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� We review statistical methods for reconstructing gene regulatory networks.
� We discuss statistical and computational challenges in modeling gene interactions.
� For each method we compare their modeling paradigms and data types required.
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a b s t r a c t

Network modeling has proven to be a fundamental tool in analyzing the inner workings of a cell. It has
revolutionized our understanding of biological processes and made significant contributions to the
discovery of disease biomarkers. Much effort has been devoted to reconstruct various types of
biochemical networks using functional genomic datasets generated by high-throughput technologies.
This paper discusses statistical methods used to reconstruct gene regulatory networks using gene
expression data. In particular, we highlight progress made and challenges yet to be met in the problems
involved in estimating gene interactions, inferring causality and modeling temporal changes of
regulation behaviors. As rapid advances in technologies have made available diverse, large-scale
genomic data, we also survey methods of incorporating all these additional data to achieve better,
more accurate inference of gene networks.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

From ecological networks describing biotic interactions of
different species to intricate biochemical networks modeling
actions of molecules at a cellular level, the study of biology has
seen a fast-expanding effort to analyze individual biological
components in the context of large-scale, complex systems with
interacting constituents. Most notably, rapid advances in genomic
technology have generated an enormous wealth of data on which
mathematical and statistical tools can be applied to infer qualita-
tive and quantitative relationships between DNA, RNA, proteins
and other cellular molecules. Such a process of reconstructing
biochemical networks using genomic data, also known as network
inference or reverse engineering, has helped to elucidate the
nature of complex biological processes and disease mechanisms
in a variety of organisms, bringing us one step closer to under-
standing how genetic blueprints combined with non-genetic,

environmental factors influence the characteristics of a living
system. In particular, comprehending the associations between
genotypic and phenotypic characteristics has important ramifica-
tions in pathological studies for explaining disease pathways and
identifying biomarkers for prognosis and diagnosis.

At a high level, genes, proteins or other metabolites can be
conceptualized as nodes and their interactions as edges in a graph.
In metabolic networks, reactions are represented as directed edges
pointing from reaction substrates to products. While metabolic
networks tend to focus on proteins or protein-complexes func-
tioning as enzymes, general protein–protein interaction (PPI) net-
works are undirected graphs where an edge indicates physical
binding between two proteins.

At a more fundamental level, understanding biological pro-
cesses requires understanding gene regulatory networks since all
proteins are encoded by genes. In such a network, transcription
factors (TFs), RNA and other small molecules act as regulators to
activate or repress the expression levels of genes. Thus gene
interactions can occur in the form of direct physical binding of
proteins (TFs) to their target sequences, but in a broader sense also
include indirect interactions when the expression of a gene
influence the expressions of others with regulations caused by
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one or more intermediaries. Although experimental evidence can
be gathered to search for and verify gene interactions, computa-
tional tools utilizing gene expression data offer a much more time
and cost efficient way to reconstruct these networks. In the past
decade, high quality gene expression data have been made readily
available in the form of microarray or RNA-seq data.

The idea of modeling the aforementioned biochemical pro-
cesses as networks is conceptually appealing as many biologically
interesting questions can find their counterparts in graph theory.
For example, many biochemical networks demonstrate a high
clustering coefficient (Barabási and Oltvai, 2004), indicative of a
scale-free topology with a few highly connected nodes, or known
as hubs. Comparisons with generative network models that give
rise to such a topology can help to explain the evolution of
organisms at a cellular level. Another important architectural
feature of these networks is modules, where a number of nodes
form a densely connected community and have sparser connec-
tions with the rest of the network. Community or module detec-
tion is of great importance in analyzing biochemical networks
since identifying groups of molecules performing a specific cellular
function is a key issue in system biology. In a PPI network, highly
connected nodes are often proteins interacting as part of a
complex or other functional modules, which are fundamental in
cellular functions and have been shown to play an important role
in disease pathologies (Lim et al., 2006; Soler-López et al., 2011). In
gene networks, genes modules are likely to have related biological
functions or participate in the same biological pathway.

In this paper we review methods for the reconstruction of
biological networks with an emphasis on gene networks. In reality,
the relationships between genes are directional in nature and they
can change over time or in response to external stimulus. There-
fore when modeling gene networks a researcher is faced with the
choice of whether to include extra features such as causality and
temporal behaviors into the model. This choice of modeling
paradigm is largely dependent on the type and quality of data
available, relevant biological questions to be addressed, and
statistical and computational considerations. In Section 2, we
focus on methods used to reconstruct static gene networks, high-
lighting the statistical and computational challenges in inferring
undirected or directed network edges and identifying tightly
connected communities as potential functional groups. In Section
3, we discuss methods that model temporal changes of gene
regulations in a dynamic network. In Section 4, we expand on
the data type under consideration from gene expression to other
types of genomic data. We survey some methods available for
integrating the additional information given, and the connection
between biochemical networks and disease biomarkers.

