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Preface

This book is aimed at advanced undergraduate and graduate students across a wide
range of fields, from computer science and physics to the many current and potential
application areas of transfer entropy. Other researchers interested in this new and
fast-growing topic will also find it useful, we hope.

It sits at the nexus of information theory and complex systems. The science of
complex systems has been steadily growing over the last few decades, with a range
of landmark events, such as the formation of the Santa Fe Institute in 1984, and
the fundamental work of physics Nobel Laureates Murray Gell-Mann and Phillip
Anderson. But precisely defining complex systems proved illusive. There are many
examples, properties, ways of simulating and a diversity of theoretical suggestions.
But it is only after 30 years that the pieces are finally falling into place.

Information theory, dominated by Claude Shannon’s mathematical theory of
communication, was one of the great theoretical ideas of the 20th century. It proved
a valuable tool in analysing some complex systems, but it was only much later,
with Schreiber’s transfer entropy, that the relationship between information flow
and complexity became apparent.

This book, like any complex system, emerged in parallel, with the synchronisa-
tion of ideas and thinking of the four authors. Terry’s involvement in information
theory goes back a very long way to its use in understanding images and animal
vision. But he became interested in complex systems two and a half decades ago
and the possibility that information theory would be a key tool was always in the
background.

It was through the neuroscience dimension that Terry met Mike, while he was a
PhD student at the Centre for the Mind at the University of Sydney. While working
there Mike collaborated with David Wolpert of NASA Ames and it was David who
introduced Mike to maximum entropy techniques and their application to economic
game theory. This collaboration lead to several key findings regarding tipping points
in microeconomics, ‘persona choice’ in behavioural game theory, and contributed
significantly to Mike’s PhD. During this time Mike also developed the idea of using
mutual information as a tool to study financial market crashes in the same way that
mutual information had been used to characterise phase transitions in physics.
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Terry’s collaboration with the University of Sussex began in the mid-1990s, but
he and Lionel did not actually engage in any detailed discussions until the Artificial
Life Conference in Lisbon in 2007. Lionel, along with Anil Seth, had been working
on causality measures, particularly with applications to neuroscience and conscious-
ness, for some while before getting interested in transfer entropy. Lionel then began
a series of annual month-long visits to the Centre for Research in Complex Systems
at Charles Sturt University, where some of the research in this book had its genesis.

Joe, meanwhile, had been working on transfer entropy during his PhD, finding
some extraordinary results for simple systems, such as cellular automata. Although
Terry and Joe met in Lisbon, it was not until the IEEE ALife conference in Paris that
any sort of real dialogue began. In many ways, that conference was instrumental in
formulating the ideas which led to this book.

The structure of the book is a bit like stone fruit, with a soft wrapping of a hard
core, although the non-mathematical reader might find it something like climbing
a mountain. After a qualitative introduction, Chap. 2 introduces ideas of statistics,
which will be familiar to many readers. The going then gets tougher, or at least more
mathematical, reaching its zenith in Chap. 4 where the main ideas of transfer entropy
are worked out. We adopt Knuth’s dangerous bend symbol, � and ��. The reader
already familiar with information theory could perhaps go straight to Chap. 4, but
other readers would need the background in Chap. 3. The later chapters of the book
introduce a variety of applications, from simple, canonical systems to finance and
neuroscience. The full details of Chap. 4 are not necessary to get an idea of the kind
of applications covered. Transfer entropy is hard to calculate from real data. Some
robust software is now available and new applications are appearing at an increasing
rate.

Many people have been influential over the years in the development of this book,
and we thank them all. Alan Kragh and John Lewis at Ilford Ltd. gave much en-
couragement to Terry in the pursuit of theoretical metrics for imaging science. The
seminal work by Linfoot and Fellgett was pivotal at that time, although Terry never
had the opportunity to meet either. But his real work in information theory began at
the Australian National University with Allan Snyder FRS, Mike’s PhD supervisor
years later. His interest in complexity was stimulated by collaboration with David
Green in the 1990s.

Lionel has been supported by the Sackler Centre at the University of Sussex, led
by Anil Seth, with whom he has published extensively.

Joe was introduced to complex systems by Terry Dawson, while at Telstra Re-
search Laboratories. This interest was fused with information theory under the guid-
ance of Mikhail Prokopenko, then at CSIRO, now at the University of Sydney.
Mikhail played a pivotal role in supervising Joe’s PhD, also under Albert Zomaya at
Sydney. Joe’s work on information theory continued in his postdoc years at the Max
Planck Institute for Mathematics in the Sciences in Leipzig, Germany, with Juergen
Jost.

With regards to this book, Joe thanks in particular Michael Wibral, Juergen Pahle,
Greg Ver Steeg and Mikhail Prokopenko for valuable discussions, comments and
feedback on draft material.
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The authors thank Carolyn Leeder for administrative assistance.
Some of the original research by the authors described in the book was funded

by the Australian Research Council.
This book would have taken ten times as long to produce had it not been for

Donald Knuth’s TEX mathematical typesetting package and Leslie Lamport’s LATEX.
We use GNUPlot frequently, and Terry uses Emacs extensively almost every day. So
thanks, also, to Richard Stallman.
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Chapter 1

Introduction

Decades often acquire an evocative name: the Jazz Age, the Decade of the Brain,
maybe the Decade of Moral Hazard for the last decade. Whatever our current decade
becomes, this will certainly be the Century of Information. Never in human history
has the growth of data been so great. Information comes from cameras everywhere,
on street corners, in smart phones, on headbands like a miner’s lamp. It comes from
supermarket checkouts, credit card transactions, search engines and the vast amount
of personal data contributed to social networks.

The Library of Congress (LoC) blog [202] has entertaining illustrations of the
vastness of human collected information and its staggering growth. Its book collec-
tion is around 15 Terabytes. That’s only $1000 or so in disc drives these days. (But
most of the LoC’s data is on audio and video.) The National Security Agency, in the
news in 2013 for the depth and breadth of its surveillance, collects data equal to the
LoC every 6 hours.

Thus a huge amount of information flows into computer systems, from the NSA
to Google, every second of every day. This book is about information flow. But
rather than be concerned with what the information is, or even where it is going,
we are interested here in detecting information flow between systems, from the way
they behave and influence one another. Essentially, if we have two systems, things,
entities, agents, whatever, for which we can measure some property as a function of
time, we want to know, just from this time series, if there is information flow from
one to the other.

This coupling of time series was studied by Clive Granger, for which he received
the Nobel Prize in Economics, although he himself was not an economist [114].
Transfer entropy (TE), the topic of this book, is in many ways a generalisation of
Granger causality, discussed in Sect. 4.4.

It can be easier to teach something where the learner has no prior knowledge,
than to teach something where there are prior misconceptions. Because we have
such exposure to information and to information as a defining characteristic of our
lives, we need to step back and build information theory from the ground up. The
next section makes a start before the full discussion of Chap. 3.
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DOI 10.1007/978-3-319-43222-9_1

Springer International Publishing Switzerland 2016



2 1 Introduction

1.1 Information Theory

In the early decades of the 20th century, Bell Labs laid the foundations for informa-
tion theory. Hartley introduced the idea of information, and Nyquist the sampling
theorem. But it was their protégé Claude Shannon who built a mathematical theory
of communication, the results of which still stand today [304].

Shannon’s interest was how to transmit information over a channel in the most
efficient way possible. The channel capacity theorems gave the answer. It transpired
that information could even be transmitted perfectly when the channel was imper-
fect. The analysis introduced the idea of entropy of signals and channels, ideas we
take up in Chap. 3.

As a simple example, imagine that a new courier/removal service to meet the
insatiable needs of internet shoppers has to equip itself with a set of vans. Obviously,
if all the parcels are not the same size, say from packets of tea to beds and sofas, then
they would want a set of vans of different sizes. Entropy and coding do something
like this for information and messages. Now the courier does not need to know what
is in the parcels, just something about the range of sizes in which they occur. So it
is with information: the semantics and content are irrelevant.

One of the key ideas introduced by Shannon was mutual information (MI), which
we shall study in detail in Chap. 3. It describes how much information is shared
between two things, or more precisely, sets of things. So we might imagine that the
price of coffee beans affects the price of our espresso in the local coffee shop. But,
since shops will keep beans in stock, there will be a time lag, and the variations in
price of coffee beans and cups of coffee will look most similar if we shift the price
of coffee beans forward. We will come back to this example a little later.

1.2 Complex Systems

Complex systems abound in the natural and social world, e.g. across systems as
apparently diverse as insect colonies, the brain, the immune system, economies and
the world wide web [227]. Yet despite three decades of intense research activity
in studying complexity, many big issues remain only partially resolved, including,
believe it or not, a good quantitative definition for a complex system. Qualitatively,
complex systems are often described as collections of (generally simple) entities,
where the global behaviour is a non-trivial result of the local interactions of the
individual elements [270]. In attempting to make this description quantitative at the
heart of many proto-definitions are the ideas of entropy and information theory in
Sect. 1.1, and now, transfer entropy, the theme of this book.

The study of complex systems has benefited enormously from a set of canon-
ical systems, and the book makes extensive use of them for mutual information
and transfer entropy too. We take a brief look at each, without any formal defini-
tions or mathematics in the following sections. They are cellular automata (CA)
(Sect. 1.2.1), complex networks (Sect. 1.2.4), random Boolean networks (RBN)
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(Sect. 1.2.5), spin systems (Sect. 1.2.2) and oscillator populations (Sect. 1.2.3), and
flocking behaviour (Sect. 1.2.6). In all cases most of the MI and TE work has been
done, with the exception of flocking systems.

1.2.1 Cellular Automata

Of all the canonical systems, CAs are perhaps the most diverse and spread from ab-
stract theory to real-world applications such as modelling soils [120] to traffic [234]
and urban sprawl [61]. They have even received the accolade of being the funda-
mental building block of natural systems [362], a view not universally shared.

CAs appeared in the middle of the last century from the work of Stanislav Ulam
and John von Neumann, with theoretical interests in computation itself. From a the-
oretical point of view several developments stand out: A cellular automaton consists
of a set of cells with a finite number of states. These cells are connected together in
some way, usually on a rectangular lattice. Each cell has an update rule, usually the
same for each cell, and all the cells are updated synchronously or asynchronously at
random. It should be clear that there are many sorts of cellular automaton, but our
concern in this book will be the simplest, one-dimensional nearest-neighbour lattice
types, taken up in Sect. 5.1.

CAs came into the public eye through an article by Martin Gardner in Scientific
American [100] describing a two-dimensional cellular automaton, the Game of Life,
invented by Princeton mathematician John Conway. The definition is ultra-simple.
Each cell can be zero (dead) or one (alive). It has four neighbours, at the major
compass points on a rectangular grid. At each step, each cell looks at its neighbours.
With one or fewer alive neighbours, it dies. With two or three alive neighbours, it
lives (if already alive), but with four, it again dies (overcrowding). If the cell is dead
already, it comes to life if there are three and only three live neighbours.

From this simple system, an amazing array of patterns were soon discovered.
Interesting examples were: blinkers, which turn on and off; gliders, which move
steadily across the grid; and glider guns, which fire an endless stream of gliders.
Indeed, many CAs contain such self-organised coherent structures, some propagat-
ing, against regular backgrounds (e.g. the “gliders” in the Game of Life) which are
conjectured to transfer information from one part of the CA to another. We revisit
this conjecture in Sect. 5.1.

Studies of this and other interesting CA systems have led to the following inter-
esting findings:

• CAs are capable of universal computation, in the Turing machine sense [63, 64].
This is not something which concerns us very much here.

• CAs come in four classes: the so-called Wolfram classes [361]:

I. Fixed point attractor—the CA just stops at one fixed, unchanging pattern
II. Periodic attractor—the CA cycles through a finite number of states

III. Chaotic attractor—the CA is chaotic and looks just like noise
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IV. Complex—this is the interesting class, to which the Game of Life belongs.
These CAs typically contain self-organised coherent structures such as the
gliders in the Game of Life.

• CAs exhibit something like a phase transition, first shown by Langton [174] us-
ing an informal information-theoretic argument (Sect. 5.1). Most CA researchers
feel that there is some sort of analogy to a phase transition, with Langton’s λ
parameter as the control parameter (Sect. 3.3). But despite several decades of
work, there is no completely established way of determining to which class a
CA belongs. In fact, one of the authors (Lizier) recently used transfer entropy to
revisit the classification of several rules [197] (Sect. 5.1).

• CAs can be reverse engineered; i.e. one can work backwards from the behaviour
to the rule, as discovered by Andy Wuensche [366], forming the basis for his
software DDLab.

Phase transitions appear frequently within this book, and we can note here that
the complex cellular automata rules, class IV, are conjectured to occur at the phase
transition. Langton showed that the highest values of mutual information occur
near the suggested phase transition, something to which we shall return frequently
within this book. The Game of Life is not the only such complex automaton, al-
though there are not many complex CAs in comparison with all the others. In fact,
a special search procedure is needed to find them, known as maximisation of the
input entropy. The details would take us a bit off course, but they are beautifully
described in Wuensche’s article in Complexity [366].

The treatment of CAs in Chap. 5 is fairly mathematical. The reader interested
in the startling visual behaviour of CAs is strongly encouraged to download and
explore DDLab.

