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Let F be a probability distribution with support on the non-negative integers. Four meth-
ods for generating a simple undirected graph with (approximate) degree distribution
F are described and compared. Two methods are based on the so called configuration
model with modifications ensuring a simple graph, one method is an extension of the
classical Erdös-Rényi graph where the edge probabilities are random variables, and the
last method starts with a directed random graph which is then modified to a simple
undirected graph. All methods are shown to give the correct distribution in the limit of
large graph size, but under different assumptions on the degree distribution F and also
using different order of operations.
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1. INTRODUCTION

A graph consists of two sets of objects: a set of vertices, V , and a set of edges, E .
Each edge corresponds to a pair of vertices and the graph is said to be undirected
if these pairs are unordered so that no directions are associated with the edges.
Graphs with no duplicate edges and no loops—that is, with at most one edge
between each pair of vertices and with no edges between a vertex and itself—
are called simple. Furthermore, a graph is referred to as random if some kind of
randomness is involved in its construction. In this paper we will consider graphs
that are random in that the edges are generated by random mechanisms. The
question at issue is, given a set of vertices and a probability distribution F on the
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non-negative integers, how do we proceed to construct a simple undirected graph
where the degree of a randomly chosen vertex has distribution F?

The simplest random graph model is the Erdös-Rényi graph, which was
introduced in the late 50’s by Paul Erdös and Alfréd Rényi. (8,9) In fact they
introduced two, closely related, models. Given a set of n vertices and a number
m ≤ (n

2

)
, the first model, denoted by Gn,m, is defined as the ensemble of graphs

having exactly m edges, each possible graph appearing with equal probability. The
second model, denoted by Gn,p, is obtained by independently adding each one of
the

(n
2

)
possible edges of the graph with some probability p. The distribution of

the vertex degree is then binomial with parameters n − 1 and p and, if p is scaled
by 1/n, we get a Poisson distribution in the limit as n → ∞. Erdös-Rényi graphs
have been widely studied and thorough descriptions of the field can be found in
Refs. 4 and 12.

An area that has received a lot of attention within statistical physics during the
last few years is the use of graphs as models for various types of complex networks;
see e.g. Refs. 7 and 18 and the references therein. Examples of network structures
that have been studied are social networks, power grids, the structure of the internet
and various types of collaboration networks. Typically, this type of networks are
very large, making it impossible to describe them in detail. A natural approach
then is to let the edges representing the connections in the network be generated
by a random procedure designed so that the resulting graph captures the features
of the real-life network in question as well as possible. Since, as mentioned, the
networks are usually large, it is particularly urgent that the asymptotic properties
of the graph model agree with empirical observations.

An essential characteristic of a graph is the vertex degree and, in a
random graph, this is a random quantity. For instance, as mentioned above, in
the Gn,p model by Erdös and Rényi, the degree of a vertex is asymptotically
Poisson distributed. The Erdös-Rényi graphs have a very simple and appealing
mathematical structure and a lot of work has been done on the model. However,
empirical studies have shown that the degree distribution in many real-life
networks differs significantly from a Poisson distribution; see e.g. Ref. 15 (human
sexual relationships), (10) (physical structure of the internet) and(1) (movie actor
collaboration network). Complex networks typically have a more heavy-tailed
degree distribution, often specified by some kind of power law, meaning that
the number of vertices with degree k is proportional to k−τ for some exponent
τ > 1. This type of graphs is often referred to as scale-free graphs and there are
important features of such graphs that are missed out if they are approximated by
Erdös-Rényi graphs; see e.g. Ref. 1.

In view of the above, it is important to be able to generate random graphs with
other degree distributions than Poisson. The aim of this paper is to contribute at this
point by describing a number of algorithms that, given a probability distribution
F (which will later be subject to various restrictions), produces simple undirected
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graphs whose vertex degree is asymptotically distributed according to F (here,
clearly it is required that Supp(F) ⊆ N, where Supp(F) denotes the support of F).
To be more precise, given a set of n vertices and a random mechanism to generate
edges between them, let p(n)

k denote the probability of a randomly chosen vertex
having degree k and write F = {pk ; k ≥ 0}. Our task is then to design an edge
mechanism such that

(i) limn→∞ p(n)
k = pk ;

(ii) the resulting graph is simple and undirected.

In all applications mentioned above, the networks are simple and undirected.
Other applications might involve more complex networks, for instance the link
structure of the world-wide web constitutes a directed graph and bipartite graphs—
that is, graphs with two types of vertices and edges running only between unlike
types—are common within sociology. However, simple undirected networks is
indeed an important class in applications. The present work provides a rigorous
treatment of the asymptotic behavior of the vertex degree in a number of possible
methods for generating such graphs. Some of the methods/results are new, but
an important point of the paper is also to survey and gather previously known
material. To our knowledge, this type of comparative study with focus on the
vertex degree does not exist previously in the literature.

We mention also that there exist algorithms for generating simple graphs with
a given degree sequence d1, . . ., dn; here, di is a non-negative integer specifying
the degree of vertex i. For example, in McKay and Wormald(14) an algorithm is
described which, under certain conditions, produces a uniformly selected simple
undirected graph with the exact prescribed degree sequence. This is of course
even better than the algorithms studied in the present paper which only has the
correct degree distribution in the limit as the number of vertices tends to infinity.
However, the price one has to pay for this is a more complicated algorithm and more
restrictive assumptions about the degree distribution (the McKay and Wormald
criterion corresponds to the degree distribution having moments of order 4 + ε).
In the sequel we are hence not interested in obtaining a specific degree sequence,
but only in proving that the distribution converges to the intended one in the
limit.

