E. S.,

 and Smith, C. A. B. (1962), The Foundations of Statistical Inferenice,
 London: Methuen.

 Schervish, M. J., Seidenfeld, T., and Kadane, J. B. (1984), "The Extent
 of Non-Conglomerability of Finitely Additive Probabilities," Zeitschrift
 fur Wahrscheinlictkeitstheorie und Verwandte Gebiete, 66, 205-226.

 Schwarz, G. (1978), "Estimating the Dimension of a Model," The Annals
 of Statistics, 6, 461-464.

 Seidenfeld, T. (1979), "Why I am not an Objective Bayesian: Some Reflec-
 tions Prompted by Rosenkrantz," Theory and Decision, 11, 413-440.

 Critiques works of Rosenkrantz (1977) and, more generally, objec-
 tive Bayesian inference. Emphasizes inconsistencies that arise from
 invariance arguments and from entropy methods based on partial in-
 formation.

 (1981), "Paradoxes of Conglomerability and Fiducial Inference,"
 in Proceedings of the 6th Internationial Congress on Logic Methodology
 and Philosophy of Science, eds. J. Los and H. Pfeiffer, Amsterdam:
 North-Holland.

 (1987), "Entropy and Uncertainty," in Foundations of Statistical
 Inference, eds. I. B. MacNeill and G. J. Umphrey, Boston: Reidel, pp.
 259-287.

 See Section 3.4.

 Severini, T. A. (1991), "On the Relationship Between Bayesian and Non-
 Bayesian Interval Estimates," Journal of the Royal Statistical Society,
 Ser. B, 53, 611-618.

 Shows that in some cases some priors give HPD regions that agree
 with nominal frequentist coverage to order 0(n-3/2).

 (1993), "Bayesian Interval Estimates Which are Also Confidence
 Intervals," Journal of the Royal Statistical Society, Ser. B, 55, 533-540.

 Shows how to choose intervals so that posterior probability content
 and frequentist coverage agree to order 0(n-3/2) for a fixed prior.

 Shafer, G. (1976), A Mathenmatical Theory of Evidence, Princeton, NJ:
 Princeton University Press.

 Shannon, C. E. (1948), "A Mathematical Theory of Communication," Bell
 Systems Technical Journal, 27, 379-423, 623-656.

 Shimony, A. (1973), "Comment on the Interpretation of Inductive Proba-

 bilities," Journal of Statistical Physics, 9, 187-19 1.

 Sinha, S. K., and Zellner, A. (1990), "A Note on the Prior Distributions of
 Weibull Parameters," SCIMA, 19, 5-13.

 Examines Jeffreys's prior, Zellner's prior, and Hartigan's (1964)

 asymptotically locally invariant prior for the Weibull.

 Skala, H. J. (1988), "On v-Additive Priors, v-Coherence, and the Existence
 of Posteriors," in Risk, Decisioni and Rationality, ed. B. R. Munier, Dor-
 drecht: Reidel, pp. 563-574.

 Sklar, L. (1976), Sp)ace, Time, and Spacetime, Berkeley: University of Cal-
 ifornia Press.

 Smith, A. F. M., and Spiegelhalter, D. J. (1980), "Bayes Factors and Choice
 Criteria for Linear Models," Journal of the Royal Statistical Society, Ser.
 B, 42, 213-220.

 Spall, J. C., and Hill, S. D. (1990), "Least-Informative Bayesian Prior
 Distributions for Finite Samples Based on Information Theory," IEEE

 Transactions on Alutomatic Control, 35, 580-583.

 See Section 3.11.

 Spiegelhalter, D. J., and Smith, A. F. M. (1982), "Bayes Factors for Linear
 and Log-Linear Models With Vague Prior Information," Journal of the
 Royal Statistical Society, Ser. B, 44, 377-387.

 Obtains priors for computing Bayes factors by using an imaginary
 prior sample. This sample is the smallest sample that would just favor

 the null hypothesis.

 Stein, C. (1956), "Inadmissibility of the Usual Estimator for the Mean of
 a Multivariate Normal Distribution," in Proceedings of the Third Berke-
 ley Symposium on Mathematical Statistics and Probability, 1, Berkeley:
 University of California Press, pp. 197-206.

 Establishes the now famous result that the maximum likelihood esti-

 mator (and hence the Bayes estimator using a flat prior) of the mean
 for a multivariate normal is inadmissible for dimensions greater than

 or equal to 3.

 (1959), "An Example of Wide Discrepancy Between Fiducial and
 Confidence Intervals," Annals of Mathematical Statistics, 30, 877-880.

 See Section 4.2.2.