1.2.2 Spin Models

At first sight, spin models look rather like cellular automata. They are spatial grids
with spins, which in the simplest case are binary, but in the Potts variants may have
more (integer) states. But the update dynamics are different. There are several up-
date protocols, but the one which will appear most often in this book is Glauber
dynamics [24].

To understand the dynamics, we need the idea of the Hamiltonian of a system,
which essentially measures its total energy as a function of some system parameters.
In this case the system parameter is the distribution of spins. Two binary spins of
the same orientation have lower energy than two of different orientation. The inter-
actions are counted only amongst the nearest neighbours on the grid to compute the
Hamiltonian.

The Glauber update is to pick a spin at random and determine the energy change
which would result if it flips. Whether or not it flips depends upon the temperature,
as discussed quantitatively in Sect. 5.2. The simplest Ising model, which dates back
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to Onsager in the 1920s, shows a phase transition as a function of temperature. The
model is widely used as a simple theory of magnetic materials, and the phase tran-
sition is the change from a material being ferromagnetic to paramagnetic, occurring
at the Curie temperature.

There are many variants of spin systems: multi-state variants such as the Potts
family; and spin glasses, which have more than one spin type, modelling mixtures
of materials.1 But at the time of writing most work in the information theory domain
corresponds to the very simple model, which, therefore, will be the primary focus
in this book.

1.2.3 Oscillators

Steve Strogatz, known to many for the famous letter to Nature with Duncan Watts on
small-world networks [347], has contributed to many aspects of complexity, includ-
ing a book, Sync [317], entirely devoted to synchronisation. Things which vibrate
periodically are familiar to us from many domains, notably musical instruments,
and in earlier days, clocks which ticked.

One of the earliest observations of synchronisation came from Christiaan Huy-
gens, inventor of the wave theory of light. He observed that an array of clocks on
the wall would synchronise. In his day clocks were mechanical systems, which in-
evitably were not quite perfect, meaning that they all ran at slightly different speeds.
But together, coupled by the wall, they become synchronised.

Since Huygens, much has been written about oscillators, from theory and simu-
lation, to applications and observations of all kinds. One quirky example is the way
women sharing a house find their periods synchronise. The curious thing is what
the coupling is, the equivalent of the wall for Huygens’ clocks. It has probably got
something to do with human pheromones, but there are strong dissenters from this
viewpoint.

Huygens was around in the 17th century, but as with many of these simple sys-
tems, new things are still being uncovered in the 21st. Foundations for mathematical
study of synchronisation were laid by the Kuramoto model [169, 170], with signifi-
cant insights gained for example from linear algebra [8, 147]. Chap. 5 takes up the
story with new work published by one of the authors of this book (Lizier) showing
surprising dynamics of information flow as oscillators synchronise.

1.2.4 Complex Networks

The concept of complex networks has been particularly pervasive in complex sys-
tems science [81, 259]. In part, this is due to the centrality of the concept of “local

1 As an aside, spin glasses had an interesting role in the history of complex systems. They were
amongst the first systems to demonstrate broken ergodicity.
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interactions” between entities (see Sect. 1.2) as giving rise to global behaviour in
complex systems. These local interactions can be modelled as edges or links be-
tween pairs of nodes (representing the individual entities), giving a graph-theoretic
or network representation of the system. A pair of nodes may simply have no edge
between them, edges in both directions or a directed edge going from only one
node to the other. Edges may also be weighted, to give some indication of cou-
pling strength. Networks where coupled pairs are bidirectionally connected (with
the same weighting, if applicable) are called undirected networks; and otherwise
are directed networks.

The field of complex networks studies the structural properties of such networks.
For example, the degree of a node is the number of connections it has to other
nodes. This can be further specified as in-degree and out-degree (the number of
incoming/outgoing connections) in a directed network. Path-length between a pair
of nodes refers to the number of edges on the shortest path between them; this may
be a weighted sum of edges where weightings exist. The clustering coefficient is
the proportion of pairs of neighbours of a given node that are also connected by an
edge themselves [347]. A network motif is a (typically small) sub-graph which is a
repeated pattern within a network; e.g. a fully connected triplet of nodes.

The goal of such analysis is to identify common features across various domains,
and characterise their functional role. Typically for example, the structures of nat-
ural systems (e.g. neural networks, gene regulatory networks) and man-made sys-
tems (e.g. power grids) are neither completely regularly structured (like a lattice)
nor are they completely randomly connected. Indeed, two very important classes of
structures have been identified, and have attracted an enormous amount of atten-
tion because they have been found to be incredibly widespread. Watts and Strogatz
first described small-world networks [347, 346], which balance regular and random
network structures to provide both short path length (typically a characteristic of
random networks) at the same time as high clustering (typically a characteristic
of regular networks). Given the prevalence of these structures in social networks,
they provide some explanation for the “six degrees of separation” or “small-world”
phenomenon. Scale-free networks [19, 20, 21] display a degree distribution where
the probability of a node having a given degree is inversely proportional to the de-
gree. Barabási et al. showed that such networks can be constructed via the principle
of “preferential attachment” [19, 20]—where new nodes introduced to the system
preferentially make connections to nodes in proportion to their existing number of
connections, the so-called “rich get richer” phenomenon. A scale-free distribution
is highly structured, and is considered to be a signature of self-organised criticality
(see [14]). Such networks contain hubs—nodes with extremely large degrees which
play a key role in the dynamics of the network.

Despite these ground-breaking insights into network structure, the time-series
behaviour or dynamics on networks have received less attention and are “much less
well understood” [226]. There is a widely-recognised need for fundamental insights
into dynamics on networks, and how these are related to the underlying structure
[299, 18, 346, 226, 227]. Our next subsection describes one important model of dy-
namics on networks—random Boolean networks. In the study of dynamics, transfer
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entropy has a key role to play, characterising how information is transferred in the
local interactions between nodes in an application-independent manner. Chap. 5 will
outline how TE is being used to provide insights into the dynamical role of common
network structures, with Chap. 7 describing some examples of empirical analysis
of dynamics on various networks. Chap. 7 also includes a key application of TE in
inferring the structure of complex networks from their time-series dynamics.

1.2.5 Random Boolean Networks

Stuart Kauffman introduced random Boolean networks (RBNs) in 1969 [154] to
study gene regulatory networks (GRNs) and initiated rapid growth in theoretical
results and diversification of network structure. Some such networks display phase
transitions between ordered and chaotic behaviour in the dynamics of their nodes,
and thus they come up for consideration in Chap. 5.

An RBN consists of a set of nodes, with two states. In Kauffman’s NK model
each has exactly K connections to other nodes. Each node has a randomly generated
Boolean function which determines whether it will flip in the next step dependent
upon its neighbours. In the original model update is synchronous: all nodes are up-
dated simultaneously. Asynchronous update leads to quite different behaviour [135],
as is also the case with CAs.

The GRN interpretation of the NK model is that nodes model genes, with the
Boolean value of the node modelling gene expression level, connections modelling
gene interactions, and the attractors for the network state modelling phenotypes (i.e.
different cell types); that is, depending on initial conditions of the RBNs and/or
inputs, the same RBN (i.e. GRN) can reach different attractor states (i.e. become
different cell types).

Since Kauffman’s ground-breaking innovation, RBNs have received a lot of at-
tention. Different node functions have been investigated, such as the simplification
of just summing the states of the neighbours. Different connection patterns, reflect-
ing the interest in small-world and scale-free networks, are also of interest and some
are discussed further in Chap. 5.

Applications have spread far from biology into the social sciences. In one exam-
ple, Rivkin uses RBNs to model what makes a successful franchise, arguing that a
reasonable level of complexity is required to avoid facile mimicry [286].

1.2.6 Flocking Behaviour

Brighton on the south coast of England has entertainment piers dating back to Vic-
torian times. One of them, the West Pier, has suffered a series of mishaps, from
violent storms to major fires. It is now a disused wreck. But it still provides en-
tertainment, courtesy of starlings. These birds congregate in murmurations of tens
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of thousands, sometimes from all over Europe, and generate enthralling displays of
acrobatic swarms as displayed in Fig. 1.1.

Fig. 1.1 Starlings swarming over Brighton West Pier

Craig Reynolds, who subsequently got hired by the entertainment industry and
won an Academy Award, will be found in many books on complex systems for
his innovative simulation of bird behaviour: the flocking of boids [282]. The boids
model was able to generate realistic simulation of flocking behaviour using only
three simple rules for separation, alignment and cohesion between nearby individ-
uals. But flocking goes much deeper than starlings and boids. Vicsek [338] used a
flocking model to simulate the phase transition in magnetic systems we discussed in
the context of the Ising model (Sect. 1.2.2). In the real biological world, Buhl et al.
[51] directly observed a phase transition to collective motion in swarming locusts,
with respect to changes in density. The transfer entropy of flocking behaviour as a
function of order parameter is an open research question. Couzin [66] interprets crit-
icality in effective flocking behaviour occurring only at intermediate sensory ranges
between individual agents in terms of the capacity for information transfer the sen-
sory range allows: too short a sensory range does not allow enough information
transfer to form cohesive groups; too large a range permits rampant spreading of
irrelevant information which erodes group cohesion. The quantification of informa-
tion flow leading to synchronisation at a constant order parameter has partially been
solved indirectly, since the Vicsek model is equivalent to the Kuramoto oscillator
model under certain conditions [59]. We discuss this further in Sect. 5.5.
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1.3 Information Flow and Causality

Finally we come to the core of the book: information flow. Even though we adopt
the mainstream definition of information from Shannon in this book, there are other
definitions, such as Fisher information [274], which has also been linked to phase
transitions. When we come to information flow, even within the Shannon framework
there is variation, but our focus is, as the title of the book might suggest, transfer
entropy.

Before we see the detailed mathematics in Chap. 4, we can get an intuitive idea
by continuing our coffee bean to cup example. We expect the trend in coffee prices
to be reflected later in the trend in coffee shop prices. But we cannot immediately
infer from this that the coffee bean price causes the coffee shop price, and we would
not expect the price of peanuts to affect the price of coffee. Over the last ten years
the coffee bean commodity price has increased by about a factor of three, according
to indexmundi.com. In the same time the commodity food and beverage price index
has increased by a factor of two (so coffee drinkers should feel aggrieved if they did
not invest in coffee beans). The price of peanuts has increased by 2.6, not quite as
good an investment as coffee but better than the index.

The problem then is that, because the price of peanuts has been going up rela-
tively fast, it looks as if it might be impacting on the price of coffee. But everything
has been going up according to the index. This general inflation creates a sort of
common cause effect, which confuses the inference of causality. To get around this
we need to extract out such effects. This is what transfer entropy does. It removes
from the time-shifted mutual information, the effect of the past price of coffee in the
shop, thereby taking out all the general inflation factors in retail food and beverage
prices.

There are two distinct features of the transfer entropy approach to information
flow in this book:

• The first is that it sits firmly on a huge body of work in economics, for which
Clive Granger won the Nobel Prize for his now eponymous causality. Barnett et
al. [22] showed some time later that Granger causality and transfer entropy are
identical for Gaussian processes. This is taken up in detail in Chap. 4.

• The second is much more philosophical in nature, but of profound significance.
We allude in Chap. 3 to the somewhat arbitrary assignment of the term entropy
by Shannon. But it turned out to be remarkably prescient. Thermodynamic and
Shannon entropy were ultimately reconciled. One might then ask whether there
is a link between information and energy. Significant effort went into establish-
ing the thermodynamic cost of computation, starting with work by physicist and
Nobel Laureate, Richard Feynman. It took some while to reach consensus, but
work by Landauer, Bennett and others [34, 172, 33] ultimately established that
computation does not take any energy at all. But the destruction of information
during computation does cost, at precisely 1 bit per kT ln(2) Joules of energy,
with k being Boltzmann’s constant and T absolute temperature. In a 2013 paper
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the killer finding by Prokopenko et al. [275, 273] is that information flow, as
measured by transfer entropy, requires kT per bit of information transferred.

1.4 Applications

The possible applications of transfer entropy ideas are legion, but work to date has
mainly been concentrated in neuroscience, with other work in bioinformatics, artifi-
cial life, and climate science (Chap. 7), as well as finance and economics (Chap. 6).
Two main areas stand out in neuroscience: EEG and neural communication. EEG
(electroencephalography) is a technique for recording brain signals from the scalp.
The surprising amount of information obtained, with high temporal precision, makes
it a widely used, minimally invasive tool. TE serves not only to make links between
behaviour and EEG signals but also as a predictor of pathological events such as
epileptic fits.

At the neural level, one very difficult question to answer physiologically is
whether neural activity in one part of the brain influences or causes activity some-
where else. TE provides a mechanism for quantifying information flow between
active neurons.

1.5 Overview

The real work of the book starts in Chap. 2, where the statistical foundations are
described. With the statistics in hand, Chap. 3 introduces information theory and
Chap. 4 gets to grips with the mathematics of transfer entropy itself.

The first applications appear in Chap. 5, where canonical systems are studied.
These systems have been pivotal in developing our theoretical understanding, thus
this chapter has a strong theoretical slant too.

The primary application area we discuss is financial markets, taken up in Chap. 6.
The remaining applications are spread over numerous fields, including neuro-
science, and occupy Chap. 7. The book concludes with some retrospective com-
ments, a discussion of some important open research questions and the exciting
opportunities for new applications.