2. Static gene networks

2.1. Inferring undirected gene association networks

Gene expression data has the form of a matrix with p genes
arranged in rows and their expression levels measured under n
experimental conditions in columns. A typical feature of this type
of data is their high dimensionality with p much larger than n,
posing many estimation and computation challenges. Most meth-
ods for inferring edges in gene networks are based on a notion of
similarity or coexpression measure. Coexpression is one of the
earliest tools used to infer edges in a gene network and is based on
the concept of “guilt by association”: genes that have similar
expression profiles under different experimental conditions are
likely to be co-regulated and hence functionally related.

As we review a number of methods developed for inferring
edges in gene networks, we evaluate their advantages and

disadvantages considering both their biological implications and
statistical and computational properties.

2.1.1. Correlation-based coexpression networks
Common measures for quantifying the degree of coexpression

between two genes include Pearson correlation, rank correlation,
Euclidean distance, and the angle between a pair of observed
expression vectors (Wen et al., 1998; D'haeseleer et al., 2000;
Horvath and Dong, 2008). Since expression data routinely require
normalization, Euclidean distance can be sensitive to different
scaling methods used, whereas correlation measures are invariant
with respect to linear transformations. Rank correlations such as
Spearman rank correlation are more robust and less sensitive to
outliers compared to Pearson correlation, although some informa-
tion is lost in the process of converting numerical values to ranks.
The angle between two expression vectors can be seen as the
geometric interpretation of Pearson correlation, which is 0 when
the two vectors are perfectly correlated. Empirical performances of
different coexpression measures on simulated and real data have
been compared in, for example, Kumari et al. (2012).

Pearson correlation remains the most popular coexpression
measure used in the literature (Eisen et al., 1998; Spellman et al.,
1998; Stuart et al., 2003; Wolfe et al., 2005). Either hard (Carter et
al., 2004) or soft thresholding (Langfelder and Horvath, 2008) is
then applied to produce a binary or weighted network. One widely
used soft thresholding scheme is proposed by Zhang and Horvath
(2005) which raises the absolute values of the correlations to some
positive power. A topological overlap matrix can then be com-
puted using the thresholded values to take into account topologi-
cal properties shared by pairs of nodes for the identification of
functional modules later.

A related issue in the computation of correlation measures is
the existence of dependency between measurements taken under
different experimental conditions for each gene. When unac-
counted for, these experimental dependencies can confound gene
dependencies and lead to inaccurate estimation of the quantities
of interest. One approach is to decouple and remove the experi-
mental dependencies before proceeding to computing correlations
or other similarity measures, as demonstrated in Teng and Huang
(2009). Their method is based on the assumption that iteratively
projecting a centralized expression matrix to its eigenspaces of
gene-wise and experiment-wise covariance matrices removes the
dependencies both in genes and in experiments. When the
measurements are time series, methods which either directly
adjust for time lags in correlation inference for pathway regula-
tions (Bickel, 2005), or functional smoothing approaches for
comparing time series curves are available (Chen et al., 2001;
Filkov et al., 2002).

Model-based methods and/or data-driven developments are
also available for measuring coexpression. We only mention a few
here. By considering the specific properties of Serial Analysis of
Gene Expression (SAGE) data, Cai et al. (2004) developed two
MLE-based distances following a Poisson model for SAGE data. In
Kim et al. (2007), motivated by analyzing an Arabidopsis dataset, a
spectral clustering method was developed by separately modeling
the shape and magnitude parameters of a gene expression profile
and considering them in a new feature space. Smoothing spline
clustering (Ma et al., 2006) is a method developed for time-course
gene expression data, taking into account natural properties of
gene expression over time, differences in gene expression within a
cluster, and the effects of experimental measurement error and
missing data. All of these methods have their unique advantages
for certain data, yet also generalizable with modifications.