 (1965), "Approximation of Improper Prior Measures by Prior Prob-
 ability Measures," in Bernoulli-Bayes-Laplace Anniversary Volume: Pro-
 ceedings of an Intern1ational Research Seminar Statistical Laboratory,
 eds. Jerzy Neyman and Lucien M. Le Cam. New York: Springer-Verlag,
 pp. 217-240.

 (1985), "On the Coverage Probability of Confidence Sets Based
 on a Prior Distribution," in Sequential Methods in Statistics, Banach
 Center Publications 16, Warsaw: PWN-Polish Scientific Publishers, pp.
 485-514.

 Examines the argument of Welch and Peers (1963) showing that one-
 sided ca-level posterior Bayesian intervals based on (1) have coverage
 a + 0(1/In). Gives a different proof and then makes an extension for
 the case where the parameter space is multidimensional and there is
 one parameter of interest. (This is the basis of Tibshirani 1989.)

 Stigler, S. M. (1982), "Thomas Bayes's Bayesian Inference," Journal of
 the Royal Statistical Society, Ser. A, 145, 250-258.

 Argues that Bayes's use of a uniform prior for the parameter 0 of a
 binomial was not based on the principle of insufficient reason applied
 to 0 but rather to Xn, the number of successes in n trials. Requiring
 this for each n implies a uniform prior for 0.

 (1986), The History of Statistics: The Measurement of Utncertaintv
 Before 1900, Cambridge, MA: The Belknap Press of Harvard University
 Press.

 Stone, M. (1963), "The Posterior t Distribution," Annals of Mathematical
 Statistics, 34, 568-573.

 Shows that the prior w(,t,cr) x 7-1 may be justified because the
 posterior is the probability limit of a sequence of proper priors. Sim-
 ilar results, of much greater generality, were proved by Stone (1965,
 1970) and are related to the notion of coherence (Sec. 4.2.1).

 (1964), "Comments on a Posterior Distribution of Geisser and
 Cornfield," Journal of the Royal Statistical Society, Ser. B, 26, 274-276.

 Establishes that one of the priors discussed by Geisser and Cornfield
 (1963) for inference in the multivariate normal model cannot be justi-
 fied as the probability limit of a sequence of proper priors, see Section
 4.2.1. (Also, see Geisser 1964.)

 (1965), "Right Haar Measures for Convergence in Probability to

 Invariant Posterior Distributions," AnnMals of Mathematical Statistics, 36,
 440-453.

 See Section 3.2.
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 (1970), "Necessary and Sufficient Conditions for Convergence in
 Probability to Invariant Posterior Distributions," Annals of Mathematical
 Statistics, 41, 1349-1353.

 See Section 3.2.

 (1976), "Strong Inconsistency From Uniform Priors" (with discus-
 sion), Journal of the American Statistical Association, 71, 114-125.

 See Section 4.2.1.

 (1982), "Review and Analysis of Some Inconsistencies Related to
 Improper Priors and Finite Additivity," in Logic, Methodology and Phi-
 losophy of Science VI, Proceedings of the Sixth International Congress
 of Logic, Methodology and Philosophy of Science, Amsterdam: North-
 Holland, pp. 413-426.

 See Section 4.2.1.

 Stone, M., and Dawid, A. P. (1972), "Un-Bayesian Implications of Im-
 proper Bayes Inference in Routine Statistical Problems," Biometrika,
 59, 369-375.

 Investigates two marginalization paradoxes arising from improper pri-
 ors. The first involves estimating the ratio of two exponential means;
 the second involves estimating the coefficient of variation of a normal.
 More examples have been considered by Dawid, Stone, and Zidek
 (1973).

 Stone, M., and Springer, B. G. F. (1965), "A Paradox Involving Quasi-Prior
 Distributions," Biometrika, 52, 623-627.

 Considers some anomalies in a one-way random effects model using
 improper priors. For example, a Bayesian who uses only a marginal
 likelihood for inference about the mean and marginal variance ends
 up with a more concentrated posterior for ,t than a Bayesian who
 uses the whole likelihood. (See Box and Tiao 1973, pp. 303-304, for
 a comment on this paper.)

 Sudderth, W. D. (1980), "Finitely Additive Priors, Coherence and the
 Marginalization Paradox," Jotrnal of the Royal Statistical Society, Ser.
 B, 42, 339-341.

 Shows that the marginalization paradox does not occur if finitely ad-
 ditive distributions are used and the posterior is appropriately defined.

 Sun, D. (1995), "A Note on Noninformative Priors for Weibull Distribu-
 tions," unpublished manuscript.

 Sun, D., and Ye, K. (1995), "Reference Prior Bayesian Analysis for Normal
 Mean Products," Journal of the American Statistical Association, 90,
 589-597.

 Extends the work of Berger and Bernardo (1989) for estimating the
 product of normal means. Here the number of means is n > 2. In-
 cludes a discussion of computation and frequentist coverage.