The rest of the paper is organized as follows. In Sec. 2 we review the well-
known configuration model and describe how it can be used to generate simple
graphs with an arbitrary prescribed degree distribution. Sec. 3 treats a model
inspired by Chung and Lu(5,6) that generates simple graphs with mixed Poisson
degree distributions. In Sec. 4 we propose a method that is based on the introduction
of directed edges according to a suitably chosen distribution. This method produces
graphs with a degree distribution whose generating function contains a Poisson
factor. Finally, in Sec. 5 the methods are discussed and evaluated.
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2. THE CONFIGURATION MODEL

The configuration model was defined independently in Refs. 3 and 21, both
papers being inspired by Ref. 2. The model has later been analyzed in Refs. 16, 17
and 19 for instance. Given a probability distribution F, the model describes a way
to construct an undirected graph on n vertices, labelled v1, . . ., vn , having degree
distribution F. It is defined as follows. For each vertex vi , generate a degree di

independently from a random variable D with distribution F and attach di “stubs”
to vi . Then join the stubs of all vertices pairwise completely at random to form
edges between the vertices. To be more precise, first pick two stubs randomly
among all stubs in the graph and join them. Then pick two stubs at random from
the remaining �n

1 di − 2 stubs and join them, etc.
A few problems might occur in the construction of a graph according to

this algorithm. The first obvious problem is if the sum of all degrees, �i di , hap-
pens to be an odd number. In this case there will always be one remaining stub
left over in the pairing algorithm. However, unless n is odd and F is concen-
trated to the odd numbers, this problem is easily solved by either regenerating
the degrees until their sum is even or removing one stub chosen at random.
More serious problems arise when the aim is to generate a simple undirected
graph, that is, a graph without loops and multiple edges. In the configuration
model, it is clearly possible for a stub of a given vertex vi with di ≥ 2 to be
matched with another one of the stubs of vi , resulting in an edge from vertex
vi to itself, that is, a loop. Similarly, two stubs of vi could by chance be joined
with two stubs of the same other vertex, with the effect that a multiple edge is
created.

So what should we do if we insist on the resulting graph being simple? Two
obvious suggestions are (1): to remove loops and merge multiple edges into sin-
gle edges in the generated graph to obtain a simple graph as final product, or
(2): to redo the algorithm until a simple graph occurs by chance. These methods
will be referred to as “Erased configuration model” and “Repeated configuration
model” respectively. Both methods make the degree distribution somewhat dif-
ferent from the intended one, but, as we will see, both of them have the right
degree distribution asymptotically under certain moment conditions on the degree
distribution.

2.1. The Erased Configuration Model

Let Fn = {p(n)
j ; j ≥ 0} denote the degree distribution in the erased configu-

ration model with stub distribution F = {p j ; j ≥ 0}, that is, p(n)
j is the probability

that a randomly selected vertex has degree j in the erased configuration model
on n vertices. Also, write N (n)

j for the number of vertices having degree j in the
resulting graph.
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Theorem 2.1. If F has finite mean, then

(a) Fn → F as n → ∞;
(b) N (n)

j /n → p j in probability, that is, the empirical distribution converges
in probability to F.

The proof of this theorem is a bit lengthy, although not hard. It is found in
the Appendix.

Theorem 2.1 is not true without the assumption that the degree distribution
F has finite mean, at least not when the tail decays like 1 − F(x) ∼ cx−α where
α < 1. A heuristic argument for this goes as follows. For such a decay of the tail,
it is known that �n

i=1 Di and max{1≤i≤n} Di are of the same order, see e.g. Ref. 11,
[Ch 13.11]. As a consequence, the probability that a stub is connected to a stub of
the maximal node is non-negligible. It follows that any node with original degree
2 or more has positive probability (bounded away from 0) to have more than one
stub connected to the maximal node. But whenever this happens, the degree of the
node is decreased in the erased configuration model and it follows that the new
degree distribution will converge to a distribution stochastically smaller than F.

In view of the above, there is no hope that the degree distribution will stay
unaffected by the erasing procedure when the mean is infinite. However, if the
degrees are conditioned to be smaller than na for some a ∈ (0, 1) it turns out that
Theorem 2.1 remains valid. Indeed, in many applications it is artificial to include
vertices with degree larger than na for some a ∈ (0, 1), and hence it is sometimes
natural with this type of conditioned degrees. Write Fn,a for the degree distribution
in the erased configuration model on n vertices where the number of stubs Dn,a

i of
vertex vi has distribution

P
(
Dn,a

i = j
) = P(Di = j)

P(Di ≤ na)
for j = 0, . . . , na,

with Di ∼ F . Also, let N (n,a)
j be the number of vertices with degree j in the graph

after loops and multiple edges have been erased.

Theorem 2.2. For any a ∈ (0, 1), we have

(a) Fn,a → F as n → ∞;
(b) N (n,a)

j /n → p j in probability.

Except for a few minor modifications, the proof of this theorem is analogous
to the proof of Theorem 2.1. The modifications are described in the Appendix.
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2.2. The Repeated Configuration Model

The repeated configuration model consists of performing the configuration
model until it produces a simple graph. As pointed out in Ref. 16, it follows from
results in Ref. 13 that the probability of obtaining a simple graph in the configu-
ration model converges to a strictly positive constant c if the degree distribution
has finite second moment. This implies that a simple graph is then obtained after
a geometrically distributed number of tries. Of course, such a graph might not
be typical for the configuration model. In particular one might suspect that the
number of edges is somewhat smaller than normal, since there by chance were
no multiple edges or loops. However, below we use the result from(16) to show
that the resulting degree distribution converges to the right one provided that it
has finite second moment. In fact, we show the stronger result that the empirical
degree distribution converges to the intended distribution.