Easy interpretation and low computational costs are the main
advantages of coexpression networks. However, it is well known
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that empirical sample covariances or correlations have poor
asymptotic behaviors under the high dimensional setting. Further-
more, it is unclear whether high coexpression necessarily implies
relatedness in biological function. Although Wolfe et al. (2005)
used gene ontologies to show coexpression leads to functional
similarity, other works (Filkov et al., 2002; Gillis and Pavlidis,
2012) have shown it often yields high false positive and low
prediction rates.

2.1.2. Information theoretic for measuring nonlinear relationships
Another class of methods used to investigate dependencies

between genes is mutual information (MI). The MI between
expression vectors of gene i and j is defined as

MIij ¼HiþHj�Hij; ð1Þ

where

Hi ¼ � ∑
ni

k ¼ 1
f iðkÞlog ðf iðkÞÞ

Hij ¼ � ∑
ni ;nj

k ¼ 1;l ¼ 1
f ijðk; lÞlog ðf ijðk; lÞÞ ð2Þ

are the marginal and joint entropies of the expression variables,
respectively. Since expression data are continuous, the expression
range can be partitioned into discrete bins and fi(k) represents the
frequency of expression measurements for gene i falling into the
kth bin. Similarly, f ijðk; lÞ is the joint frequency for gene i and j with
respect to bins k and l (Butte and Kohane, 2000). Alternatively,
each observation in the bin can be weighted using a smoothing
kernel (Daub et al., 2004; Steuer et al., 2002; Basso et al., 2005;
Margolin et al., 2006) to reduce the influence of noise at the edges
of the bins. Post-processing to arrive at the final network includes
hard thresholding based on significance values obtained from
permutation tests (Butte and Kohane, 2000; Daub et al., 2004)
and edge pruning (Margolin et al., 2006).

MI is a more general way to measure gene relationships than
Pearson correlation. The latter being zero does not imply statistical
independence but the MI between two variables is zero only if
they are independent. In practice, MI is shown to be able to
capture nonlinear correlations between expression profiles (Daub
et al., 2004), but may also yield almost identical results as Pearson
correlation (Steuer et al., 2002). Whether one can directly interpret
pairwise statistical dependence as functional similarity remains
uncertain. Recently, Reshef et al. (2011) proposed a new measure
named the maximal information coefficient (MIC) for detecting
general associations between pairs of data. The measure is based
on normalized estimates of MI over different ways of partitioning
the data into grids. However, Kinney and Atwal (2014) argued that
MIC has inferior power compared to MI and other correlation
measures, and the claim that MIC is equitable for different types of
dependence relationships was questioned.

Another relevant dependence measure is the Renyi Correlation,
which is also known as the Maximal Correlation (Rényi, 1959). Let
(X,Y) be a pair of dependent random variables. The Renyi Correla-
tion, or Maximal Correlation, of X and Y is defined as

ρðX;YÞ ¼ max
f ðxÞ;gðyÞ

E½f ðXÞgðYÞ�;

where f(x) and g(y) are functions of x and y respectively such that
Ef ðXÞ ¼ EgðYÞ ¼ 0 and Ef ðXÞ2 ¼ EgðYÞ2 ¼ 1. The Renyi correlation
has the property that ρðX;YÞ ¼ 0 if and only if X and Y are
independent. If there is a linear correlation between the variables,
then the Renyi correlation coincides with the Pearson correlation.
Renyi correlation is grossly under-explored for its potential in
biological applications.

2.1.3. Partial correlation/Gaussian graphical models
Both coexpression and MI only consider pairwise relationships

between genes. However, in a real biological pathway, a gene may
interact with a group of genes but not possess a strong marginal
relationship with any individual member of the group. Such
higher-level interactions can be potentially missing in the net-
works constructed by pairwise measures. In this sense, Gaussian
graphical models (GGM) offer a more realistic way to represent
complex gene networks due to its interpretation in terms of
conditional correlations. Assuming a multivariate normal distribu-
tion for the expression vectors for a set of genes W, the GGM uses
ðΣÞ�1, the inverse of the gene covariance matrix (or precision
matrix), as a measure for gene association patterns. This approach is
closely related with the concept of partial correlations, noting that
the partial correlation between genes i and j can be expressed as

ρij ¼ corði; jjW\ i; j
� �Þ ¼

� ωijffiffiffiffiffiffiffiffiffi
ωiiωjj

p ; ia j

1; i¼ j;

8<
: ð3Þ

where ωij are elements in the precision matrix. Therefore genes i
and j being conditionally independent is equivalent to the corre-
sponding partial correlation and element in the precision matrix
being zero. And nonzero entries in the precision matrix correspond
to the presence of direct interaction between two genes having
controlled for the effect of the other genes.