Chapter 2

Statistical Preliminaries

The foundations of information theory are firmly grounded in the field of probability
theory; to this end this chapter introduces the technical background needed later. For
the purposes of this book we base our notions on those of the frequentist interpre-
tation of probability while acknowledging that this is primarily due to its readiness
of exposition. The work of probability theory, certainly as we understand it today,
stems from the letters and research of Gerolamo Cardano in the 16th century and
Blaise Pascal and Pierre de Fermat in the 17th century. These earliest works centred
around probabilities in games of chance such as cards and dice as well as theolog-
ical issues such as Pascal’s wager (how you should bet your eternal soul based on
the probable existence of God [123]). These ideas were later formally axiomatised
by Kolmogorov [164], and the rigorous foundations of the field are now well es-
tablished. There still remain strong differences in the philosophical foundations of
probability theory, but these are of no significance in this work, although interesting
historical notes are mentioned as they arise. Andrey Kolmogorov was himself one
of the greatest probabilists of all time, and he noted: “The epistemological value
of probability theory is based on the fact that chance phenomena, considered col-
lectively and on a grand scale, create non-random regularity.” [163]. In a similar
flavour to that of the earliest probability theorists, Sting, one of the greatest lyricists
of recent times, wrote for the song Shape of my Heart:

He deals the cards as a meditation
And those he plays never suspect
He doesn’t play for the money he wins
He don’t play for respect

He deals the cards to find the answer
The sacred geometry of chance
The hidden laws of a probable outcome
The numbers lead a dance

�
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Springer International Publishing Switzerland 2016 11
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2.1 Set Theory

We want to formalise the (probabilistic) relationships between individual elements
of quite different systems. To do this we begin with an individual element in a
set, and we label each element ωi where i ∈ {1,2, . . . ,M}. Each possible state that
ω ∈ {ωi}M can take represents a sample point in a set of sample points called the
sample space: Ω = {ω1, ...,ωM} and we define the size (cardinality or the number
of elements in the set) of the sample space as |Ω | = M. For example for a coin toss
we have Ωcoin = {heads, tails}, for a six-sided dice Ωdice = {1,2,3,4,5,6} or for
a pack of 52 playing cards the suits Ωsuits = {♥,♦,♠,♣}, the face cards Ωface =
{King,Queen,Jack} or the non-face cards Ωnonface = {10,9,8,7,6,5,4,3,2,Ace}.

Each of these examples has in common the fact that each event in each Ω has
equal probability of occurring: drawing any face card from Ωface has a probability
of 1

3 , and tossing a coin and getting either a head or a tail is 1
2 each. We can go

from the frequency with which an event occurs to the probability of occurrence by
simply taking the frequency of a single event in Ω and dividing it by the total num-
ber of trials N that have taken place. For example a coin tossed 1000 times might
come heads 494 times, and the estimate of the probability of the event Heads is
pest(Heads) = freq(Heads)

Trials = 494
1000 = 0.494. As the total number of events increases

so too does the accuracy of the estimate of the probability of each event. This is
called the frequentist interpretation of statistics, and it is only one of several differ-
ent interpretations (see Section 2.3.3 and [146] for Bayes’ Theorem, the foundation
of an alternative interpretation of statistics). The elements ωi are called elementary
events; they are the indivisible elements of the sample space Ω .

But we also want to define subsets of Ω that are larger than elementary events.
For example if Ω52 cards = {A pack of 52 playing cards} then ωi = {a unique playing
card defined by suit and value}, but instead of the set of single playing cards we may
be interested in the set of cards whose suit is spades. Clearly this set is smaller than
Ω52 cards but larger than any ωi, so we define the subsets of Ω : A, B, C etc. so that
for a set A: A ⊆ Ω . So a collection of ωi is a subset of Ω and they are denoted A, B
etc., and the cardinality of these sets is denoted |A|, |B| etc. If A is a subset of B, we
write A ⊂ B and if both sets contain the same ωi then A = B. The union of two sets
A,B ⊂ Ω is written A∪B = {ω ∈ Ω |ω ∈ A or ω ∈ B}, the intersection is written
A∩B = {ω ∈ Ω |ω ∈ A and ω ∈ B}, and two sets are disjoint if their intersection is
the empty set: A∩B = /0.

For example a pack of 52 cards with no jokers can be divided into non-overlapping
subsets of Ω52 cards in distinct ways, for example four suits: A♥, A♦, A♠, A♣
or face and non-face cards: Bface, Bnonface. Each set is a subset of Ω52cards =
A♥ ∪A♦ ∪A♠ ∪A♣ = Bface ∪Bnonface. In a set of English or French playing cards
A♥ ∩Bface = {♥King, ♥Queen, ♥Jack}.
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2.2 Discrete Probabilities

With these notions of sets we can define probability spaces. A probability space is
defined by the triple {Ω ,X , p} where Ω is the space of all elementary events, X is a
set of disjoint subsets of Ω called events (whose union is Ω ) and p is a probability
function that maps events in X to the closed unit interval p : X → [0,1]. We also
define a random variable x : Ω → X that maps from the sample space to events.

We can now define the probability p of a discrete random variable x belong-
ing to the event xi ∈ X as the result of a statistical process in the following way:
p({ω ∈ Ω : x(ω) ∈ xi}) = |xi|

|Ω | assuming there is a uniform probability of any
elementary event ω occurring. For example we want to know what probability
of drawing a diamond face card from a pack of 52 cards if the probability of
choosing any one of the 52 cards is the same as any other (uniform distribution)
x : ω ∈ {♦Jack, ♦Queen,♦King} → x1 = {♦facecards}, |x1| = 3, |Ω52cards| = 52,
p(ω ∈ Ω : x(ω) ∈ x1) = 3

52 , for which we might more simply write p(x = x1) or
p(x1) if there is no confusion, and we refer to the distribution of p over x ∈ X ,
p(x) as a probability distribution function (PDF). While the cardinality of sets is
a useful measure over equally likely outcomes of elementary events, non-uniform
probabilities over elementary events are also possible.

For a probability space {Ω ,X , p} for which |X | = MX is at most countably infi-
nite we have the following three axioms:

1. p(Ω) = 1
2. ∑MX

i=1 p(xi) = 1
3. p(xi) ≥ 0 ∀ disjoint events xi ⊂ X

By disjoint events we mean
⋃N

i=1 xi = X , xi ∩ x j = /0 ∀ i �= j, and so we can write
p(xi ∩ x j) = p( /0) = 0, p(xi ∪ x j) = p(xi)+ p(x j) and consequently

P(Ω) = P(X) = 1

For A,B ∈ X (not necessarily disjoint) we have the following natural relations:

1. A = Ω ⇒ p(A) = 1
2. A = B ⇒ p(A) = p(B)
3. A ⊂ Ω ⇒ p(A) < 1
4. A ⊂ B ⇒ p(A) < p(B)

An illustrative example is the tossing of a fair coin. In this case Ω = {H,T},
and possible xi sets are: xi ∈ { /0,{H},{T},{H,T}}. The probability function is then
p({H}) = p({T}) = 0.5, p( /0) = 0 and p({H,T}) = 1, where the last two expres-
sions are read: “The probability of neither heads nor tails is zero” and “The proba-
bility of either heads or tails is one”, respectively.
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2.3 Conditional, Independent and Joint Probabilities

We want to extend these ideas to multiple and joint events, and the probabilistic
relationships between them.

2.3.1 Conditional Probabilities

In order to do this we consider the probability space {Ω ,X , p} and the probability
that the outcome of a process is an event xi that is the intersection of two sets A,B so
that A,B,xi ∈ X , p(ω ∈ A∩B : x(ω)→ xi) ∈ [0,1] or simply p(A∩B). As A∩B ⊆ A
and A∩B ⊆ B so p(A∩B) ≤ p(A) and p(A∩B) ≤ p(B) (relation 4 above), and we
define the conditional probability of A given B as

p(A|B) =
p(A∩B)

p(B)
∈ [0,1]. (2.1)

We read this as: “The probability of A given that we know we are in state B” or more
simply: “The probability of A given B”. Note that 0 ≤ p(A∩B) ≤ p(B) ≤ 1 tells us
that p(A|B) ∈ [0,1].

2.3.2 Independent Probabilities

There is also another special case that is important to the work that will follow later:
independence of two random processes can be demonstrated through the conditional
probabilities. Two probabilities are considered independent of one another iff (if and
only if) their joint probability is equal to the product of their individual probabilities:

p(A∩B) = p(A)p(B). (2.2)

This relationship can be demonstrated through the use of the conditional probabili-
ties:

p(A∩B) = p(A)p(B) (2.3)

⇐⇒ p(A) =
p(A∩B)

p(B)
= p(A|B), (2.4)

and it also follows directly that p(B) = p(B|A) so the last line tells us that knowing
B changes nothing regarding the probability of A, i.e. A and B do not depend on one
another and are therefore statistically independent of each other.
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Fig. 2.1 Taking the areas in this Venn diagram as representing the relative occurrence of the events
in sets A, B and A∩B, then p(A∩B) = area(A∩B)

area(A∪B) = area(A∩B)
area(A)+area(B)−area(A∩B) , p(A|B) = area(A∩B)

area(B)

and p(B|A) = area(A∩B)
area(A) .

2.3.3 Joint Probabilities

Now we wish to extend our probabilities of single events to probabilities of joint
events given two or more random processes. In the simplest case we have two
processes, but this can be extended directly, so we have two probability spaces:
{Ωx,X , px} and {Ωy,Y, py}, two random variables x and y and a joint probability
space {Ω = Ωx ×Ωy,XY, p}. If a joint event (xi,y j) ∈ XY is formed by the co-
occurrence of event xi ∈ X and event y j ∈ Y then the joint probability is given by
p(x = xi,y = y j) = p(x(ωx) ∈ xi,y(ωy) ∈ y j) ∈ [0,1] or more simply p(xi,y j). Note
that summing over all joint events equals unity: ∑i, j p(xi,y j) = 1. The following
relations are often useful (see Fig. 2.1):

p(xi) = ∑
j

p(xi,y j) (called marginalisation), (2.5)

p(xi,y j) = p(xi|y j)p(y j). (2.6)

This last relation leads directly to a very useful result called Bayes’ theorem:

Theorem 2.1. Given a joint probability distribution p(x,y) and the related marginal
distributions p(x) and p(y), Bayes’ theorem states that:

p(y|x) =
p(x|y)p(y)

p(x)
. (2.7)

This theorem allows us to translate a conditional probability of x given y to that of
y given x, an exceptionally useful result for many applications in statistics and the
applied sciences [179].
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In light of today’s social climate in which science is sometimes seen as oppo-
sitional to religion, Thomas Bayes [b. circa 1701, d. 1761], for which Eqn. 2.7 is
named, is a striking character. He was a mathematician and a Presbyterian min-
ister who is known to have published only two works, one a religious work en-
titled Divine Benevolence, or an Attempt to Prove That the Principal End of the
Divine Providence and Government is the Happiness of His Creatures and the other
a mathematical work entitled An Introduction to the Doctrine of Fluxions, and a
Defence of the Mathematicians Against the Objections of the Author of the Analyst.
Edwin Thompson Jaynes wrote extensively on Bayesian statistics (a form of statis-
tics founded on Bayes’ work and totally different in principle from the Kolmogorov
statistics used in this book) and was drawn to reach the following conclusion: “What
we consider to be fully half of probability theory as it is needed in current applica-
tions [...] is not present at all in the Kolmogorov system. Yet [...] we find ourselves,
to our own surprise, in agreement with Kolmogorov and in disagreement with his
critics, on nearly all technical issues. [...] Each of his axioms turns out to be, for
all practical purposes, derivable from [a set of] desiderata of rationality and consis-
tency.” ([146], Preface, page xxi, 2009 edition). These desiderata of rationality and
consistency are founded upon an 18th century cleric’s work on probability, thereby
laying the foundations for the extension of rational logic to the use of statistics in
empirical scientific enquiry in full use today.

2.3.4 Conditional Independence

A special type of independence occurs when two random variables a and b are
not independent of each other in that p(a,b) �= p(a)p(b) but instead are indirectly
related to one another via a third random variable c in the following fashion:

p(a,b|c) = p(a|c)p(b|c). (2.8)

This is called conditional independence because a and b are independent of one
another once the dependency upon c is accounted for. Such relationships can be
further generalised to an arbitrary number of random variables. To do so we take
two different sets of possible outcomes called Ai ⊆ {a1, . . . ,an} where all ai are ran-
dom variables. The following definition generalises the conditional independence of
Eqn. 2.8:

p(a1,a2, . . . ,an) = ∏
k

p(ak|Ak), (2.9)

such that Ak ∩ak = /0. Such probability separation is the basis of Bayesian networks.
For example if we had the following joint probability:

p(a1,a2,a3,a4,a5) = p(a5|a4,a3)p(a4|a2)p(a3|a2)p(a2|a1)p(a1), (2.10)
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it can be described using the network structure shown in Fig. 2.2. If we call the
random variables ai nodes then the sets of nodes Ak upon which each ak is condi-
tionally dependent are called the parent nodes of node ak. An important example
of these networks are the so-called Chow–Liu trees that are formed by connecting
together nodes such that each node is conditionally dependent on only one other by
maximising the Kullback–Leibler measure (see Chap. 3 (Sect. 3.2.4) for definitions)
between the original probability p(a1, . . . ,an) and an approximation to p(a1, . . . ,an)
given by ∏k p(ak|Ak), where Ak ∩ak = /0 and Ak is a single-element set.