Let Fn = {p(n)
j ; j ≤ 0} be the degree distribution of the repeated configura-

tion model on n vertices with stub distribution F = {p j ; j ≥ 0} and write N (n)
j

for the number of vertices having degree j in the resulting graph.

Proposition 2.1. Assume that F has finite second moment. Then

(a) Fn → F as n → ∞;
(b) N (n)

j /n → p j in probability.

Proof: We first show part (b). Let D1, . . ., Dn be i.i.d. random variables with
distribution F and let p̃(n)

j = |{Di ; Di ,= j, i = 1, . . ., n}|/n denote the empirical
distribution of these n variables; here | · | denotes set cardinality. Also, write Sn

for the event that the configuration model on n vertices produces a simple graph.
The empirical distribution of the repeated configuration model is the same as the
distribution of the vector with elements p̃(n)

j conditioned on Sn and we hence have
to show that

P
(| p̃(n)

j − p j | > ε|Sn

) → 0 as n → ∞ for any ε > 0 and any j. (1)

Trivially, we have

P
(| p̃(n)

j − p j | > ε|Sn

) = P
(| p̃(n)

j − p j | > ε, Sn

)
P(Sn)

≤ P
(| p̃(n)

j − p j | > ε
)

P(Sn)

The numerator here converges to 0 by the law of large numbers and, by the cited
result of Ref. 16, the assumption that F has finite second moment implies that
P(Sn) → c > 0. Hence (1) follows.
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To show (a), note that, since 0 ≤ N (n)
j /n ≤ 1, by dominated convergence, the

result in (b) implies that E[N (n)
j /n] → Pj . But E[N (n)

j ] = �n
i=1 p(n)

j ,= np(n)
j , and

the desired result follows. �

3. THE GENERALIZED RANDOM GRAPH

In an Erdös-Rényi graph on n vertices, the edges are defined by independent-
Bernoulli random variables {Xi j }i< j with P(Xi j = 1) = p, the event Xi j = 1
signifying the presence of an undirected edge between vi and v j . By definition,
X ji = Xi j for i < j and Xii = 0 for all i. In this section, we consider a model
where the probability pi j of an edge between two vertices vi and v j is allowed
to depend on i and j. Special cases of this have been considered in Refs. 5, 6
and 20. We will show that, if the probabilities {pi j } are picked randomly in a
suitable way, we get a graph with a degree distribution that is easy to characterize
in the limit when n → ∞; see Theorem 3.1. Also, the degrees of the vertices are
approximatively independent. The model will be referred to as the generalized
random graph.

First, we develop the model in more detail. To this end, let X = {Xi j }i< j

be the array of edge indicators and write P(Xi j = 1) = pi j = 1 − qi j . Since the
indicators are independent, the probability density of X is given by

P(X = x) =
∏
i< j

p
xi j

i j q
1−xi j

i j .

Introducing the odds ratios ri j = pi j/qi j and noting that pi j = ri j/(1 + ri j ) and
qi j = 1/(1 + ri j ), this can be written

P(X = x) =
∏
i< j

(1 + ri j )
−1

∏
i< j

r
xi j

i j .

Moreover, if we specialize to the situation where ri j = ui u j for some parameters
u = {u j }n

i=1 with ui ≥ 0 and define G(u) := �i< j (1 + ui u j ), we get

Pu(X = x) = G−1(u)
∏
i< j

(ui u j )
xi j

= G−1(u)
∏

i

udi (x)
i (2)

where di (x) is the degree of the vertex vi in the configuration x, that is, di (x) :=
� j xi j . This is a “canonical” distribution in the sense of statistical mechanics with
sufficient statistics {di (X )} and from (2) we see that the conditional distribution
of X given that {di (X ) = di } is uniform, that is, all graphs with a given degree
sequence {di } have the same probability. This is indeed a nice property of the
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model, motivating the use of the parametrization ri j = ui u j instead of the one
defined by pi j = ui u j used in Refs. 5 and 6.

To obtain a formula for the joint generating function of the degree vector
{di (X )}, note that, by (2), we have

Eu

[∏
i

t di (X )
i

]
=
∑

x

Pu(X = x)
∏

i

t di (x)
i

= G−1(u)
∑

x

∏
i

(ti ui )
di (x).

Since �x Pu(X = x) = 1, it follows from (2) that �x�i u
di (x)
i = G(u), and hence

we get

Eu

[∏
i

t di (X )
i

]
= G−1(u)G(tu)

=
∏
i< j

1 + ti ui t j u j

1 + ui u j
. (3)

Now consider the situation where the parameters {ui } are suitably scaled random
variables, more precisely, we set ui = Wi/

√
n, where {Wi } are i.i.d. random vari-

ables with finite mean µw and Wi ≥ 0. Write {Di } for the degrees of the vertices
in this setting, that is, Di = di (X ) = di (X (W )). The following theorem specifies
the limiing distribution of the Di :s.

Theorem 3.1. Consider a generalized random graph on n vertices with edge
probabilities defined by pi j/qi j = Wi W j/n, where {Wi } are i.i.d. random variables
with mean µw and finite moment of order 1 + ε for some ε > 0. We have:

(a) The limiting distribution of a degree variable Dk as n → ∞ is mixed
Poisson with parameter Wkµw.