The major difficulty of estimating the precision matrix arises
from the high dimensional nature of gene expression data. Various
regularized estimation methods have been proposed to address
this “curse of dimensionality”. Edwards (2000) proposed a back-
ward selection scheme to remove weak edges in the estimated
Σ�1. Schäfer and Strimmer (2005) chose to estimate Σ�1 directly
using the Moore–Penrose pseudo-inverse (Penrose, 1955) and
using the bagged average of all bootstrap estimates. Since gene
networks are believed to be inherently sparse, Li and Gui (2006)
introduced in-built sparsity in their estimated Σ�1 by a threshold
gradient descent algorithm. Noting that regressing the expression
vector Xi for gene i on the other expression vectors Xj,

Xi ¼ ∑
ja i

βijXjþϵi; ð4Þ

where the coefficients βij ¼ ρij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωjj=ωii

p
, sparsity can be more

naturally incorporated in a penalized regression setting
(Meinshausen and Bühlmann, 2006; Peng et al., 2009). A rich
wealth of the literature exists on the problem of estimating sparse
precision matrix in high dimensional GGMs (Zhou et al., 2011;
Yuan and Lin, 2007; Friedman et al., 2007).

The above partial correlation based approaches have attractive
theoretical properties and their asymptotic behaviors are exten-
sively studied. However, the kind of biological inference they are
capable of achieving is still limited. In the current literature, partial
correlation is usually calculated conditioned on either all of the
available genes or a more or less arbitrary subset of them that may
contain noisy (biologically unrelated) genes. As pointed out in De
La Fuente et al. (2004) and Kim et al. (2012), the selection of a
proper set of genes on which the correlation in (3) is conditioned
is critical. The inclusion of noisy genes in the set W\fi; jg may
introduce spurious dependencies and consequently false edges in
the estimated network. There are also efforts on using lower order
partial correlations (De La Fuente et al., 2004; Magwene and Kim,
2004; Wille et al., 2004; Wille and Bühlmann, 2006) which
condition on one or two other genes. Li (2002) considered how
the first-order partial correlation changes depending on the
expression level of the conditional gene, which acts as a surrogate
variable for varying cellular state. This measure termed liquid
association was used to identify candidate genes involved in urea
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cycle (Li, 2002) and multiple sclerosis (Li et al., 2007). These
methods, however, lose sensitivity for inferring higher level gene
associations and cannot guarantee to eliminate the effect of noisy
genes. Kim et al. (2012) proposed to minimize the impact of noisy
genes by conditioning on a small set (3-5 genes) of known
pathway genes, or “seed genes”. When such prior biological
information is unavailable, Wang et al. (2014) introduced a new
method of estimating the strength of gene group interactions
using sparse canonical correlation analysis (SCCA) coupled with
repeated random partition and subsampling of the expression
dataset. By separating the genes into two groups, SCCA searches
for meaningful linear group relationships which, reframed in a
similar regression setting as (4), gives estimates proportional to
partial correlations conditioned on different sets of signal genes
(with noisy genes eliminated through sparsity). Subsampling
allows for the discovery of multiple interacting groups simulta-
neously by stepping through subsets of the genes with varying
signal strengths. The final edge weight matrix averages the results
from all the random partitions and subsamples to obtain an
aggregated measure of partial correlations of different orders.
Performance comparison with popular coexpression measures on
both simulated and real data show the new method leads to better
accuracy and more biologically meaningful results.

2.2. Inferring Bayesian (directed) networks

From marginal dependencies in coexpression measure to con-
ditional dependencies in partial correlation based approaches, the
methods discussed above attempt to capture gene relationships
using probabilistic dependencies of different kinds. However, they
all lead to the construction of undirected graphs and hence unable
to represent causal relationships between genes. Bayesian net-
works (BNs) for gene regulatory networks, pioneered by Friedman
et al. (2000), are directed acyclic graphs (DAGs) that characterize
the joint distribution of nodes (genes) as a series of local prob-
ability distributions. Denoting gene i as Xi, the joint distribution of
all nodes is given by

PðX1;…;XpÞ ¼ ∏
p

i ¼ 1
PðXi∣Pa

GðXiÞÞ; ð5Þ

where PaGðXiÞ are all the parent nodes of Xi in the DAG G. The joint
distribution can be factorized this way because of the Markov
assumption of BNs: given its parents, each node is independent of
its non-descendants. In this sense, each directed edge can be
interpreted as a causal link. A BN implies both a set of conditional
dependencies and conditional independences. Two different DAGs
can encode the same set of conditional independences (Pearl and
Verma, 1991), and the goal of BN inference algorithms is to infer
these equivalent classes of DAGs.