Fig. 2.2 A network of statistical dependencies between the stochastic variables ai

2.3.5 Time-Series Data and Embedding Dimensions

A time series is a temporally indexed sequence of data points or events; the index is
usually denoted by t and can be either be a continuous parameter: t ∈ IR; or a discrete
parameter: t ∈ {0,1,2,3, . . .}. So in general, if there is a sequence of temporally
ordered random events, we denote the random variable xti ∈ {xt1 ,xt2 ,xt3 , . . .} where
ti is either discrete t1 = 1, t2 = 2, t3 = 3 etc. or continuous ti ∈ IR. For example we
may be interested in the arrival of customers at a checkout queue at the supermarket;
this is a stochastic arrival process that is continuous in time where the arrival of the
ith person at the back of the queue occurs at time ti ∈ IR, i ∈ {1,2, . . .}. This process
can be viewed in two distinct ways: we might assume that the number of arrivals in
the time interval [0,T ] is a Poisson distribution (see Sect. 2.5.2) with mean arrival
rate of λ t, or equivalently the time between arrivals (the inter-arrival times) ti+1 − ti
is a continuous exponentially distributed stochastic process with mean inter-arrival
time of λ−1.

An important aspect of time series analysis is how we can infer the underlying
system dynamics from a single observation of a time series, rather than many exam-
ple time series of the same system in which case we could study the statistics of the
time series directly. So we consider the embedding dimension of a time series of
data points. One of the most difficult problems we are faced with when looking at a
system with unknown and possibly chaotic dynamics is how to reliably reconstruct
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the system dynamics from a single time series of sampled data points. Takens [320]
was able to prove that we can reduce the amount of data we need to sample from a
d-dimensional system by sampling a single time series.

To illustrate this Takens or time-delay embedding, let the value of yt be a depen-
dent variable evaluated (or observed) at a discrete time point t ∈ {1,2, . . .}. Assume
that yt is a function of a d-dimensional state space xt = {x1

t ,x
2
t , . . . ,x

d
t } in the fol-

lowing way:1

yt = f (xt). (2.11)

The practical goal of dynamical systems analysis is often to try and accurately recre-
ate the state-space dependency of yt . However we very often do not know the com-
plete state space xt and trying to measure it and then explicitly construct Eqn. 2.11
can be an impractical or even impossible task. Fortunately we can write an alter-
native functional form for the state ỹt which instead of being dependent on xt is
dependent on the past history of yt alone:

ỹt = {yt−mτ ,yt−(m−1)τ , . . . ,yt−1}, (2.12)

where τ is called the embedding delay or lag time (the time between successive
observations of yt ) and m is the total number of past data points in the delay vector.
Note that ỹt �= yt , but they are very closely related to one another and importantly the
same non-linear dynamics, such as chaotic motion, that are observed in yt are pre-
served in ỹt . In this formulation ỹt has as its state dependency on the m past observa-
tions, so {yt−mτ ,yt−(m−1)τ , . . . ,yt−1} is quite literally an alternative (re)construction
of the state space dependency of yt . Takens’ main state space reconstruction result
then says:

Key Idea 1: We can accurately reconstruct the state of a d-dimensional, non-
linear dynamical system yt = f (xt) by observing the m : d ≤ m ≤ 2d +1 past
data points of the one-dimensional time series yt .

In this formulation m is called the embedding dimension, and there are variations
of this scheme in which τ is not a constant but instead is allowed to vary (e.g. [85]),
but this will not be important in the work that follows.

2.3.6 Conditional Independence and Markov Processes

An important type of system is one in which the current state, or more generally
a finite number of previous states, influences the outcome of the next event in a
temporal sequence of statistical outcomes. This is not (usually!) the case for a series

1 yt should be coupled to each dimension of xt for the following to hold.
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of dice throws: if I throw a 5 now, the fact that it is a 5 has no effect on what value
the dice will have when I throw it next, i.e. the throw of a dice is independent of the
outcomes of all previous throws; such processes are called memoryless processes.

In some systems it is important to consider, at the very least, the current state
of the system, as it will influence what state the outcome of the next event will be.
For example, if you are gambling in Las Vegas and you start with a gambling purse
of $1000, then the state of this purse after each gamble depends on how much you
have before that gamble. Note that it only depends on the state immediately prior to
the next gamble, not on the contents of the purse before any previous gamble; the
current contents of the gambling purse is said to be a Markov process [99] of order
1 (or memory 1). We can describe the state St of the purse after a $10 bet is placed
on the t th toss of a fair coin as

p(St |St−1,St−2, . . . ,S1) = p(St |St−1) (2.13)

=
p(St ,St−1)

p(St−1)
, (2.14)

because there is a 50% chance that St = St−1 + $10 if the gamble pays off and a
50% chance St = St−1 − $10 if the gamble does not pay off. The second relation-
ship, Eqn. 2.14, follows directly from Eqn. 2.6. We could make this a memoryless
process (a Markov process of order 0) by considering only the changes in the value
of the gambling purse; then, providing there is $10 in the purse, its value goes up or
down by $10 with a probability of 50% and this change in purse value is indepen-
dent of the previous purse value. So the following definition is very useful:

Definition 2.1. A Markov process of order m is a stochastic, time-ordered process
for which the following relationship holds:

p(St |St−1, . . . ,Sm, . . .) = p(St |St−1, . . . ,Sm); (2.15)

i.e. it is conditionally independent of its past given the previous m states. There is
an important assumption of a Markov process: the statistical process that generates
the data from which the probabilities are calculated must be time invariant; such
a process is called stationary. Time invariant means that for an order n Markov
process P(St |St−1, . . . ,St−n) = P(St ′ |St ′−1, . . . ,St ′−n) ∀ t and t ′. In the above example
of a gambling purse in Las Vegas: if the probability of the coin coming up heads or
tails does not change over time then the statistical process (the tossing of the coin) is
stationary. If this property does not (at least approximately) hold it becomes difficult
to draw reliable statistical conclusions about the system as the relationship between
past and future outcomes is different at different times. This is true for all of the
systems we will consider in this work. Data is often collected over time and the
temporal dependencies between current and past values of a statistical variable as
well as statistical dependencies between different variables will be important, so the
statistical relationships need to be tested for stationarity so that we can be confident
that the conclusions we draw are reliable.
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Note the distinctions between the last two definitions: conditional independence
that reflects independence between stochastic variables given a suitably complete
set of other statistical variables are accounted for, whereas a Markov process is
conditionally independent of its past once a sufficiently complete set of historical
outcomes have been accounted for.

2.3.7 Vector Autoregression

In statistics, vector autoregression (usually abbreviated to VAR) methods refer to
a class of models whose goal is to understand the linear relationships between
multiple statistical processes (see for example Campbell et al.). In this case we
have a vector of n different, potentially coupled, statistical processes that gener-
ate a sequence of data points over time; the state of the system at time t is given
by St = [S1

t ,S
2
t , . . . ,S

n
t ]. Then the following linear system of equations is used as a

model of the relationships between the different processes:

St+1 = ASt + εt+1. (2.16)

Here A is an n× n matrix of coupling coefficients between the different processes
and εt+1 is a vector of statistical perturbations each process experiences between t
and t + 1. The goal of VAR-type analysis is to estimate the matrix A. Eqn. 2.16 is
explicitly a lag-1 process, sometimes denoted VAR(1), as only the previous state of
the vector, St , is used to estimate St+1; this can be generalised to arbitrary lags, but
the notation can get somewhat cumbersome. For a two-process, lag-1 VAR process,
Eqn. 2.16 reduces to

S1
t+1 = A1,1S1

t +A1,2S2
t + ε1

t+1, (2.17)

S2
t+1 = A2,1S1

t +A2,2S2
t + ε2

t+1. (2.18)

Note that the following relationship for the stochastic variation terms is assumed
to hold: E

{
ε i

t
}

= 0, c
(
ε i

t ,ε i
t−2

)
= 0, we will cover the definitions of expectations

(E{x}) and covariance (c(x,y)) next.

2.4 Statistical Expectations, Moments and Correlations

One of the most useful purposes to which probabilities are put is in mathematical
expectations. For a given numerical quantity A(xi) ∈ IR that can be ascribed to the
outcome of a statistical process (recall that not all outcomes are naturally numerical)
and for which a probability p(xi) can be defined for all xi ∈ X , we can further define
the expected value of A(xi):
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E{A(x)} = ∑
xi∈X

p(xi)A(xi). (2.19)

This is also called the mean or first moment of the random variable x. The A(xi) can
be quite general in form, providing that the xi is an event in a stochastic process. A
very important example is the variance of a stochastic process, defined as

E
{
(x−E{x})2} = σ(x)2, (2.20)

where σ(x) is called the standard deviation of the variable x and σ(x)2 is called the
variance, often simply denoted var(x). For multivariate processes the expectation is
a direct extension of Eqn. 2.19:

E{B(x,y)} = ∑
(xi,y j)∈XY

p(xi,y j)B(xi,y j) (2.21)

for any B : XY → IR with XY the joint event space as defined above; we may some-
times write more generically E{B(x,y)} = E{x,y}. Note that in general E{x,y} �=
E{x}E{y}, i.e. the joint expectation of random variables x and y is not equal to the
expectation derived by assuming that x and y are independent random processes.
This motivates the definition of the Pearson correlation coefficient, a measure of the
degree to which two random processes diverge from independence:

ρ(x,y) =
E{x,y}−E{x}E{y}

σ(x)σ(y)
∈ [−1,1]. (2.22)

Note that ρ(x,y) is a measure of linear dependence: if x and y are related to one
another by the linear relationship y = ax + b + ε where ε represents some unex-
plained statistical variation in the relationship between the two random variables,
then ε = 0 and a �= 0 implies a perfect linear relationship between x and y, i.e.
one in which there is no unexplained variation between the two variables, even if
x itself has some unexplained statistical variation. In this case ρ(x,y) is either 1
or −1 depending on the sign of a. For a non-linear relationship between x and y,
ρ(x,y) will not pick up all of the covariation between the variables. In the case of
E{x,y} = E{x}E{y} then ρ(x,y) = 0 and the two processes are considered to be
(linearly) independent, even if there is a non-linear relationship between x and y.

Note that, in the definition of the variance given by Eqn. 2.20, we can extend the
definition to the variance between two stochastic variables:

E{(x−E{x})(y−E{y})} = E{x,y}−E{x}E{y} = Σ(x,y). (2.23)

This is the covariance between two variables and is used to measure the degree to
which one stochastic variable linearly varies with another (note that one variable
does not cause the other to vary; they both vary together, and no causation in ei-
ther direction is implied). By comparing Eqn. 2.23 with Eqn. 2.22 we see that the
Pearson correlation coefficient is simply a regularised form of the covariance: di-
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viding the covariance by the product of the two variances bounds the covariance to
lie between [–1, 1]. Without this regularisation it is very difficult to compare the
covariance of two different systems because the variances reflect the different scales
of different systems. For example imagine comparing the covariance of height with
weight of a population of people with the covariance of income with education
level for the same population: the two covariances would be vastly different and
tell you nothing about the similarity of the statistical relationship between (height
vs. weight) and (income vs. education). In this way the Pearson correlation coeffi-
cient allows us to systematically compare the statistically covarying nature of quite
different data sets.

2.5 Probability Distributions

Perhaps the three most significant distributions are the binomial distribution, which
is used to analyse two-outcome statistical processes, the Poisson distribution fre-
quently used to model independent arrival times and the Gaussian (or normal) dis-
tribution, important due to its deep connection with many of the most important
statistical proofs and many empirical research problems. These three distributions
are also connected to one another, as the binomial distribution can be thought of as
a discrete approximation to the Gaussian distribution under certain circumstances
and two independent Poisson processes are related to the binomial distribution by a
conditional probability distribution of these two processes.

2.5.1 Binomial Distribution

The binomial distribution deals with perhaps the simplest possible statistical process
we are ever likely to be interested in: a sequence of n statistical experiments of a
two-outcome process where one outcome has probability p and the alternative has
probability 1− p. An obvious example of such a situation is the tossing of either
a fair (p = 0.5) or biased (p �= 0.5) coin a total of n times. A more sophisticated
example is the daily returns of an equity traded on a share market over an n-day
period. This second example implicitly underpins a great deal of modern risk in
finance [140].

Let us say we have a biased coin where our random variable for the t th toss
of the coin xt has probability p(xt = Heads) = p and p(xt = Tails) = q. Then be-
cause the tossing of a coin is a memoryless process (each toss is independent of
all previous tosses), the probability of n tosses resulting in k Heads and n− k Tails
is
(n

k

)
∏n

i=1 p(xi) =
(n

k

)
pkqn−k. The factor

(n
k

)
= n!

k!(n−k)! comes from the different
number of ways in which the sequence of coin tosses can result in k Heads and n−k
Tails. This factor is a minimum for k = 0 or k = n where there is only 1 possible way



2.5 Probability Distributions 23

to throw all Heads or all Tails from n tosses (by convention 0! = 1) and maximised
for k = n−k = n/2 (even number of tosses) or k = n/2+0.5 (odd number of tosses).