(b) For any m, the variables D1, . . .Dm are asymptotically independent.

Proof: By taking tk = t , where 0 ≤ t ≤ 1, and ti = 1 for i 
= k in (3), it follows
that

E
[
t Dk

] = E

∏
i 
=k

1 + Wi Wkt/n

1 + Wi Wk/n

 .

Using the Taylor expansion log(1 + x) = x + O(x2), we see that∏
i

1 + Wi Wkt/n

1 + Wi Wk/n
= exp

{
Wk�i Wi

n
(t − 1) + Rn

}
,
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where Rn = O(W 2
k �i W 2

i /n2). To estimate Rn , note that W 2
i ≤ maxl{Wl}Wi . The

law of large numbers implies that �i Wi/n → µw and, since the Wl :s have finite
1 + ε-moment, we have that max1≤l≤n{Wl}/n → 0. It follows that Rn converges
almost surely to 0 as n → ∞. Hence

E
[
t Dk

] → E
[
eWkµw(t−1)

]
as n → ∞,

and part (a) follows. To establish (b), note that, by taking ti = 1 for i > m in (3)
and proceeding as in proving (a), it can be seen that

E

[
m∏

i=1

t Di
i

]
→

m∏
i=1

E
[
eWi µw(ti −1)

]
as n → ∞.

Hence the joint generating function of (D1, . . . , Dm) asymptotically factorizes
into a product of mixed Poisson generating functions, as desired. �

Now recall that our task is to generate a simple random graph with a given
degree distribution F. According to the above theorem, if F is mixed Poisson with
parameter distribution Q with finite moment of order 1 + ε, then this can be done
by using the generalized random graph model with i.i.d. weights {Wi } distributed
according to Q/

√
µQ , where µQ denotes the mean of Q. As mentioned in the

introduction, the degree distribution in many real-life networks is heavy-tailed,
the probability of a vertex having degree k being proportional to k−τ for some
exponent τ > 1. It is not hard to see that heavy-tailed mixed Poisson distributions
with this type of power law behavior can be accomplished by choosing a heavy-
tailed parameter distribution with the desired exponent.

In this context it is clearly of interest to know to what extent Theorem 3.1 is
still true if the distribution of {Wi } has a heavy tail such that E[Wi ] = ∞. Indeed,
according to the theorem below, if we assume that the tail of the distribution varies
regularly in the sense that P(Wi > w) ∼ cw−α as w → ∞, for some α ∈ (0, 1)
and some constant c > 0, then the distribution of the Dk:s is still mixed Poisson,
but with a different scaling and different mixing distribution. Note that a power law
distribution with exponent τ ∈ (1, 2) satisfies the tail condition with α = τ − 1.

Theorem 3.2. Suppose that {Wi } are i.i.d. with P(Wi > w) ∼ cw−α , for some
α ∈ (0, 1) and c > 0, and consider the generalized random graph with pi j/qi j =
Wi W j/n1/α . Then:

(a) The limiting distribution of a degree variable Dk is mixed Poisson with
parameter γ W α

k where γ = c
∫∞

0 (1 + x)−2x−αdx.
(b) For any m, the variables D1, . . . , Dm are asymptotically independent.

Remark. As pointed out above, the tail behavior of a mixed Poisson distribution
with a power law parameter is determined by the parameter. Hence, for a mixed
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Poisson variable Y with parameter γ W α
k , we have that

P(Y ≥ y) ≈ P
(
W α

k ≥ y
)

= P(Wk ≥ y1/α)

∼ cy−1

that is, the distribution is a power law with exponent τ = 2.

Proof of Theorem 3.2: As in Theorem 3.1 we have

E[t Dk ] = E

∏
i 
=k

1 + Wi Wkt/n1/α

1 + Wi Wk/n1/α

 .

Let us first fix the value of Wk , say Wk = w. Then

�n(w) : E[t Dk |Wk = w] = E

∏
i 
=k

ϕ

(
Wi

n1/α

) , (4)

with ϕ(x) := (1 + xwt)/(1 + xw). Write V (x) for the distribution function of Wi .
Since all {Wi } are independent, we have

�n(w) =
(∫ ∞

0
ϕ
( x

n1/α

)
V (dx)

)n−1

=
(

1 +
∫ ∞

0
(ϕ(x) − 1)V (n1/αdx)

)n−1

=
(

1 +
∫ ∞

0
ϕ′(x)(1 − V (n1/αx)) dx

)n−1

,

where the last equality follows from partial integration. In order to see that the last
integral is O(1/n), note that

n

∫ ∞

0
ϕ′(x)(1 − V (n1/αx)) dx =

∫ ∞

0

ϕ′(x)

xα
(n1/αx)α(1 − V (n1/αx)) dx .

By the assumption, yα(1 − V (y)) is a bounded function which converges to c > 0
as y → ∞, and hence, by bounded convergence,

lim
n→∞

∫ ∞

0

ϕ′(x)

xα
(n1/αx)α(1 − V (n1/αx)) dx = c

∫ ∞

0

ϕ′(x)

xα
dx .

= (t − 1)wαγ,

where γ := c
∫∞

0 (1 + x)−2x−αdx . It follows that limn→∞ �n(w) = e(t−1)γwα

,
which is recognized as the generating function of a Poisson distribution with
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mean γwα . Integrating over w = Wk , we see that the limit distribution of Dk is
mixed Poisson with mean γ W α

k and generating function

E[t Dk ] = E
[
e(t−1)W α

k
] =

∫ ∞

0
e(t−1)wα

V (dx).