Reconstructing a BN based on expression data D involves
finding the best DAG G that describes D, and each G is evaluated
using a Bayesian score which is the posterior probability of G,

SðG : DÞ ¼ log PðG∣DÞ ¼ logPðD∣GÞþ logPðGÞþconst: ð6Þ
The computation of the posterior probability is two-fold:
(i) learning the graph G given observed data; (ii) learning the
local conditional probabilities given G.

The second problem amounts to parameter estimation, which
can be accomplished via a number of algorithms such as sum-
product, MLE, MAP and EM depending on the form of the
conditional probabilities (discrete, continuous or mixture distribu-
tion (Friedman et al., 2000)) and whether any node has missing
information. Prior information concerning the distributions of
parameters and graphs is also incorporated in the final computa-
tion of the scoring function. It is important that the scoring
function chosen should be decomposable to the local scores from

each node for computational efficiency. The function should also
contain features that guard against overfitting. Popular schemes to
achieve this goal include using the BIC criterion and Bayesian
Dirichlet equivalent (BDe) (Cooper and Herskovits, 1992; Yoo et al.,
2002). A comparison of different scoring schemes can be found in
Hartemink et al. (2001) and Yu et al. (2002).

The first problem, however, is a lot more challenging as
theoretically it requires us to consider all possible topologies of
DAGs, which is super-exponential in search space dimension.
Furthermore, the high dimensional nature of expression data lead
to many DAGs that score equally well. A number of heuristic
algorithms have been developed to walk through the space of
possible DAGs, including greedy hill-climbing, simulated anneal-
ing and genetic algorithms (Yu et al., 2002). Often the algorithms
explore the neighborhood of a topology by adding, deleting or
reversing the direction of an edge to make incremental changes at
a time. To further reduce the search space, biological assumptions
and priors can be employed to limit the number of parents a child
node is allowed to have, and coexpression clustering can be
applied to arrive at a set of most likely parent/child nodes. Rather
than choosing a single optimal G, a number of DAGs scoring
comparably can be compared for the selection of consistent
topological features. Summaries of how to infer BNs can be found
in e.g. Heckerman (1996) and Needham et al. (2007).

The BN has a number of advantages as a modeling framework.
The probabilistic setup offers a natural way to incorporate latent
variables, prior knowledge and the possibility that gene expression
levels are stochastic with noise. Some missing data can also be
handled. However, in order to infer all this additional information,
more parameters need to be estimated and hence more high
quality data is required. For this reason, the application of BNs has
been centered around yeast data, and the success in higher
organisms and larger networks is still limited. Conceptually, feed-
back loops, which is a common feature in many pathways, cannot
be modeled under this framework since all BNs are acyclic.
Although the linkages can be potentially causal, they are still
qualitative and do not indicate whether a regulation is activation
or repression. These problems can be analyzed using extensions of
BNs such as dynamic BNs (Yu et al., 2004; Murphy, 2002) and BNs
on perturbation data (Pe'er et al., 2001). Perturbation gene
expression data, obtained from perturbation experiments (by
knockout or RNA interference), offers an important source of
information for estimating directed relationships and networks
(Markowetz et al., 2007; Tresch and Markowetz, 2008; Shojaie
et al., 2013). One line of approach has been based on incorporating
the nested structure of the observed perturbation effects
(Markowetz et al., 2007).

2.3. Identifying groups of genes with dense interactions

When a reconstructed gene network has topological structures
reflecting real gene interactions, the problem of identifying func-
tional modules can be reframed in the context of pattern recogni-
tion or clustering. As we expect these modules to have higher
within-group homogeneity, the problem corresponds to finding
highly connected subunits within a network, which can be
considered as candidate genes acting in individual regulatory
systems.

Clustering has been a popular and well studied pattern recog-
nition tool in numerous fields. General reviews of various cluster-
ing techniques can be found in Kaufman and Rousseeuw (2005);
Theodoridis and Koutroumbas (2005); Jain et al. (1999), with more
specific focus on gene expression data in D'haeseleer et al. (2000);
Jiang et al. (2004); Kerr et al. (2008). We first note that it is
sometimes meaningful to cluster both the genes and samples,
especially when groups of samples correspond to distinct
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phenotypes or experimental conditions. Biclustering techniques
(Cheng and Church, 2000; Madeira and Oliveira, 2004) are
required to resolve this case. Clustering can also be applied to
expression vectors directly using heuristic algorithms (Self Orga-
nizing Maps (Tamayo et al., 1999)), genetic algorithms (Gesù et al.,
2005) or model based approaches (Expectation Maximization
(Yeung et al., 2001; Muro et al., 2003); variational Bayes
(Teschendorff et al., 2005)). We will focus on gene-based cluster-
ing utilizing information from a reconstructed gene network.