For a fair coin with p = q = 0.5, both outcomes have the same probabilistic
weighting and the binomial distribution reduces to the counting of the different pos-
sible ways in which n tosses can result in k Heads and n−k Tails. This is exactly the
result for the (normalised) counting of the cardinality of sets described in Sect. 2.1.
The mean of the binomial distribution is simply the expectation of the outcome after
n trials: 〈x〉n = np, and the standard deviation is σ(x) =

√
npq.

2.5.2 Poisson Distribution

The Poisson distribution was first introduced by Siméon Poisson in his work on
criminal and civil matters of law. Poisson was interested in modelling the probability
of discrete events occurring within a certain interval of time. In order to model this
process (the Poisson process) he proposed the following probability distribution for
a random variable x representing the number of arrivals per unit time:

p(x = k) =
λ ke−λ

k!
, (2.24)

where λ is the only free parameter, e = 2.71828 is the base of the natural logarithm
and k is the number of events that were observed to have occurred within the given
time interval.

Suppose now that you have an office during which students can come by and
discuss the lectures and course materials with you. Through past experience you
know that your students arrive at approximately 4 per hour = λ (sometimes called
the arrival intensity), but you have not had lunch yet and you want to duck out for
half an hour, grab a bite to eat and come back. What is the probability that during
this time at least one student will arrive and you will not be there? The probability
that no student arrives is p(x = 0), and so the probability that more than one arrives
is simply 1− p(x = 0), where p(x) = λ ke−λ

k! with λ = 0.5∗4 = 2, k = 0 and 0! = 1

so p(x = 0) = 20e−2

0! = e−2 = 0.135 so the probability of at least one student going
away disappointed is 86.5%.

Note that this is an important example of the need for the arrival process to be a
stationary probability distribution: the arrival intensity λ needs to remain fixed over
time otherwise, if the arrival intensity changes over time, your estimate will also be
incorrect.
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2.5.3 Continuous Probabilities

Before moving on to the continuous Gaussian distribution, we need to consider
some important ideas regarding the relationship between continuous and discrete
probability distributions. In a continuous random process, a random variable x can
take any value in a continuous real-valued space. For simplicity we only consider
xi(ω) ∈ Ω ⊆ IR, i.e. events xi that are strictly elementary events. The cardinality of
Ω is no longer countably infinite; if −∞ ≤ Ω ≤ ∞ we say the support of x is the real
line, as is the case for the Gaussian distribution (see Sect. 2.5.4).

Next we consider a sample space Ω that has a total order, this allows us to place
individual events, either elementary or composite, in a ranked order with respect
to each other, a technique that will be very useful in discretising continuous sample
spaces. For every a,b,c ∈ Ω there is a relation � (note: different from ≤, see below)
for which the following properties hold:

1. a � a (reflexivity)
2. if a � b and b � a then a = b (anti-symmetry)
3. if a � b and b � c then a � c (transitivity)
4. a � b or b � a (totality)

We note two important examples of a total order: the set of real numbers and
the integers, both ordered with the usual binary relation of “is less than or equal
to”: ≤. We can readily construct subsets of a totally ordered set that are also totally
ordered sets with the same relation � as the original set. For example consider a
variable x ∈ IR such as the height of a person in metres (m); this is a totally ordered
set for which we can define subsets that are also totally ordered, for example {1.65
m ≤ x ≤ 1.85 m} is less than {1.95 m ≤ x ≤ 2.05 m}.

Now if x is a random variable, we can extend our previous definitions to a con-
tinuous space X using the same notation from Sect. 2.2. For a,b,ω ∈ Ω , we define
an event as a subset of the sample space xi = {ω |a ≤ x(ω)≤ b}= {a ≤ x ≤ b}, and
we define a probability p just as we did before: p({ω ∈ Ω : x(ω) ∈ xi}) ∈ [0,1]. We
can also look at this in terms of a continuous probability function, explicitly:

p({ω ∈ Ω : x(ω) ∈ xi}) ≡
∫ b

a
p(x)dx, (2.25)

where p(x) for continuous x is the probability density function (PDF)2 at x. Analo-
gous to axioms 1 and 2 in Sect. 2.2 we have:∫

Ω
p(x)dx = 1, (2.26)

and p(x) ≥ 0 in analogy to axiom 3 in Sect. 2.2.

2 The attentive reader will notice that we use PDF as an abbreviation for both probability distribu-
tion function and probability density function; one can decipher which it refers to by whether the
argument is discrete or continuous.
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For example if Ω were all males living in Australia and our random variable of
interest was the heights of all males living in Australia, then x : {Heights of Aus-
tralian males}→ xi ⊂ IR = height in metres. Naturally, the height of an individual is
a continuous value, and because individual outcomes that are continuous are unique
(no two people ever have exactly the same height), constructing probabilities over
intervals of continuous outcomes allows us to discretise the outcomes (in the case of
heights this is the same as rounding our data to the nearest centimetre for example)
and allows us to say there were y Australian males with height of z metres (to the
nearest cm).

2.5.4 Gaussian Distribution

Often described as “The Prince of Mathematics” and the “greatest mathematician
since antiquity”, Carl Friedrich Gauss’ [1777–1855] personal motto pauca sed
matura (few, but ripe) is rather ironic in light of the very prolific career of this
quintessential polymath for whom there are over 100 eponyms. The distribution for
which he is most famous is called the Gaussian distribution, and it is best introduced
in its functional form:

p(x) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , x ∈ [−∞,∞], (2.27)

where the mean is μ and the standard deviation is σ . We can construct a discrete
distribution from the Gaussian by noting that x is totally ordered, defining

p(Δix) = p(x′i ≤ x < x′i +Δ) (2.28)

=
∫ x′i+Δ

x′i

1
σ
√

2π
e−

(x−μ)2

2σ2 dx (2.29)

for i ∈ {−∞, . . . ,∞} a countably bi-infinite index, and setting Δ to some suitable
constant (usually based on the particular sample being considered). We recursively
define xi+1 = xi +Δ and xi−1 = xi −Δ for some arbitrary x0, and so we have a dis-
cretised ordering xi over the original (continuous) domain x of p(x). This discretised
Gaussian distribution is interpreted as the probability that the random variable x lies
in the ith interval [xi,xi +Δ). See Fig. 2.3 for an illustration.

2.5.5 Multivariate Gaussian Distribution

Many distributions have a multivariate counterpart to their univariate version. The
multivariate Gaussian is just such a counterpart to the (univariate) Gaussian de-
scribed above. For the most part the multivariate Gaussian is a direct matrix gen-
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Fig. 2.3 A continuous Gaussian distribution (red) and one possible discretisation (bars)

eralisation of the univariate case, with the exception of the covariance between one
component distribution with another.

The multivariate Gaussian for n random variables xi is given by

p(x1, . . . ,xn) = (2π)−n/2|Σ |−1/2 exp[−1
2
(x−μ)T Σ−1(x−μ)T ], (2.30)

where Σ and |Σ | are the covariance and the determinant of the covariance matrix,
x = [x1, . . . ,xn] is the vector of random variables, μ = [μ1, . . . ,μn] is the vector of
the means of each xi and xT is the transpose of a vector x. Explicitly, Σ must be
invertible in order to form Σ−1 and is defined as

Σ(x) =

⎡⎢⎢⎢⎣
v(x1) Σ(x1,x2) · · · Σ(x1,xn)

Σ(x2,x1) v(x2) · · · Σ(x2,xn)
...

...
. . .

...
Σ(xn,x1) Σ(xn,x2) · · · v(xn)

⎤⎥⎥⎥⎦ . (2.31)

The special case in which ρ(xi,x j) = 0∀xi,x j, i �= j has a covariance matrix

Σ(x) =

⎡⎢⎢⎢⎣
σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

⎤⎥⎥⎥⎦ . (2.32)
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To illustrate the multivariate Gaussian we explicitly write out the bivariate case
with correlation coefficient ρ:

p(x1,x2) =
1

2πσ1σ2
√

1−ρ2
×

exp
[
− 1

2(1−ρ2)

(
x1 −μ1

σ2
1

+
x2 −μ2

σ2
2

− 2ρ(x1 −μ1)(x2 −μ2)
σ1σ2

)]
. (2.33)

For ρ = 0 this expression reduces to p(x1,x2) = p(x1)p(x2), where p(x1) and p(x2)
are univariate normal distributions, as we should expect for two distributions that
are (linearly) independent of one another, see Fig. 2.4. For any ρ ∈ [−1,1] the co-
variance matrix for the bivariate Gaussian is:

Σ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (2.34)

Fig. 2.4 Two coupled Gaussians with a correlation coefficient ρ = 0.75; the marginal probability
distributions and the discretised and normalised histograms are projected onto their respective “rear
walls” of the plot
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2.6 Symmetry and Symmetry Breaking

The notion of symmetry and its role in theoretical physics is one of the most influ-
ential ideas to have been developed for physics and has been transferred to other
sciences with exceptional success (good introductory works include [7] and [308]).
Through the work of Emmy Noether, one of the most influential physicists of
the 19th century and a female in a male-dominated field, a remarkable connection
was established between the symmetries of a system and the conservation laws of
physics such as energy and momentum.

To illustrate the notion of broken symmetry we will use the example of a potential
function parameterised by the value μ as shown in Fig. 2.5. In this example a ball
can be placed somewhere on the Q axis for a given value of μ , and the ball moves
to either the left or the right in response to the local surface gradient of the potential
given by φ(Q) = Q4 + μQ2, i.e. if the gradient dφ

dQ = 4Q3 + 2μQ < 0 at Q = 1.2
then the ball will roll to the right, in the positive direction of Q. A local minimum
or maximum of φ(Q) is found by solving dφ

dQ = 0. For μ > 0 there is only one point
at which this occurs: Q = 0, but for μ < 0 there are three solutions: Q = 0 and two
other symmetrical points on either side of Q = 0. The Q = 0 solution is stable for
μ > 0 but unstable for μ < 0. To see this, imagine a ball sitting on the Q = 0 point
for μ = 4 (i.e. at the back of the plot); small variations in the position Q of the ball,
usually thought of as thermal fluctuations, will result in the ball returning near to
the point Q = 0. However, for a ball placed at μ = −5 and Q = 0, i.e. on top of
the ridge at the front of the plot, a small variation in Q will result in the ball rolling
down to the bottom of one of the two hollows to either the left or right of Q = 0,
so we say that Q = 0 is an unstable solution to dφ

dQ = 0. However, once the ball is
in one of these two hollows, a small thermal fluctuation in the ball’s position will
result in the ball returning back to the bottom of the hollow. Both of these hollows
are therefore stable solutions of dφ

dQ = 0 for μ < 0 just as the Q = 0 point is a stable

solution of dφ
dQ = 0 for μ > 0.

There are other examples of these types of symmetries that are spontaneously
broken as a parameter such as μ is slowly varied. A very important class of such
symmetry breaking comes from the study of the Ising model used as one of the pro-
totypical systems of purely locally interacting elements in a system that shows com-
plex global behaviour, see Sect. 5.2 as well. The physical details are not important to
the current discussion except that an important class of solutions is called the mean-
field solution. The two-dimensional Ising model is composed of a two-dimensional
grid of particles, each of which is connected (interacts) with four local neighbours
on the grid. Each of these particles can take on one of two possible states, spin
up (+1) or spin down (−1), and they randomly fluctuate between these two states;
the average activity of these fluctuations is called the Ising model’s temperature T ,
however it is often convenient to talk about the inverse temperature β = 1/T . One
of the key properties of the Ising system that we often want to understand is the av-
erage spin, or magnetisation, of the system, which is often given the variable name
Q ∈ [−1,1]; the range of values that Q can have is evident from the fact that the
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Fig. 2.5 A potential function described by φ(Q) = Q4 + μQ2

average spin cannot be larger than +1 when all the spins are positive or smaller than
−1 when all the spins are negative. It has long been known that, as the inverse tem-
perature β varies from very small values near zero (i.e. high temperature when the
spins flip very rapidly from one state to another), the average magnetisation fluc-
tuates around Q = 0. However, as β increases (the system “cools”), there comes a
point when the spins spontaneously magnetise so that Q �= 0 and that as β continues
to increase Q continues to diverge from Q = 0. The mean-field equation describing
the equilibrium points of the Ising model is given by Q =tanh(βQ/2), solutions in
terms of Q to this self-consistent equation given the mean-field approximation to the
fixed points of the original Ising system, as shown in Fig. 2.6. Typically, this equa-
tion represents the equilibrium solutions to a dynamical system that evolves over
time, and the long-term dynamics will be attracted to the nearest stable equilibrium
solution and be repelled away from an unstable equilibrium solution. In stochastic
systems, the upper and lower branches of the bifurcation shown in Fig. 2.6 might be
stable while the central branch Q = 0 is unstable (i.e. if the system is currently at
Q = 0 and β � 2 a small perturbation to Q, for example Q = 0.01, will result in the
system evolving towards the stable branch of Q near +1).