 (1 994a), "Inference on a Product of Normal Means With Unknown
 Variances," Technical Report 94-13, Virginia Polytechnic Institute and
 State University, Dept. of Statistics.

 (1996b), "Frequentist Validity of the Posterior Quantiles for a Two-
 Parameter Exponential Family," Biometrika, to appear.

 Sweeting. T. J. (1984), "On the Choice of Prior Distribution for the Box-
 Cox Transformed Linear Model," Biometrika, 71, 127-134.

 Argues that Pericchi's (1981) prior for the normal model with Box-
 Cox transformations is inappropriate. Instead, derives a prior based
 on invariance arguments.

 (1985), "Consistent Prior Distributions for Transformed Models,"
 in Bayesian Statistics 2, eds. J. M. Bernardo, M. H. DeGroot, D. V.
 Lindley, and A. F. M. Smith, Amsterdam: Elsevier Science Publishers,
 pp. 755-762.

 Constructs priors for models that are transformations of standard
 parametric models. This generalizes the work of Sweeting (1984) on
 Box-Cox transformations. The goal is to use priors that satisfy certain
 invariance requirements while avoiding priors that cause marginaliza-
 tion paradoxes.

 Thatcher, A. R. (1964), "Relationships Between Bayesian and Confidence
 Limits for Predictions," Jotrnal of the Royal Statistical Society, Ser. B,
 26, 176-210.

 Considers the problem of setting confidence limits on the future num-
 ber of successes in a binomial experiment. Shows that the upper limits
 using the prior 7r(p) x 1/(1 -p) and the lower limits using the prior
 7r(p) x i/p agree exactly with a frequentist solution.

 Tibshirani, R. (1989), "Noninformative Priors for One Parameter of Many,"
 Biometrika, 76, 604-608.

 See Section 3.7.

 Tukey, J. W. (1960), "A Survey of Sampling From Contaminated Dis-
 tributions," in Contributions to Probability and Statistics, ed. I. Olkin,
 Stanford, CA: Stanford University Press, pp. 448-485.

 Villegas, C. (1971), "On Haar Priors," in Foundations of Statistical Infer-
 ence, eds. V. P. Godambe and D. A. Sprott, Toronto: Holt, Rinehart &
 Winston, pp. 409-414.

 Argues for the right Haar measure when the parameter space is
 the group of nonsingular linear transformations. Then derives the
 marginal distribution for the covariance matrix. Also shows that the
 marginal distribution for the subgroup of upper triangular matrices is
 right invariant. See Section 3.2.

 (1972), "Bayes Inference in Linear Relations," Annials of Mathe-
 matical Statistics, 43, 1767-91.

 (1977a), "Inner Statistical Inference," Journal of the American Sta-
 tistical Association, 72, 453-458.

 Argues for the o(b,ucr) C-2 in the location-scale problem based
 on invariance. Also shows that the profile likelihood region for ,t
 has posterior probability that is a weighted average of conditional
 confidence levels. Argues that the prior o(,u) x cr-1 requires the
 "external" judgment of independence.

 (1977b), "On the Representation of Ignorance," Journal of the
 Americani Statistical Association, 72, 651-654.

 Uses a scale-invariance argument to justify the prior -r(A) cx 1/A
 for a Poisson model. In a multinomial model, the prior 7r(pl,. , Pk)
 cx rIbp 1 is justified by requiring permutation invariance and con-
 sistency with respect to the collapsing of categories.

 (1981), "Inner Statistical Inference II," The Annals of Statistics, 9,
 768-776.

 Derives two priors, the inner and outer prior, for group-invariant mod-
 els. The inner prior is left Haar measure; the outer prior is right Haar
 measure. Shows that for the left Haar measure, the posterior prob-
 ability of the likelihood set is the posterior expected value of the
 conditional confidence level. Considers the scale multivariate normal.

 von Kries, J. (1886), Die Principien der Wahrscheinlichkeitsrechnung,
 Freiburg: Eine Logische Untersuchung.

 Wallace, D. L. (1959), "Conditional Confidence Level Properties," Annals
 of Mathematical Statistics, 30, 864-876.

 Walley, P. (1991), Statistical Reasoning With Imprecise Probabilities, Lon-
 don: Chapman and Hall.

 Wasserman, L. (1992), "Recent Methodological Advances in Robust
 Bayesian Inference" (with discussion), in Bayesian Statistics 4, eds.
 J. M. Bernardo, J. 0. Berger, A. P. Dawid, and A. F. M. Smith, Ox-
 ford, U.K.: Clarendon Press, pp. 583-602.

 (1995), "The Conflict Between Improper Priors and Robustness,"
 Journal of Statistical Planning and Inference, to appear.

 See Section 4.4.

 Welch, B. L. (1965), "On Comparisons Between Confidence Point Proce-
 dures in the Case of a Single Parameter," Journal of the Royal Statistical
 Society, Ser. B, 27, 1-8.