Most methods discussed in Section 2.1 give rise to a similarity
matrix, which can be converted into a distance metric for K-means
and hierarchical clustering (either agglomerative or divisive), both
widely used in gene expression studies (Tavazoie et al., 1999; Eisen
et al., 1998; Alon et al., 1999). K-means assigns each gene to exactly
one cluster and requires a pre-defined cluster number. The lack of
robustness and the greedy nature of most implemented algo-
rithms are some of its drawbacks. To account for the situation
where one gene participates in several pathways, fuzzy versions of
K-means have been developed (Dembélé and Kastner, 2003; Fu
and Medico, 2007) to associate each gene with multiple clusters.
Biologically, one may also argue that functional modules are
hierarchical in nature (Barabási and Oltvai, 2004) which provides
a natural setting for hierarchical clustering. Since Eisen's work,
hierarchical clustering has remained the most widely used tool in
analyzing gene expression. The main ambiguity lies in the inter-
pretation of the tree structure and where to define a cut-off to
produce the final clusters. Efforts to address this can be found in e.
g. Langfelder et al. (2008). Variants of spectral clustering techni-
ques are also widely explored for detecting communities/blocks in
sparse networks (Ramesh et al., 2010).

Given gene relationships are now represented by a graph,
another natural approach is to consider functional modules as
tightly connected subgraphs. Ben-Dor et al. (1999) developed
CAST, an algorithm that constructs one cluster at a time by adding
and dropping genes iteratively according to a similarity measure.
CLICK, proposed by Sharan et al. (2003), assumes edge weights
between all pairs of genes follow a mixture normal distribution
with a higher mean for within-cluster edges. The parameters and
cluster memberships are estimated using EM methods. This idea
that nodes have different connectivities depending on their cluster
memberships is adopted in a more general probabilistic graph
model known as Stochastic Block Model (SBM). The SBM, formally
introduced by Holland et al. (1983), generalizes the Erdős-Rényi
model and defines a family of probability distributions for a graph
with node set f1;2;…; pg and K node blocks as follows.

� Let C¼ ðC1;C2;…;CpÞ denote the set of labels such that Ci¼k if
the node i belongs to block k.

C�i:i:dMultinomialðγÞ;
where γ ¼ ðγ1; γ2;…; γK Þ is the vector of proportions.

� Let π¼ ðπlkÞ1r l;krK be a symmetric matrix of block dependent
edge probability matrix and A be the adjacency matrix. Condi-
tioned on the block labels C, ðAijÞ for io j are independent, and

PðAijjCÞ ¼ PðAij ¼ 1jCi ¼ l;Cj ¼ kÞ ¼ πlk:

The inference problems for SBMs involve both node classification
and parameter estimation, and a block with a high internal edge
probability can be considered as a potential functional module. Due
to the intricacy of its graph structures, how to fit a SBM has remained
an active area of research and a number of inference algorithms have
been proposed, from methods including MLE, EM (Snijders and
Nowicki, 1997)), Gibbs sampling (Nowicki and Snijders, 2001), and
graph modularity (Newman and Girvan, 2004) to methods that scale

up to larger networks (variational methods (Daudin et al., 2008;
Latouche et al., 2012), belief propagation (Decelle et al., 2011),
spectral clustering (Rohe et al., 2011)), and pseudo-likelihood
(Amini et al., 2013)). More asymptotic analysis of some of the
estimation procedures can be found in Bickel and Chen (2009);
Celisse et al. (2012); Bickel et al. (2013). Another technical difficulty in
fitting a SBM is related to specifying the number of blocks K. A few
data-driven approaches based on Integrated Classification Likelihood
(Daudin et al., 2008), node degree gaps (Channarond et al., 2012),
variational (Hofman and Wiggins, 2008) and spectral clustering
(Fishkind et al., 2013) methods, but extensive testings of these
procedures using real data remain to be performed.