From these examples we are able to see what is happening when a symmetry
“breaks”. Before the symmetry breaking point (i.e. β < 2), if we were to follow the
path of a test particle as it moved around the system (pushed as it is by the thermal
fluctuations), it can plausibly visit the whole system; there are no physically allowed
states (or regions) of the system that are excluded to any test particle we might

Μ
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Fig. 2.6 A bifurcation plot of the equilibrium solutions to the equation Q = tanh(βQ/2) showing
that, as β varies, the number of solutions changes from one (β < 2) to three (β > 2). The blue lines
represent the expected activity (mean magnetisation) of the system; around each point of the blue
lines there will be some minor thermal fluctuations

choose. However, after symmetry breaking (β > 2), there will be regions that a test
particle is physically allowed to be in, but if we were to follow such a particle, we
would find that some parts of the system are never explored by our test particle. We
can see this by looking at Fig. 2.5 again; a test particle that starts in the left-hand
hollow (μ < 0) will remain in that hollow and no small fluctuations can disturb
it from the left-hand hollow so that it might spontaneously jump to the right-hand
hollow (it might be theoretically possible to wait for a suitably large fluctuation that
could kick a test particle from one hollow to the other, but such fluctuations typically
occur at time intervals greater than the age of the universe, essentially making the
alternative hollow impossible for our test particle to visit).

So keeping in mind that the alternative hollow is still a physically allowable state
but our test particle will never get there, we can introduce the notion of ergodicity
and broken ergodicity, concepts that generalise the notion of symmetry and broken
symmetry. An ergodic process is any statistical process that allows us to equate the
time average of a test particle with the average over all allowable states of the sys-
tem. For example if we had n = 1,000,000 observations of the Dow Jones share
market index Dn, then you might think that taking this average might tell you some-
thing about the distribution of values you can expect the Dow Jones index to take
(a million data points would be considered a large enough sample size for statistical
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confidence). But the Dow Jones time series can be thought of as just one realisa-
tion of many possible time series (one test particle) that we can follow; how do we
know that it represents a complete exploration of possible states the market can be
in? How do we know that, if an underlying system parameter changes, it will not
suddenly make possible other previously unseen values of the Dow Jones, values
that are possibly very bad? We cannot easily know, and we often have to assume
that the single time series we have been watching for a while is not stuck in a local
hollow like those in Fig. 2.5.

So if the system can be stuck in one of these hollows and is unlikely to ever get
out and visit the other hollow, why should we worry? The answer lies in the non-
stationary nature of many complex systems. We can see how this can mislead our
intuition by looking at Fig. 2.5 again and thinking in terms of two potential states
of a financial market. Let us call the left well Q− and think of it as the state of
the market generally trending down and the right well Q+ and think of this as the
market generally trending up; Q− is called a bear market, and Q+ is called a bull
market. An analyst watching the market increase by 9% per annum over the last
few years might conclude that the market is “bullish” and the expected return on a
broad portfolio of stocks will return about 9% each year (with some small variations
analogous to “thermal fluctuations”), however as the economic climate changes, the
mining sector, on which the economy of the country in which our analyst lives de-
pends, begins to under-perform because the country’s trading partners no longer
need as much steel. This has a follow-on effect in the retail industry as jobs are lost
in the mining sector and people buy less; equally the manufacturing sector struggles
as there is less investment in the manufacturing of mining machines and allied in-
dustries, and the subsequent loss of employment leads to further losses in the retail
sector. Ultimately the whole economy slows down, and there is no average increase
in the value of the share market as many key industries are no longer growing; i.e.
we reach the point where Q = 0 in Fig. 2.5. Now the share market begins to decrease
in value every year as the circular process of economic slow down and job loss feeds
back upon itself, and the same analyst now looks at the average of the share market
and sees that it is now in position Q−, i.e. a bear market (again, enough data can
be collected so that the analyst feels statistically confident that he has an accurate
read on the market). In fact, if it were possible to take an average across all possible
financial paths (all theoretically possible test particles), it might be that our analyst
finds that the share market has an average return of a much smaller amount than he
initially suspected (this is equivalent to taking averages across a statistically large
number of realisations of both Q+ and Q−).

So what has happened here? We conceptualise this situation as having a macro-
economic parameter μ that is driving the system dynamics and has been varying so
that the single test particle the analyst was following (the time series of the market
performance index that was in state Q+) was not representative of all of the types
of states the system could be in, and so his statistical estimates were flawed despite
collecting a lot of data. It is important to note that, if the macro-economic parameter
μ had not varied, then the system would not have been able to switch from one
broken-symmetry solution at Q+ to the other at Q−. Obviously, real economies
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and real share markets are far more complex than this toy example suggests, but it
does illustrate the types of complexity that we are confronted with when we (often
implicitly) assume that a time series is ergodic and equate the time average of a
single time-series realisation with a total exploration of the possible states of the
system dynamics.



Chapter 3

Information Theory

Having cleared statistical preliminaries out of the way, we can now begin the two
fundamental theoretical chapters, containing most of the mathematics. In this chap-
ter, we introduce the fundamental concept of entropy and go on to consider mutual
information on which transfer entropy is based. This chapter is somewhat more in-
tuitive, less formal and easier to understand at a first reading than the next chapter,
which gives the full mathematical details of transfer entropy.

3.1 Introduction

Entropy is one of the most alluring and powerful concepts in the history of science
and information. But it initially appeared twice, largely independently. Back in the
19th century, Rudolf Clausius came up with the term in thermodynamics. Nearly a
century later, Claude Shannon introduced the idea for communications and his new
ideas of information theory, now fundamental to all things computational [304]. He
reputedly selected this name following a suggestion from computer pioneer John
von Neumann; according to Tribus [327]:

The same function appears in statistical mechanics and, on the advice of John von Neumann,
Claude Shannon called it ‘entropy’. I talked with Dr. Shannon once about this, asking him
why he had called his function by a name that was already in use in another field. I said
that it was bound to cause some confusion between the theory of information and thermo-
dynamics. He said that von Neumann had told him: ‘No one really understands entropy.
Therefore, if you know what you mean by it and you use it when you are in an argument,
you will win every time.’

The thermodynamics story does not really concern us here. But the idea was simple:
that systems vary in the amount of order they contain, and as they transform from
one to another, this level of order is a key driver of the change. Commonly we think
of entropy as the amount of disorder in a system.

Our real concern in this book is with entropy in information science, the main
subject of this chapter. Entropy is the average uncertainty in the value of a sample
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of a variable, equivalent to the average information required to determine the value
of that sample. This begs the question of what information really is, which Sect. 3
tackles in depth. To get at information flow, a central theme of this book, we need
two additional ideas: relative, or conditional entropy (CE), is what is left over when
we already know something about a variable; conversely mutual information (MI)
is essentially how much information is shared by two variables.

It is very easy to fall into a trap here, of thinking in some way about the infor-
mation of individual things, say the information in a book. There is a whole field
devoted to such individual information, known by the names of its three more or
less simultaneous independent inventors, Kolmogorov, Solomonoff and Chaitin, and
also called algorithmic information [179] (Sect. 3.2.6). In essence this is the length
of the shortest computer program, in bits, of a description of something. The Shan-
non information, which is what we are interested in here, is a statistical quantity,
based on sets of things. There is a link to algorithmic information theory, which we
note in Sect. 3.2.6.

So, let us consider a simple example: the cars in a shopping centre car park. Given
all the types of cars available, there are lots of ways of filling up the car park. This
suggests that, if we know what types of cars and the numbers of each present in the
supermarket car park on some given day and time, that is quite a lot of information,
since it distinguishes this from all the other possible sets of cars. Now we could
narrow this down a bit, if we knew something about the suburb. If it is a rich suburb
we might find that there are more BMWs and Jaguars than average. If we took all
the possible suburb affluence levels and all the car park contents, we would find that
they were correlated, or that they have some shared, or mutual information. Sect. 3.2
makes these ideas precise and quantitative.

The driving force behind Shannon’s work was coding of information to transmit
it down channels, which could be noisy. Coding is not very central to this book, and
there are many excellent books available. We will see occasional references to code
length, but pursuing the car example will give us a bit of an intuitive insight. In the
era of text messaging and twitter, we are used to abbreviating words and phrases.
We are stripping a lot of the redundancy from English. So, in our high-class suburb,
we do not need very many letters to text a new expensive car in the supermarket
car park. J would do for Jaguar, L for Lamborghini (because a Lada would be very
unlikely), and we would need BM for BMW, because B could also be Bentley.

But even in our high-class suburb, BMWs are more common than Lamborghinis.
So we would really like to have the one-letter code for BMW and the two-letter
code for the less common Lamborghini. With text messages, and social media such
as Twitter, we are now quite happy with using short abbreviations for terms and
phrases which occur frequently. Coding theory provides ways of doing this in the
most economical way, the so-called optimal codings.

Shannon published his ideas on information in the 1940s. For quite a long time
after that, all practical uses relied on simplifications, such as the assumption of
Gaussian processes. The reason for this is partly that these quantities are hard and
expensive to calculate, i.e. they take a lot of computing time. Sect. 3.4 takes a look
at why this is so, and surveys some of the algorithms we can use to get better es-
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timates. It is interesting that some questions, such as the mutual information of
the Ising model, discussed in Chap. 5, are still seeing solutions published in 2013,
decades after the models first appeared. There are many good books on information
theory, such as MacKay [208], which also covers coding and Bayesian statistics.

3.2 Basic Ideas

3.2.1 Entropy and Information

Entropy as a thermodynamic concept is a measure of the disorder in a system. In
fact, the phase transitions we shall talk about in this book (Sect. 3.3) are transitions
between different levels of order, between order and disorder, or vice versa. In in-
formation theory there is an additional way of looking at entropy: it is the average
uncertainty in the value of a sample of a variable, equivalent to the average infor-
mation required to predict the value of that sample. To understand this we need to
go back to the definition of information itself.

Shannon wanted an information measure which satisfied a number of conditions,
notably:

1. It should be additive for independent pieces of information
2. It should reflect likelihood of events, in particular capturing increasing uncer-

tainty associated with an increasing number of (equally likely) events.
3. It should be continuous with respect to changes in these likelihoods.

He was interested in how much information a message conveyed. If something is
very likely to happen, the information gleaned from it happening is not very great,
a bit like the sun rising in the morning does not actually tell you very much. On
the other hand, rare events (such as the sun shining while it is raining) convey a
great deal of information because they are relatively surprising. Thus, his measure
of the information, η(x), of an event x, was the log of the probability, p(x), of x
happening, being observed, whatever (Eqn. 3.1). This is also sometimes called the
surprisal or Shannon information content. Formally, following the nomenclature of
Chap. 2, we consider samples of a random variable x of the event X , which take
values from a discrete alphabet or space of all elementary events ΩX as described
by a probability function p(x) (Sect. 2.1) with total number of events M = |ΩX |. We
omit the subscript X where no ambiguity results. In cases where it is not explicitly
specified, a summation over x implies one over ΩX .

η(x) = − log2 p(x). (3.1)

Shannon used natural logs, giving information in nats. When we consider Gaus-
sian variables, natural logs appear directly, but in most cases we shall use logs to
base 2, denoted log2, giving information in bits, the more common unit today.
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One can interpret the values of η(x), in bits, as the optimal number of yes/no
questions that one needs to ask (on average) to determine the value of x. For exam-
ple, say I want to know the make x of one particular car in our supermarket parking
lot, and you already know the answer. If I ask “Is it a UK make?” and you say “Yes”,
that narrows it down to a Jaguar or Bentley. I can then get the final answer by asking
“Does it begin with “J?”, and let us assume you say “Yes”. Assuming that we had
a 50-50 probability for the answer for each question, then the Shannon informa-
tion content for x = Jaguar here was 2 bits, corresponding to two yes/no questions.
Another interpretation in terms of optimal code lengths follows later in Sect. 3.2.7

Because information is an exceptionally common idea and a term in very com-
mon usage in today’s world, we have to be very careful not to confuse everyday
parlance with the mathematically precise concept we need for this book. It is very
easy to get mixed up with the vernacular ideas of information in something (like the
newspaper), the content itself of information sources, the data on a hard drive and
so on.

Key Idea 2: The information of information theory has nothing to do with
meaning.

It is very important to be clear about context. Information can mean lots of things.
A lion in the garden in England suggests a zoo or wildlife park has some escapees.
A lion in the garden in Kenya may not mean very much at all, other than to stay
indoors. We have to strip away all extraneous factors, and consider sets of events.
Information generalises to continuous probabilities, but there are some mathemati-
cal niceties (Sect. 3.2.5 and Fig. 3.1).

Key Idea 3: Shannon information is a property of sets of objects, not the
objects themselves.

Given this definition of information, the entropy is now the average information
over sets of events, which can be measured as repeated observations over time, or
over sets of different realisations of a system, the two being equivalent when the
system is ergodic (Sect. 2.6).

If we average or take the expectation value (Sect. 2.4) of the information accord-
ing to the probability of each event occurring, we end up with the Shannon entropy,
Eqn. 3.2.

H(X) = E{η(x)} = − ∑
x∈Ω

p(x) log2 p(x). (3.2)

This is a quite general principle for all the entropy and information measures in
this book. We can get a system-level descriptor, such as the entropy, by averaging
over all the descriptors for just a single point or event. These single-point descrip-
tors, we call pointwise descriptors, but they are sometimes called local, i.e. local
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entropy.1 This suggests using a unified notation: lower case is used for the point-
wise descriptor and upper case for the system level. Thus, we rewrite η(x) as h(x).

Key Idea 4: All the system-level information-theoretic quantities may be ex-
pressed as expectation values over the pointwise (local) quantities.

To add subtlety to Key Idea 3, we clarify that Shannon information content, or
local entropy, is a property associated with each object—but only in the context of
the whole set of objects.