 Compares Bayesian intervals based on (1) to some other asymptot-
 ically accurate confidence intervals (see also Welch and Peers 1963
 and Sec. 3.7).

 Welch, B. L., and Peers, H. W. (1963), "On Formulae for Confidence Points
 Based on Integrals of Weighted Likelihoods," Journial of the Royal Sta-
 tistical Society, Ser. B, 25, 318-329.

 See Section 3.7.

 Wiener, N. (1948), Cybernetics, New York: John Wiley.
 Wolfinger, R. D., and Kass, R. E. (1996), Bayesian Analysis of Variance

 Components Models Via Rejection Sampling, Technical Report, Depart-
 ment of Statistics, Carnegie Mellon University.

 Yang, R., and Chen, M.-H. (1995), Bayesian Analysis for Random Co-
 efficient Regression Models Using Noninformative Priors, Journal of
 Multivariate Analysis, 55.

 Ye, K. (1993), "Reference Priors When the Stopping Rule Depends on the
 Parameter of Interest," Journal of the American Statistical Association,
 88, 360-363.

 Points out that Jeifreys's rule depends on the stopping rule and that
 if this is ignored, the coverage properties of the credible regions can
 be poor. AlLso considers the Berger-Bernardo prior for sequential ex-
 periments.
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 (1994), "Bayesian Reference Prior Analysis on the Ratio of Vari-
 ances for the Balanced One-Way Random Effects Model," Journal of
 Statistical Planning and Inference, 41, 267-280.

 Uses the Berger-Bernardo method for finding priors in the one-way
 random effects model when the ratio of variance components is of
 interest. Different groupings of the parameters give different models.
 Compares these priors.

 Ye, K., and Berger, J. (1991), "Noninformative Priors for Inferences in
 Exponential Regression Models," Biometrika, 78, 645-656.

 For the exponential regression model Y3 - N(a + /3px+xia, u2),
 the prior 7r(a, Q, o,,p) oc o -1 yields an improper posterior. Posits
 that Jeffreys's prior has undesirable features, citing Mitchell (1967).
 Considers the Berger-Bernardo prior for this problem and studies the
 frequentist coverage properties of the resulting intervals.

 Zabell, S. L. (1992), "R. A. Fisher and the Fiducial Argument," Statistical
 Science, 7, 369-387.

 Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics,
 New York: John Wiley. ..

 (1977), "Maximal Data Information Prior Distributions," in New
 Developments in the Applications of Bayesian Methods, eds. A. Aykac
 and C. Brumat, Amsterdam: North-Holland, pp. 201-215.

 See Section 3.8.

 (1982), "Is Jeffreys a 'Necessarist'?," The American Statistician,
 36, 28-30.

 Argues that Jeffreys should not be considered a necessarist, as he had
 been classified by Savage. This point was elaborated upon by Kass
 (1982) along the lines of Section 2.1, here.

 (1991), "Bayesian Methods and Entropy in Economics and
 Econometrics," in Maximum Entropy and Bayesian Methods, eds.
 W. T. Grandy, Jr. and L. H. Schick, Boston: Kluwer, pp. 17-31.

 (1995), "Models, Prior Information and Bayesian Analysis," The
 Journal of Econometrics, to appear.

 Considers using entropy methods, not just for finding priors but
 also for constructing models. Addresses such problems as common
 parameters in different data densities, iid and non-iid observations,
 exchangeable sequences, hyperparameters for hierarchical models,
 multinomial models, prior odds for alternative models and the deriva-
 tion of statistical models by maximizing entropy subject to particular
 side conditions.

 Zellner, A. (1996), "Past and Recent Results on Maximal Data Information
 Priors," Technical Report, Graduate School of Business, University of
 Chicago.

 Zellner, A., and Min, C. (1993), "Bayesian Analysis, Model Selection and
 Prediction," in Physics and Probability: Essays in Honor of Edwin T.
 Jaynes, eds. W. T. Grandy, Jr. and P. W. Milonni, Cambridge, U.K.:
 Cambridge University Press, pp. 195-206.

 Considers several problems, including a discussion of maximal data
 information priors (see sec. 3.8 with applications to some time series
 models) and a discussion on model selection and prediction.

 Zellner, A., and Siow, A. (1980), "Posterior Odds Ratios for Selected Re-
 gression Hypotheses," in Bayesian Statistics: Proceedings of the First
 International Meeting Held in Valencia, eds. J. M. Bemardo, M. H.
 DeGroot, D. V. Lindley, and A. F. M. Smith, Valencia: University of
 Valencia Press, pp. 585-647.

 Extends Jeffreys's approach to hypothesis testing for normal mean to
 deal with the normal linear multiple regression model.
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