The proof of (b) is analogous to the proof of Theorem 3.1 and is therefore
omitted. �

We finish this section by showing that the empirical degree distribution in the
generalized random graph converges to the asymptotic mixed Poisson degree
distribution in the graph. To this end, when {Wi } have finite mean µW , write
N (n)

k for the number of vertices having degree k in the generalized random graph
with edge probabilities defined by pi j/qi j = Wi W j/n, and let F = {pk ; k ≥ 0}
be a mixed Poisson distribution with parameter WµW . Similarly, when P(Wi >

w) ∼ cw−α for some α ∈ (0, 1), the number of vertices having degree k for edge
probabilities defined by pi j/qi j = Wi W j/n1/α is denoted by N (n,α)

k , and we write
Fα = {pα

k ; k ≥ 0} for a mixed Poisson distribution with parameter γ W α , where γ

is defined in Theorem 3.2.

Proposition 3.1. As n → ∞ in the generalized random graph, we have:

(a) If {Wi } have finite moment of order 1 + ε, then N (n)
k /n → pk in probability

for all k.
(b) If P(Wi > w) ∼ cw−α for some α ∈ (0, 1), then N (n,α)

k /n → pα
k in prob-

ability for all k.

Proof: The proofs of part (a) and part (b) are analogous and we give here the
proof of (a). Write P (n) for the probability law of the generalized random graph
on n vertices and let 1{·} denote the indicator function. Clearly N (n)

k = �n
i=11{Di =k}

and hence, using symmetry, it follows that

E
[

N (n)
k

]
= �n

i=1 P (n)(Di = k)

= n P (n)(D1 = k).

By Theorem 3.1 (a), we have P (n)(D1 = k) → pk as n → ∞, meaning that
E[N (n)

k /n] → pk . The desired result is now obtained from Chebyshev’s inequality

if we can show that Var(N (n)
k /n) → 0. To do this, note that

E
[
(N (n)

k )2
]

= E

∑
i

12
{Di =k} +

∑
i 
= j

1{Di =k}1{D j =k}


= n P (n)(D1 = k) + n(n − 1)P (n)(D1 = k, D2 = k),
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where the last equality follows from symmetry. By Theorem 3.1 (b), the variables
D1 and D2 are asymptotically independent and hence we have P (n)(D1 = k, D2 =
k) → p2

k as n → ∞. Using the formula Var(X ) = E[X2] − E[X ]2, it follows that

Var(N (n)
k /n) → 0 as n → ∞ and we are done. �

4. DIRECTED GRAPHS WITH REMOVED DIRECTIONS

In this section we propose a construction method where directed edges are
introduced according to some distribution G. The directions of the edges are
then disregarded and multiple edges are fused together, producing a graph whose
asymptotic degree distribution F is the convolution of the distribution G and a
Poisson distribution with parameter µG , where µG denotes the mean of G; see
Proposition 4.1.

To describe the construction, write V = {v1, . . . , vn} for the vertex set. Let
G be a probability distribution with finite mean µG and Supp(G) ⊂ N, and write
{gk} for the probabilities associated with G. Also, define Gn via the probabilities

g(n)
k :=


gk for k = 0, 1, . . . , n − 2;∑∞

k=n−1 gk for k = n − 1;

0 for k ≥ n,

that is, Gn is a truncated version of G with support on {0, 1, . . . , n − 1}. The graph
is constructed as follows:

1. Associate independently to each vertex vi a random variable Yi with
distribution Gn , and add to the graph Yi directed edges pointing out
from vi . The vertices to be hit by the edges starting at vi are chosen
randomly without replacement from V{vi }, independently for all vertices.
This defines a directed random graph Gdir(n, G) = {V, Edir}.

2. To obtain a simple undirected graph G(n, G) = {V, E}, the directions of
the edges are disregarded and multiple edges are fused together, that is,
an undirected edge between the vertices vi and v j is included in E as soon
as at least one of the directed edges (vi , v j ) and (v j , vi ) is present in Edir.

Let Di denote the degree of the vertex vi in the resulting undirected graph. To
find an expression for Di , write Vout

i for the set of vertices that are hit by edges
pointing out from vi in Edir and write V in

i for the set of vertices that sends outgoing
edges to vi in Edir. Define Zi = |V in

i ∩ ¬Vout
i | (here, ¬ denotes set complement) so

that, in words, Zi indicates the number of edges in Edir pointing at vi and starting
at vertices that are not hit by outgoing edges from vi . Some thought reveals that

Di = Yi + Zi .
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Clearly all variables {Zi } have the same distribution, which we denote by H(n,G).
Also remember that Yi ∼ Gn for all i. Hence the degree variables {Di } are identi-
cally distributed and we write F(n,G) for their distribution. The following theorem
is the aforementioned characterization of the asymptotic degree distribution as the
convolution of G and a Poisson distribution with the same mean as G.

Theorem 4.1. As n → ∞, we have

(a) Gn → G;
(b) H(n,G) → Po(µG), where Po(µG) is a Poisson distribution with mean µG;
(c) F(n,G) → G ∗ Po(µG).

Proof: The claim in (a) is immediate from the definition of Gn . To prove (b), fix
a vertex vk and, for i 
= k, let Xik be a 0-1 variable, indicating whether there is a
directed edge from vi to vk in Edir or not. Since there are Yi outgoing edges from vi

and the vertices to be hit by these edges are chosen randomly without replacement
from the n − 1 vertices in V\{vi }, we have P(Xik = 1) = Yi/(n − 1). Also, we
have that

Zk =
∑

i 
=k;vi ∈¬Vout
k

Xik .