For two variables, the joint entropy is simply

H(X ,Y ) = − ∑
x∈Ωx

∑
y∈Ωy

p(x,y) log2 p(x,y), (3.3)

and so on for any number of variables.
We also need the idea of conditional entropy, the uncertainty left after we have

taken into consideration some context. So, if we look at the different brands of cars
we would see on a typical high street, then new Ferraris would be quite rare. But if
the high street is in Hampstead in London, or the centre of Dubai, there may be lots
of very expensive cars. So, if X is the set of car brands and Y the set of high streets,
we determine the entropy of X for each high street y, and it will vary widely with
location, Eqn. 3.4

H(X |y) = − ∑
x∈Ωx

p(x|y) log2 p(x|y). (3.4)

To get the conditional entropy, we just have to average over the different high streets,
Eqn. 3.5:

H(X |Y ) = ∑
y∈Ωy

p(y)H(X |y). (3.5)

We can write a conditional Shannon information content (or local conditional
entropy) for the information content of event x given that event y occurs:

h(x | y) = − log2 p(x|y), (3.6)
H(X | Y ) = E{h(x | y)} . (3.7)

We can then rewrite Eqn. 3.3 in terms of the conditional entropy (Eqn. 3.8). This
simply states that we take the entropy of X , then add what is left of the entropy of Y
after taking out any X dependence, or vice versa:

1 A word of caution is needed here. Local entropy and local mutual information are sometimes used
elsewhere to mean computation of entropy, say, over a local area of samples, rather than pointwise
at a given sample.
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H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y ). (3.8)

Fig. 3.1 Low- and high-entropy fur! How would you interpret the entropy of feline fur? There is
no one answer to this. Is it meaningful to talk about the fur entropy of the calico cat? Where does
the giant statue in Barcelona fit in?

3.2.2 Mutual Information

The mutual information is the amount of shared information between X and Y . It is
a measure of their statistical dependence (Sect. 2.3.2). Thus, we should be able to
take the entropy of X and subtract from it the entropy of X given Y , since this chunk
of the entropy has, by definition, nothing to do with Y . This is exactly the case as in
Eqn. 3.9.
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The mutual information can be thought of as a non-linear form of correlation
(Sect. 2.4).2 The corollary of this is that

I(X : Y ) = 0 ⇐⇒ X is independent of Y .

I(X : Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X), (3.9)

which is clearly symmetric in X and Y .
Instead of thinking about subtracting out the conditional component, we can start

with the marginal entropies, H(X),H(Y ). If there is any shared information, the sum
of these should be bigger than the joint entropy, by the MI:

I(X : Y ) = H(X)+H(Y )−H(X ,Y ). (3.10)

The MI must therefore always be non-negative. In terms of probabilities, we have

I(X : Y ) = ∑
x∈Ωx,y∈Ωy

p(x,y) log2
p(x,y)

p(x)p(y)
. (3.11)

This expression is a particular example of the Kullback–Leibler divergence
(KLD, see Sect. 3.2.4), a measure of the information gap between dependence and
independence.

Key Idea 5: Mutual information is the total marginal entropy minus the joint
entropy, or the Kullback–Leibler divergence of the product of marginal distri-
butions from the joint distribution.

We can also use the pointwise (local) mutual information between specific events
x and y [88]:3

i(x : y) = log2
p(x,y)

p(x)p(y)
= log2

p(x | y)
p(x)

, (3.12)

I(X : Y ) = E{i(x : y)} . (3.13)

2 For non-binary, non-Gaussian variables, the mutual information can be large while the correlation
is low, and vice versa. For binary variables, zero correlation does imply independence [267].
3 Fano [88] demonstrated the uniqueness of this form under a set of axioms from which the mutual
information is derived. This is in contrast to partially localised mutual information expressions,
I(X : y) (also known as specific information), which consider how much information a specific
event y provides on average about the other unknown variable X , of which there are two possible
forms satisfying different criteria [78].
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� 3.2.2.1 Misinformation

Importantly, the pointwise mutual information may be either positive or negative for
a specific pair x,y. Positive values are easy to understand, occurring where p(x | y) >
p(x), i.e. knowing event y increases our expectation of the occurrence of event x.
Negative values simply occur in Eqn. 3.12 where p(x | y) < p(x). That is, knowing
event y changed our belief p(x) about the probability of occurrence of event x to
a smaller value p(x | y), and hence we considered it less likely that x would occur
when knowing y than when not knowing y, in a case where x nevertheless occurred.
We can say that y was misinformative about the value of x. So, imagine we have
two ethnic quarters in a city. In one, A, 90% of people have blond hair and 10%
black. In the other, B, 90% have black hair, the rest blond. So meeting somebody
from outside one of these suburbs, there is a 50% chance of either colour. But if we
are told that somebody is from A, then we would expect them to be blond, so the
pointwise MI that they have black hair is negative. We give a more detailed example
in Sect. 3.2.2.3 below.

3.2.2.2 Multi-information: Mutual Information for Three or More Variables

But why stop our consideration of shared information at two variables? Surely there
could be some common information amongst any number of variables. The gen-
eralisation of MI to more than two variables from Eqn. 3.10 is easy, giving the
multi-information or integration in Eqn. 3.14 [326]. There are numerous practical
situations where we might want to calculate the mutual information amongst numer-
ous variables. So in Chap. 6 the peak in mutual information amongst stock prices in
an index during a crash is considered. Stock market indices may have many stocks,
from the Dow Jones which has 30 to the S&P 500, which, as you might expect, has
500. But the multi-information can also be used to describe transfer entropy, as we
shall see in Chap. 4, although using MI may not be a good way of estimating TE
from data. The definition of multi-information is not immediately obvious though,
since mutual information was originally defined to be between just two things, and
thus, there is more than one proposal; MacKay [208] considers the three-term MI
of Eqn. 3.14 to be illegal. The definition of Eqn. 3.14 is a straightforward gener-
alisation of the Kullback–Leibler form, and was used, for example, by Fraser and
Swinney in studying entropy of chaotic attractors [92].

I(X1 : X2 : X3 : ...Xn) = H(X1)+H(X2)+H(X3)...+H(Xn)−H(X1,X2,X3, ...Xn).
(3.14)

We can also expand the multi-information using similar thinking. The three-way
MI ought to be MI of any given pair, plus the MI of the third variable with this pair.
So it turns out to be

I(X1 : X2 : X3) = I(X1 : X2,X3)+ I(X2 : X3). (3.15)
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As the number of variables increases, the computational load and data demands
increase dramatically. Thus, using pairwise approximations is highly desirable. Un-
fortunately this does not always work as well as one would hope [288], and each
case needs to be carefully assessed.

3.2.2.3 A Health Diet

The media constantly regale us with directives to eat more fruit and vegetables. But
the food and botanical worlds differ in what they call a fruit and what they call a
vegetable. Avocado and tomato, for example, are technically fruits. Such classifica-
tions come about by sharing properties. In the case of food, the dominant property
is salty/sweet. In the botanical world, the presence of a stone or seeds defines a
fruit. So there are overlapping properties, and thus some mutual information among
them. Thus, we are going to calculate the multi-information for culinary type (fruit,
veg), colour (yellow, green, black) and stoned (yes or no), see Table 3.1. Our set of
fruit and veg (events for occurrence of these properties), all equally likely, is: yellow
fruit – grapefruit, lemon, banana, apricot, peach; green fruit – melon, gooseberry;
black fruit – cherry, damson; black veg – aubergine; green veg – avocado, kale,
rocket, courgette; yellow veg – turnip, onion. There are 17 items. We can calculate
occurrences and hence probabilities for each in Table 3.1.

Type Fruit Fruit Veg Veg

Stoned Yes No Yes No

Yellow 2(A,P) 3(Gf,L,B) 0 3(T,S,O)
Green 0 2 (M,G) 1(Av) 3(K,R,Z)
Black 2(D,C) 0 0 1(E)

Table 3.1 Fruit and vegetable occurrence table

From this table we calculate the entropy of type (0.998), colour (1.484) and stoned
(0.874) and the joint entropy (2.895) and thus, the multi-MI (0.460).

We also have the mutual information between types (T): fruit (f) and vegetable
(v) and Stone (S): stoned (s) or not-stoned (n): I(T : S) = 0.093 bits. Looking at
local MI values (Eqn. 3.12), we have i( f : s) = 0.596 bits, which is positive since
p( f | s) = 0.8 > p( f ) = 0.529, whereas i(v : s) = −1.235 bits is negative since
p(v | s) = 0.2 < p(v) = 0.471. This means that, if we have an avocado (a stoned
vegetable), then knowing it is stoned actually misinforms us about its status as a
vegetable, since we would expect it to be a fruit.
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3.2.3 Conditional Mutual Information

An important generalisation of mutual information, which is crucial to the develop-
ment of transfer entropy (Chap. 4) is the idea of mutual information between two
processes, X and Y , conditioned on a third process, Z.

Imagine that we start to see snakes and an increasing number of cats in the gar-
den. Now cats do kill snakes, and we might think that the cats are there just for
that purpose. However, killing a snake is just a bit risky for a cat. But we might
find that the snakes and cats appear because of a third factor—an increase in the
number of mice. If we condition on the mice population, then we find there is no re-
lationship between cats and snakes in the garden; they are conditionally independent
(Sect. 2.3.4).

In fact the expression for the conditional mutual information, I(X : Y |Z), is very
straightforward. We simply condition each of the entropy terms in Eqn. 3.9:

I(X : Y | Z) = H(X | Z)−H(X | Y,Z) . (3.16)

or
I(X : Y | Z) = H(X | Z)+H(Y | Z)−H(X ,Y | Z) . (3.17)

with the following conditional independence criterion

I(X : Y | Z) = 0 ⇐⇒ X, conditional on Z, is independent of Y .

Returning to our cats-snakes-mice example, we may measure some mutual infor-
mation between the population of cats X and population of snakes Y . But if we
condition on the mice population Z, then we find that the conditional MI is zero,
since the population of cats conditional on the mice population is independent of
the population of snakes.

Again we can write the conditional mutual information as an average or expec-
tation value over the pointwise quantity, Eqn. 3.19 [88]:

i(x : y | z) = log2
p(x | y,z)
p(x | z)

, (3.18)

I(X : Y | Z) = E{i(x : y | z)} . (3.19)

While the conditional MI I(X : Y | Z) ≥ 0, the pointwise conditional mutual infor-
mation i(x : y | z) may be either positive or negative for a specific event {x,y,z}, as
per the local (unconditioned) mutual information.

� 3.2.3.1 Redundancy and Synergy

At first it seems as if conditioning “out” some other variable should make the mu-
tual information decrease (as occurs for entropies). But this is not always the case. A
conditional MI I(X : Y | Z) may be either larger or smaller than the related uncon-
ditioned MI I(X : Y ) [208]. Such conditioning removes redundant information in Y
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and Z about X , but also adds synergistic information which can only be decoded
with knowledge of both Y and Z.

Example 3.1. Redundancy: Where we have X = Y = Z for random either/or events,
such as coin flips, then I(X : Y ) = I(X : Z) = 1 bit. However
I(X : Y | Z) = I(X : Z | Y ) = 0 because Y and Z redundantly hold the same informa-
tion about X . If we know Y then we do not get any more information by learning
about Z.

Example 3.2. Synergy: The classic example of synergy is a Boolean exclusive OR
(XOR) operation X = Y XOR Z (see Table 3.2). When Y and Z are independent
and randomised, then I(X : Y ) = I(X : Z) = 0, however conditioning on the other
input reveals the synergistic relationship and we have I(X : Y | Z) = I(X : Z | Y ) = 1
bit.

Table 3.2 Exclusive OR (XOR) Boolean operation X = Y XOR Z. Resulting values for X are
listed in the logic table for each Y,Z pair

Y
0 1

Z 0 0 1

1 1 0

Crucially, these redundant and synergistic components can occur simultaneously
(unlike in the examples above—see descriptions of OR and AND logic gates in
[121]), and they cannot be measured with classic information-theoretic terms. Sev-
eral significant efforts are ongoing to attempt to measure these quantities, broadly
termed the partial information decomposition approach [358, 359, 131, 121, 186,
35, 36, 325].

Open Research Question 1: How should synergy and redundancy compo-
nents of mutual information from a set of sources to a target be properly mea-
sured? Indeed, is this possible in general, or only in limited circumstances?

3.2.4 Kullback–Leibler Divergence

The Kullback–Leibler divergence (KLD) measures the information required to tell
one probability distribution, q(x) from another p(x):

K (p||q) = ∑
x∈Ωx

p(x) log2

(
p(x)
q(x)

)
dx. (3.20)
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Kullback and Leibler formulated this in terms of the information for discriminating
between hypotheses: for any value x, the information in x for discrimination of the
hypothesis that x is drawn from p or q, ξ , is

ξ = log2

(
p(x)
q(x)

)
. (3.21)

Averaging over p now gives Eqn. 3.20.
The cross entropy, G(p : q) is defined by

G(p : q) = − ∑
x∈Ωx

p(x) log2 q(x), (3.22)

and thus, the KLD can be expressed as

K (p||q) = G(p : q)−H(p). (3.23)

Alternatively, the KLD of q(x) from p(x), K (p||q), has an information-theoretic
interpretation. It is the amount of information lost when using q(x) to represent
p(x).