SBMs and the concept of communities as modularities have
been applied in Guimerà and Amaral (2005); Daudin et al. (2008);
Airoldi et al. (2008) to recover community structures in biochem-
ical networks. However, wide applicability of SBMs to large-sized
gene networks has yet to be verified partly due to the scalability of
the current algorithms and the intrinsic sparsity of gene networks,
which causes identifiability problems for parameter estimation.
Conceptually, SBMs are also too simplistic to account for real
network features such as degree variation within blocks and
overlapping blocks. These can be addressed to some extent using
a degree-corrected SBM (Karrer and Newman, 2011) and mixed
membership SBM (Airoldi et al., 2008). As active theoretical
research in probabilistic graph models continues, we have reasons
to believe this will propel more development in the application of
these methods to gene expression data in the future.

3. Dynamic gene networks

The types of gene networks discussed so far have all been
static, describing only the network topologies and qualitative
features of gene relationships. They do not capture the dynamic
nature of real networks and cannot yield quantitative predictions
of gene behaviors.

Boolean networks is one of the earliest dynamic models
proposed (Kauffman, 1969) that simplifies regulation dynamics
as a directed graph, where each node is a binary variable and its
change of state between consecutive time points is regulated by a
Boolean function of its parent nodes. Because the states are finite,
all trajectories of the system are periodic and the attractors can be
used to explain stable states in cell cycles. Empirical estimations of
the Boolean functions require imposing constraint on network
topology or using coexpression or information theoretic
approaches to reduce the search space (Liang et al., 1998; Ideker
et al., 2000).

As mentioned in Section 2.1, BNs can be extended to capture
temporal relationships between the variables. In a dynamic BN,
the joint probability factorizes into local probabilities of each node
associated with every time point, where the parents of a node can
include nodes from previous time points. Although dynamic BNs
possess rich statistical properties, parameter estimation is compu-
tationally expensive and often discretization of gene expression
levels or simplifying graph topology based on prior knowledge is
necessary to make parameter estimation feasible (Kim et al., 2004;
Zou and Conzen, 2005; Zhu et al., 2010).

Another popular class of dynamic models is based on differ-
ential equations (DEs), which models the rate of change in the
expression level of a gene as a function of the expression of other
genes (often including external perturbations). DE approaches
mainly differ in the functional form used, ranging from linear
functions (Yeung et al., 2002; Gardner et al., 2003; di Bernardo et
al., 2005; Bonneau et al., 2006), power law models (Savageau,
1991) to complex nonlinear functions (Mazur et al., 2009). While
solutions for linear systems can be found using linear algebra and
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regression techniques, solving more complex systems often
require evolutionary algorithms as search strategies (Spieth et
al., 2004; Kimura et al., 2005). Since DEs are deterministic in
nature, extensions to stochastic DEs have also been proposed
(Chen et al., 2005).

Despite having appealing conceptual features, the main draw-
backs of these methods lie in the nature of the data. The amount of
extensive inference required implies more sample measurements
are needed (Akutsu et al., 1999; Yeung et al., 2002). One way to
alleviate the dimensionality problem is to combine multiple time-
course data and perform inference on the integrated data. Along
this line, (Wang et al., 2006) proposed a method that solves a set of
DEs for each dataset and finally pools the results into a consistent,
sparse network. Furthermore, in order for the data to capture the
underlying dynamics of regulatory systems, expression measure-
ments need to be taken on a slowly changing system or finely
spaced in time. A recent survey on modeling dynamic biochemical
systems can be found in Bar-Joseph et al. (2012).

4. Network reconstruction beyond a single data type

Decades of genomic research have fueled the development of
numerous experimental and computational techniques and led to
the curation of a large number of databases, such as TRANSFAC
(Wingender et al., 2001), KEGG (Okuda et al., 2008), DAVID
(Dennis et al., 2003), Cytoscape (Kohl et al., 2011) and NCBI GEO
(Barrett et al., 2009). These databases have compiled large
amounts of information on gene expression profiles, TF binding
motifs, SNP data, PPIs and other biochemical interactions. Per-
forming inference of gene networks based on this type of known
knowledge leads to semi-supervised or supervised approaches
which typically outperform unsupervised ones. Combining gene
expression and other genetic information has also proven fruitful
in genome-wide association studies (Xiong et al., 2012).