Hence, by conditioning on {Yi }, we obtain

E[t Zk ] = E

 ∏
i 
=k;vi ∈¬Vout

k

(
1 + Yi

n − 1
(t − 1)

) ,

and, since {Yi } are i.i.d. with distribution Gn and |¬Vout
k \{vk}| = n − 1 − Yk , it

follows that

E[t Zk ] =
(

1 + µGn

n − 1
(t − 1)

)n−1

E

[(
n − 1

n − 1 + µGn (t − 1)

)Yk
]

.

Here µGn denotes the mean of the distribution Gn . As n → ∞, the first factor
on the right hand side converges to eµG (t−1), which is recognized as the moment
generating function of a Poisson variable with parameter µG , and the left hand
side converges to 1. Hence part (b) is established.
To prove (c), note that E[tYk+Zk ] = E[tYk E[t Zk |Yk]]. The inner expectation is cal-
culated as above and we get

E [tYk+Zk ] =
(

1 + µGn

n − 1
(t − 1)

)n−1

E

[(
t(n − 1)

n − 1 + µGn (t − 1)

)Yk
]

.
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As n → ∞, the second factor converges to the generating function of G and,
as pointed out above, the limit of the first factor is the moment generating function
of a Poisson distribution with mean µG . �

Having proved that the asymptotic distribution of the vertex degree inG(n, G)
is G ∗ Po(µG), the obvious question is which distributions can arise in this way.
We will not give a full answer to this question — it is presumably difficult — but
rather give a few examples of distributions that can indeed be obtained and also
specify how the distribution G of the number of outgoing arrows at the vertices
should be chosen in these cases.

Power Law Distribution

First note that, if G is a power law distribution with exponent τ , then G ∗
Po(µG) will be so as well. Hence, if we are not interested in the exact form of the
resulting degree distribution, but only in that its tail decays as a certain power law,
then the G(n, G)-model is clearly applicable.

Poisson Distribution

The simplest case when the exact form of the resulting degree distribution
is important is the Poisson distribution. Clearly, a Poisson distribution F with
parameter µ f is accomplished by choosing G to be a Poisson distribution with
parameter µ f /2.

Mixed Poisson Distribution

A mixed Poisson distribution can be obtained as a limiting degree distribution
in G(n, G) given a certain condition (5) on the law of the parameter. To see this,
assume that F is mixed Poisson with parameter law Q with finite mean µQ . The
moment generating function of F then equals

ψF (t) =
∫ ∞

0
ex(t−1)d Q(x).

Since it should hold that F = G ∗ Po(µG), we have ψG(t) = ψF (t) − eµG (t−1) and
µG = µQ/2, and hence

ψG(t) =
∫ ∞

0
e(x−µQ/2)(t−1)d Q(x).

To ensure that this is the generating function of a probability distribution, let
ξQ = inf Supp(Q) and assume that

ξQ − µQ/2 > 0. (5)
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Then

ψG(t) =
∫ ∞

0
ey(t−1)d Q̃(y),

where Q̃(y) = Q(y + µQ/2), that is, Q̃ is the distribution Q translated µQ/2
units to the left. This means that G is mixed Poisson with parameter distribution
Q̃. Hence, a mixed Poisson distribution with parameter distribution Q that satis-
fies ξQ − µQ/2 > 0, is obtained as a limiting degree distribution in G(n, G) by
choosing G to be mixed Poisson with parameter distribution Q̃.

Compound Poisson Distribution

Let F be compound Poisson with Poisson parameter λ and discrete summand
distribution R with finite mean µR and generating function ψR(t) (recall that a
compound Poisson distribution is the law of a sum of a Poisson number of i.i.d.
random variables). Then µF = λµR and ψF (t) = eλ(ψR(t) − 1), and, if we want
the limiting degree distribution in G(n, G) to be F, then we must have

ψG(t) = ψF (t)e−µG (t−1)

= eλ(ψR (t)−1)−µG (t−1). (6)

Here, since µG = λµR/2 and ψR(t) = ∑∞
0 rktk , where {rk} denotes the probabil-

ities associated with R, the exponent in (6) can be written as

λ

((
r0 + µR

2

)
+
(

r1 − µR

2

)
t +

∞∑
k=2

rktk − 1

)
.

Assume that

r1 > µR/2, (7)

and introduce a new distribution R′ by defining

r ′
k =


r0 + µR/2 for k = 0;
r1 − µR/2 for k = 1;
rk for k ≥ 2,

that is, R′ is obtained by transferring the mass µR/2 from the point 1 to the point
0 in the distribution R (note that a consequence of (7) is that R must be chosen so
that µn < 2). With R′ defined in this way we have

ψG(t) = eλ(ψR′ (t)−1),

that is, G is a compound Poisson distribution with Poisson parameter λ and sum-
mand distribution R′. Hence a compound Poisson distribution F with summand
distribution R that satisfies (7) is obtained as limiting degree distribution inG(n, G)



1392 Britton, Deijfen and Martin-Löf

by choosing G to be a compound Poisson distribution with summands distributed
according to R′.

5. CONCLUDING COMMENTS

In the present paper, four different ways of generating simple undirected
graphs with a prescribed degree distribution are described. The methods are re-
ferred to as the erased configuration model, the repeated configuration model,
the generalized random graph and the directed graph with removed directions
(DGRD) respectively. None of the methods is able to produce a graph that has the
desired distribution exactly—that is, in a finite graph, a randomly selected vertex
will not have exactly the correct degree distribution—but under certain regularity
assumptions, it is shown that all four methods give the right distribution in the
limit as the number of vertices n tends to infinity.

Let us summarize the assumptions on the degree distribution for the different
methods: In order for the repeated configuration model to produce a simple graph
in stochastically bounded time as n → ∞, the second moment of the degree
distribution has to be finite and for the generalized random graph model with
edge probabilities scaled by n to be applicable, finite moment of order 1 + ε for
some ε > 0 is required. For the other two methods, finite mean is sufficient. If the
degrees are conditioned on being smaller than nα for some a ∈ (0, 1), the erased
configuration model can handle distributions with infinite mean as well, and, with
a different scaling of the edge probability, also the generalized random graph can
be applied to infinite mean distributions.

As for the class of achievable distributions, the erased configuration model
and the repeated configuration model are both able to generate graphs with any
limiting distribution. The generalized random graph model can only produce
mixed Poisson distributions and the DGRD-model gives distributions that can
be expressed as the convolution of a discrete distribution with finite mean and
a Poisson distribution with the same mean—a class containing certain types of
mixed Poisson and compound Poisson distributions for instance. However, if only
tail properties of the desired distribution are specified, both the generalized random
graph model and the DGRD-model can do the job.

Concerning the number of operations needed to produce the graph, it is easily
seen to be of order n for all methods except the generalized random graph, which
requires O(n2) operations. Note however that an approximation of the generalized
random graph model that uses only O(n) operations can be obtained by replacing
the conditional degree distribution of a given vertex, conditional on the Wi : s,
with a Poisson distribution with the same mean. Among the methods using O(n)
operations the erased configuration model and the DGRD-model require less
operations: The repeated configuration model generates a graph a geometrically
distributed number of times whereas the other two methods only generates a graph
once and then erases a few edges.
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A perhaps more subjective opinion is that the generalized random graph
model is probabilistically more tractable than the other methods. Its construction is
straightforward, containing less dependence structures, implying that it is easier to
show property results for this model. Also, it was easily seen from the construction
of the general random graph that the obtained graph is uniform in the sense that
all graphs with a given degree sequence have the same probability.

Finally we mention that, apart from the degree distribution, there is of course
a number of other properties of a graph of which it would also be desirable to
have control over, for instance clustering and path length. Rigorous analyzes of
algorithms incorporating these aspects is to a large extent lacking and it is a future
task to further investigate and develop methods for generating random graphs
specifying such properties.

APPENDIX

Proof of Theorem 2.1: First note that, since 0 ≤ N (n)
j /n ≤ 1, by dominated

convergence, the result in (b) implies that E[N (n)
j /n] → p j . But E[N (n)

j ] =∑n
i=1 p(n)

j = np(n)
j , and hence (a) follows from (b).

To show (b), write Ñ (n)
j for the number of vertices that has degree j before

edges are erased to make the graph simple. By the law of large numbers Ñ (n)
j /n →

p j as n → ∞ and hence we are done if we can show that (Ñ (n)
j − N (n)

j )/n → 0 in

probability as n → ∞. Let M (n) be the number of vertices where at least one stub
is removed in the erasing procedure and note that Ñ (n)

j − N (n)
j ≤ M (n). Hence,

by Markovs inequality, it suffices to show that E[M (n)]/n → 0. To do this, for
i = 1, . . . , n, let Ei be the number of stubs attached to vi that are rubbed out in
the erasing procedure and define

M (n)
i =

{
1 if Ei ≥ 1;
0 if Ei = 0,

Also, let Di be the degree of vertex vi before loops and multiple edges have been
erased and write P (n) for the probability law of the erased configuration model
on n vertices (that is, averaged out also over the original degree {Di }). Since
M (n) = ∑n

i=1 M (n)
i and {M (n)

i } are equally distributed, we have

1

n
E
[
M (n)

] = 1

n

n∑
i=1

E
[

M (n)
i

]
= E

[
M (n)

1

]
= P (n)(E1 ≥ 1).
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The work lies in proving that P (n)(E1 ≥ 1) → 0 as n → ∞, or equivalently, that
P (n)(E1 = 0) → 1. Clearly this follows if we show that

P (n)(E1 = 0|D1 = j) → 1 for all j as n → ∞. (8)

To prove (8), write A j for the event that a given stub belonging to a vertex with j
stubs in total avoids being removed in the erasing procedure. Below we show that

P (n)(A j ) → 1 for all j as n → ∞. (9)

This establishes (8): After having merged one of the j stubs of the vertex v1 to a
stub belonging to some other vertex, saving it from being erased, the probability
that a fixed one of the other j − 1 stubs are erased equals P (n)(A j−1), since the
fact that one stub from the other vertices is no longer available for merging is
asymptotically negligible. This can then be repeated until there are no remaining
stubs of v1 and (8) follows by noting that P (n)(E1 = 0|D1 = 0) = 1.