Given a partially known network, network inference can be
considered as a supervised classification problemwhere the object
to be classified is a pair of nodes and often a feature vector is
defined for each pair by transforming features available for each
node. Various classification algorithms including support vector
machines, logistic regression can be utilized to learn pairwise
connections. Alternatively, one can predict whether there is an
edge between a newly added node and any existing node by
learning individually a subnetwork associated with each node of
interest. Supervised network inference has been applied to a
number of metabolic, PPI, and gene regulatory networks
(Bleakley et al., 2007; Yip and Gerstein, 2009; Cerulo et al.,
2010). For gene networks in particular, SEREND (Ernst et al.,
2008) is the first semi-supervised learning method that integrated
information from verified TF binding motifs and a compendium of
gene expression data to reconstruct transcriptional regulatory
networks in E. coli. Another frequently used supervised learning
method is SIRENE (Mordelet and Vert, 2008), which uses coex-
pression behavior of known target genes of TFs to predict binding
targets of new TFs. Wang et al. (2009) designed a Bayesian
network framework to predict TF cooperativity by integrating 15
genomic features. In particular, they narrowed down on the
prediction of a subnetwork of TFs and were able to achieve
accurate results. Other studies, including unsupervised methods,
that incorporate ChIP-chip, motif, PPIs and phenotypic data have
been performed (Bar-Joseph et al., 2003; Tanay et al., 2004;
Lemmens et al., 2006; Sabatti and James, 2006; Wang et al.,
2009). Recent surveys and comparisons with unsupervised meth-
ods are provided in De Smet and Marchal (2010) and Maetschke
et al. (2014).

Integrated analyses of genomic data have also found numerous
applications beyond inferring gene networks. For metabolic net-
works, various constrained-based modeling methods (Haggart et
al., 2011; Orth et al., 2010; Price et al., 2004) together with efforts
to integrate high throughput transcriptomic, proteomic and meta-
bolomic data (Becker and Palsson, 2008; Shlomi et al., 2008;
Yizhak et al., 2010) have led to the reconstruction and curation
of a large number of organism-specific genome-scale metabolic
networks (Feist et al., 2009) capable of predicting reaction fluxes
and quantifying metabolic activities. In PPI networks, predicting
PPI in silico can be achieved using phylogenetic profiling, sequence
homology, structural information or Bayesian framework integrat-
ing various genomic features (Pellegrini et al., 1999; Aloy and
Russell, 2003; Jansen et al., 2003; Jensen et al., 2009).

Another important application of network reconstruction and
integrative data analysis is to identify biomarkers relevant to
disease or biological processes under investigation. Using gene
expression data, typical methods for finding disease biomarkers
rank genes based on their discriminative capacities in relation to
different physiological classes, such as disease versus health states.
Network-based biomarker discovery approaches, combined with
integrating different types of “omic” data, are also used to detect
the changes in the “activity” or “behavior” of the reconstructed or
known networks across different disease states, from which a
more comprehensive and complete picture of disease biomarker
activities can be gleaned. Azuaje (2010) provides a nice survey on
studies related to disease biomarkers and biological interaction
networks.

5. Conclusion

Statistical methods for network reconstruction were reviewed
with the main focus on those applicable to gene expression data.
When inferring an undirected network, key issues involved
include: (i) the selection of an appropriate coexpression measure
and (ii) the selection of a community detection method for
identifying gene functional groups. As discussed in Section 2.1,
choosing an effective coexpression measure depends on the
nature of the gene interactions one wants to capture. The latter
issue is related to the assumed/expected structure of the target
network. Node degree distribution, network conductivity and
assortativity are example factors need to be considered. For a
directed network such as a gene regulatory work, the inference of
edge direction is a fundamental issue. Usually time-course data or
perturbation data are needed for determining the causal or driving
factors, as presented in Section 2.3. The inference of edge direction
is also often aided by integrating other types of data with gene
expression data. Dynamic network models discussed in Section 3
allow the reconstructed networks to vary over time, thus more
truthfully reflecting the behaviors of real networks and enabling
quantitative predictions. However, this comes at a cost of requiring
more samples taken at a fine time resolution. As more and more
rich, large-scale genomic data are generated via high-throughput
technologies, data integration has become a key theme in many
studies listed in Section 4 to improve inference beyond what a
single type of data can. Despite having proven successful in many
individual cases, finding a unified framework for integrating
diverse genomic data remains a fertile ground with many
uncharted territories. All in all, in order to choose an appropriate
method for performing a network analysis, a deep understanding
of the biological nature of the target network and the statistical
properties of the data are indispensable. It is our hope that this
paper has provided a high-level overview of the statistical issues
related to gene networks and will serve as a guide for choosing
different methods to model them.
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