For the proof to be complete it remains to prove (9). To do this, first remember
that a stub can be erased for two reasons: because it forms a loop and because it
is part of a multiple edge. For the sake of completeness we also include the case
when a randomly selected stub is removed if the total number of stubs is odd. Now,
consider a fixed stub belonging to a vertex v with j stubs in all. Write Aloop

j and Amult
j

for the events that the stub is not part of a loop and a multiple edge respectively
and let Aodd

j be the event that the stub is not removed as the randomly selected
“odd” stub. To estimate the probabilities of these events, we condition on that the
total number of stubs equals m and write P (n)

m for the corresponding conditioned
probability measure. If m is odd, the probability that the stub is removed as the
“odd” stub is 1/m and, if m is even, the probability is 0. Hence

P (n)
m (Aodd

j ) ≥ 1 − 1

m
(10)

For the stub to form a loop it has to be joined to one of the other j − 1 stubs of the
vertex v and, since clearly the stub is matched to each one of the other m − 1 stubs
in the graph with the same probability 1/(m − 1), this happens with probability
( j − 1)/(m − 1), that is,

P (n)
m

(
Aloop

j

)
= 1 − j − 1

m − 1
. (11)

To compute the probability that the stub is not part of a multiple edge, assume that
it does not make up a loop and condition on the degree k of the vertex v′ of the
stub to which it is joined. Also, number the remaining j − 1 stubs of the vertex
v in some arbitrary way from 1 to j − 1 and let B j be the event that there are no
loops among these stubs. Trivially,

P (n)
(

Amult
j

) ≥ P (n)
(

Amult
j ∩ B j

)
.
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For the event Amult
j ∩ B j to happen, none of the remaining j − 1 stubs of the

vertex v can connect to another stub of v or to a stub originating from v′. Con-
sidering the stubs 1, . . . , j − 1 one in a turn, we see that the probability that stub
number 1 avoids being connected to a stub of v or v′ is (m − j − k)/(m − 3) (the
denominator comes from that two stubs are already used in the fixed connection
between v and v′ and the stub cannot join to itself). Then, given that stub number
1 is connected to some other vertex, the probability that stub number 2 is so
as well is (m − j − k − 1)/(m − 5), and so on. Furthermore, it is only possible
for Amult

j ∩ B j to happen if j − 1 ≤ m − k − j , since otherwise loops among the
j − 1 stubs on vertex v or multiple edges between v and v′ cannot be avoided.
Hence, writing P (n)

m,k for the probability measure conditioned on m and k, we have

P (n)
m,k

(
Amult

j ∩ B j

) =
{ m−k− j

m−3
m−k− j−1

m−5 · · · m−k−2 j+2
m−(2 j−1) if j − 1 ≤ m − k − j ;

0 otherwise,

implying that

P (n)
m,k

(
Amult

j

) ≥
(

m − k − 2 j + 2

m − 3

) j−1

+
, (12)

where r+ = max{r, 0}. Combining (10), (11) and (12) and using Boole’s inequality,
it follows that

P (n)
m,k(A j ) = P (n)

m,k

(
Aodd

j ∩ Aloop
j ∩ Amult

j

)
≥
(

m − k − 2 j

m

) j−1

+
− 1

m
− j − 1

m − 1
.

Removing the conditioning on m and k and denoting the corresponding random
variable Ln and Kn respectively, we get

P (n)(A j ) ≥ E

[(
Ln − Kn − 2 j

Ln

) j−1

+

]
− E

[
1

Ln

]
− E

[
j − 1

Ln − 1

]
. (13)

To complete the proof, we use dominated convergence to show that the right
hand side of (13) converges to 1 as n → ∞, establishing (9). Recall that Ln is
the total number of stubs in the configuration and Kn is the number of stubs
connected to the vertex of a randomly selected stub. The total number of stubs
is a sum of n i.i.d. random variables {Dl} with distribution F and mean µF ,
which is finite by assumption. Hence, the law of large numbers implies that
Ln/n → µF almost surely as n → ∞. The conditional distribution of Kn given
{N (n)

i } is specified by P(Kn = i) = i N (n)
i /

∑
r N (n)

r , where N (n)
i is the number of

Dl :s that equal i. Since N (n)
i /n → pi as n → ∞ and µF < ∞, it follows that

Kn converges in distribution to a proper random variable K with distribution
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P(K = i) = i pi/
∑

r r pr = i pi/µF and hence Kn/n → 0 almost surely as n →
0. Combining these two observations, we get that(

Ln − Kn − 2 j

Ln

) j−1

+
→ 1 a.s. as n → ∞.

Furthermore, since j and Kn are both strictly positive, we have

0 ≤
(

Ln − Kn − 2 j

Ln

) j−1

+
≤ 1.

By dominated convergence, it follows that the first term on the right hand side of
(13) converges to 1, and it is easily seen that the other two terms converge to 0.
Hence the proof is complete.
Proof of Theorem 2.2: Fix a ∈ (0, 1) and let the degrees be distributed accord-
ing to Fn,a . Clearly, if F has finite mean, the claim follows immediately from
Theorem 2.1, so assume that F has infinite mean. The proof of Theorem 2.1 then
remains valid all the way to the estimate (13). We need to see that the right hand
side tends to 1 for all j as n → ∞. To this end, let µ̃ be the expectation of F
conditioned on being smaller than, say, the smallest possible value in the support
plus 10. Then clearly P(Ln > µ̃n) → 1 as n → ∞, and, trivially,

E

[(
Ln − Kn − 2 j

Ln

) j−1

+

]
≥ E

[(
Ln − kn − 2 j

Ln

) j−1

+

∣∣∣∣Ln > µ̃n

]
P(Ln > µ̃n).

On the event {Ln > µ̃n}, we have Kn/Ln ≤ na/µ̃n → 0. Hence, by bounded
convergence, the right hand side above tends to 1 as n → ∞ and, since the other
two terms in the estimate (13) clearly converge to 0, we are done.
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