Thus, the MI is the KLD of the product of the marginals p(x)p(y) from the joint
distribution p(x,y), as we have just discussed. That is, if we replace p with the joint
distribution p(x,y) and q with the product of the marginals p(x)p(y), we end up with
the continuous form of Eqn. 3.11. Note that the KLD is not symmetric, whereas the
MI, of course, is. Just as the mutual information is always non-negative, so, the
KLD is positive or zero. This follows from the Gibbs inequality, which states that
the entropy is always less than the cross entropy with any other function:

H(p) ≤ G(p,q), ∀q, (3.24)

with equality if p ≡ q.

3.2.4.1 Hot and Sticky – KLD example

Cairns, in Far North Queensland in Australia, has a lot of rain in the summer, when,
even though Cairns is between the Equator and the Tropic of Capricorn, it is still
hotter in summer than in winter. Table 3.3 shows illustrative average monthly tem-
perature and rainfall.

So, we can ask how much information we get about the variation of temperature
from knowing the rainfall. A simple way to do this is to examine the two probability
distributions for binary variables, p(wet) and p(hot). Applying the formula for
KLD (Eqn. 3.20) we get 0.63 bits for temperature to rain. In other words we lose
0.63 bits of information if we use rain to approximate temperature. We lose 0.53
bits for using temperature as an approximation for rain. As we can see, they are not
equal. We go on to examine the MI between temperature and rainfall in Sect. 3.2.5.4.
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Item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean max temp.(◦C) 31.4 31.2 30.6 29.2 27.6 26.0 25.7 26.6 28.1 29.5 30.6 31.4
Mean rainfall (mm) 395.3 450.6 424.2 195.1 91.4 45.3 29.5 27.0 33.7 46.6 93.8 178.8
p(wet) 0.200 0.224 0.211 0.097 0.045 0.023 0.015 0.013 0.017 0.023 0.047 0.089
p(hot) 0.090 0.090 0.088 0.084 0.079 0.075 0.074 0.077 0.081 0.085 0.088 0.090

Table 3.3 Cairns climate data: mean daily maximum temperature and mean monthly rainfall re-
trieved from the Australian Bureau of Meteorology (http://www.bom.gov.au, 18 August 2013).
Mean daily maximum temperature and monthly rainfall are 29.0◦C and 168 mm. p(wet) and
p(hot) are illustrative constructions for the rainfall or temperature being above some threshold
each day

3.2.5 Entropy of Continuous Processes

The discrete forms of entropy we have discussed so far do not go across smoothly to
the case of continuous probability density functions (PDFs) (see Sect. 2.5.3), with
the sum in Eqn. 3.2 going over to an integral. In fact we have to define the continuous
entropy as the integral, Eqn. 3.25 [256], also referred to as the differential entropy:

Hcont(X) = −
∫ ∞

−∞
p(x) log p(x)dx, (3.25)

where the integral excludes points where p(x) = 0. Shannon also introduced this
expression [304]. Of course, this may be extended to a multivariate or vector x,
with a multiple integral over each dimension. Notice that the differential entropy
normally uses natural logs, and when this is the case returns units of nats.

Key Idea 6: The properties of the differential entropy can be counter-intuitive
in comparison with those of the Shannon entropy (of discrete variables); e.g.
it can be negative.

Shannon noted that the differential entropy is dependent on the coordinates, and
may change under a coordinate transformation. For a linear transformation of the
components xi of the multivariate X we have: u j = ∑i ai jxi for the multivariates U
and X and transformation matrix A, and the change in entropy reduces to the log of
the determinant of A:

Hcont(U) = Hcont(X)+ log |A| . (3.26)

Crucially, this illustrates that differential entropies may be negative, unlike entropy
of discrete variables.4 We also note that differential entropy does not change with
shifting of the coordinates, i.e.:

4 This can easily be verified: for a univariate X with finite entropy Hcont(aX), we can always select
a scaling factor a small enough to make loga a large enough negative number such that Hcont(aX)
becomes negative.
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Hcont(X +a) = Hcont(X) . (3.27)

Key Idea 7: Other information-theoretic terms (e.g. conditional entropies, MI
and conditional MI) applied to multivariate distributions may be formed as
the sums and differences of the underlying entropy terms (with each evaluated
as per Eqn. 3.25).

Key Idea 8: Crucially, the differential MI (and conditional MI) has certain
properties matching those for discrete variables (i.e. being non-negative), and
does not change with scaling of the variables.

Indeed, the differential MI is equal to an MI calculated on the discretisation of
continuous variables (see Sect. 2.5.3) in the limit as the bin size approaches zero.

In a similar fashion, we can write the Kullback–Leibler divergence for continuous
probability density functions:5

K (p||q) =
∫

p(x) log
p(x)
q(x)

dx. (3.28)

3.2.5.1 Entropy of Gaussian Processes

Substituting the Gaussian function

G(x) =
1√

(2π)σ
e−

(x−μ)2

σ2 (3.29)

into Eqn. 3.25 leads directly to the differential entropy, Eqn. 3.30, as a function of
the standard deviation σ (or variance σ2):

H(σ) = log
√

2πeσ , (3.30)

in nats by convention for Gaussian variables.
For the k-dimensional Gaussian x with mean μ and covariance matrix Σ

G(x) =
1√

2π|Σ | exp
(
(x−μ)T Σ−1(x−μ)

)
, (3.31)

the entropy becomes (in nats)

5 Again with the domain of the integral excluding points where p(x) = 0.
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Hmvg =
k
2

+
k
2

log(2π)+
1
2

log |Σ | , (3.32)

where |Σ | is the determinant of Σ . Notice that Hmvg is independent of the mean μ ,
verifying the shift invariance of Eqn. 3.27.

Other information-theoretic terms (e.g. mutual information) applied to multivari-
ate Gaussian distributions may be formed as the sum and difference of the underly-
ing entropy terms (as per Key Idea 7, with each evaluated as per Eqn. 3.32).

Of course, we can use Eqn. 3.30 to construct simple and fast estimators of differ-
ential entropy and related quantities using the empirically determined covariances of
the processes, acknowledging that this assumes an underlying (multivariate) Gaus-
sian model of the distributions, and linear relationships between the variables.

There are two interesting limiting cases of entropy and mutual information using
Gaussian distributions. If the mean and variance of a distribution are given, the
Shannon entropy is maximal if the distribution is Gaussian. The next case concerns
the MI, as discussed below.

3.2.5.2 Mutual Information of Gaussian Processes

For a given covariance matrix (with the important assumption of Gaussian marginals),
a multivariate Gaussian distribution gives the lower bound on mutual information
[91].6

The multi-information of the multivariate Gaussian {X1,X2 . . .} is given by

I(X1,X2, ...Xn) ≥−1
2

log
|Σ |

σ2
1 σ2

2 , ...σ2
n

(3.33)

in nats, where Σ is the covariance matrix and σ2
i are the individual variances.

For the standard MI of two variables, this simplifies to

I(X : Y ) = −1
2

log(1−ρ2). (3.34)

(in nats), where ρ is the correlation coefficient between the variables. This may be
derived using Eqn. 3.32 for each required entropy in Eqn. 3.10, and we also show
an alternative derivation using KLD in Sect. 3.2.5.3.

Key Idea 9: The MI between two Gaussian variables is completely deter-
mined by their correlation coefficient ρ in Eqn. 3.34, increasing with the mag-
nitude of ρ .

6 Kraskov et al. [168] originally claimed this was the case for any marginal distribution, however
this was corrected in [91].
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Interestingly, we see here that, if ρ = 1 or −1 for completely correlated or anti-
correlated variables, respectively, then the MI between them diverges. We can inter-
pret this result in that there is infinite precision contained in the complete specifi-
cation of one random Gaussian variable (since it is a real number), and if one such
variable completely specifies another (with ρ = 1 or −1), then it must be providing
an infinite amount of information about that other variable.

3.2.5.3 Kullback–Leibler Divergence for Gaussians

We can also write down an analytic solution for the differential entropy-based KLD
(Eqn. 3.28) on Gaussian multivariates. For two Gaussians, x,y with mean μx,μy and
standard deviation σp,σq, the KLD is given by Eqn. 3.35, using the definition of
Gaussian (Sect. 2.5.4) repeated in Eqn. 3.29 (Fig. 3.2).

Fig. 3.2 Two Gaussian distributions with different mean and variance. The KLD depends on how
much the distributions overlap, shown here as a yellow area in the left-hand figure. As the yellow
area increases, as the two curves move closer, the KLD decreases, reaching zero when the curves
overlap completely. To see the asymmetry in the KLD, the right-hand figure shows the integrand
of Eqn. 3.20: the red curve (plus signs) is K (a||b) and the blue curve (circles) is K (b||a), where
a is the curve with the maximum to the left of b

K (x||y) =
1

2log2

{
σ2

x

σ2
y

+
(μy −μx)2

σ2
y

−1− log

(
σ2

x

σ2
y

)}
. (3.35)

If the means and standard deviations are the same, the KLD is zero as we would
expect. For a multivariate Gaussian (see Eqn. 3.31), with joint covariance matrix Σ
and covariance matrices Σx and Σy for each marginal variable, the KLD is given by

K (x||y) =

1
2log2

{
tr
(
Σ−1

y Σx
)
+(μx −μy)T Σ−1

y (μx −μy)−K − log
( |Σx|
|Σy|

)}
, (3.36)
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where K is the dimensionality of x and y, assumed the same.
We can now use the KLD K (p(x,y)||p(x)p(y)) to derive the MI for two corre-

lated Gaussian variables x,y with correlation coefficient ρ , to give Eqn. 3.34, depen-
dent only on the correlation. The covariance matrix for the joint distribution p(x,y)
is given by

Σp(x,y) =
(

σ2
x ρσxσy

ρσxσy σ2
y

)
. (3.37)

The covariance matrix for the product of marginals p(x)p(y) is simply a diagonal
matrix in the variances:

Σp(x)p(y) =
(

σ2
x 0

0 σ2
y

)
. (3.38)

We also need the inverse of this matrix, which can be found by standard linear
algebra:

Σ−1
p(x)p(y) =

( 1
σ2

x
0

0 1
σ2

y

)
. (3.39)

To make life easy, we assume zero mean,7 plug into Eqn. 3.36 and, after a little
algebra, we get

I(X : Y ) = K (p(x,y)||p(x)p(y)) = −0.5log(1−ρ2). (3.40)

3.2.5.4 Hot and Sticky – MI Example

To demonstrate the MI on continuous-valued variables, we return to the climate data
for Cairns in Table 3.3. Cairns is within the Tropics and has closer to a wet (summer)
and dry (winter) season than the four seasons of more temperate regions. It never
gets really cold, but summer is definitely warmer. So we can ask what information
the temperature would tell us about whether it was summer or winter. Now the
distributions of temperature for summer and winter are not necessarily the same
shape, but we can see why this is. There are plenty of very hot days in summer,
but none in winter. But there are cool days in summer. So temperature tells us more
about summer than about winter.

Now, let us add some numbers to this idea by asking what the MI is between
monthly rainfall (rain) and mean maximum daily temperature (temp) using the
data in Table 3.3. Note that, whereas for the KLD estimate in Sect. 3.2.4.1 we used
the probability distribution for the discrete variables wet and hot, we are now di-
rectly examining the numerical relationship between the continuous variables rain
and temp. We can calculate an estimate for this MI (under a Gaussian model for the
data distribution) using Eqn. 3.34: we have ρ = 0.7315, and therefore we estimate
I(rain : temp) = 0.55 bits. The interested reader can experiment with the other
estimators presented in Sect. 3.4.2 and compare with this Gaussian model estimate.

7 Which does not change the final value, since differential entropies are constant under co-ordinate
shift – see Eqn. 3.27.
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� 3.2.6 Entropy and Kolmogorov Complexity

One element of confusion experienced by newcomers to the ideas of entropy and
information is that they have nothing to say about the complexity or information in
any object. They are properties of groups of objects, and the only thing that matters
about the object is some frequency of occurrence. They could be potatoes or pandas.
But for the curious reader, there is a relationship.

With some caveats, Eqn. 3.2 is the average length of the shortest description of an
observation of the variable x [68]. We can make this idea of description length more
precise. The Kolmogorov complexity does measure the information in an object in a
certain sense. It is the length of the shortest program required to describe the object.
There are obviously a lot of details needed to make this idea precise, which would
not only take us off course, but into very choppy waters, but the bottom line is

H(X) = ∑
x∈Ω

p(x)K(x), (3.41)

where K(x) is the Kolmogorov complexity of object x with probability p(x) from
the set X . Full details can be found in the book by Li and Vitanyı́ [179].

3.2.7 Historical Note: Mutual Information and Communication

Shannon introduced MI for his work on the information which could be carried by
a channel, noisy or not. Communication is not a central theme of this book, but
Shannon’s insight was iconoclastic and is worth describing briefly. One might think
that, if a channel is noisy, data will always get lost sometimes. But this is not so.
Shannon showed that, if the entropy of the source data being fed into the channel is
less than the channel capacity, then there will always be a way of coding the data
such that it can be perfectly decoded at the other end of the channel. We get the
channel capacity by calculating the mutual information between the signal S and
the noise N. If both are Gaussian, then it is easy to show that this will turn out to be

I(S +N : N) =
1
2
(1+

σ2
S

σ2
N

). (3.42)

In this book we shall not pursue the labyrinthine details of optimal coding. But
it does provide another way of looking at the pointwise and system measures. Thus
the entropy, H(X), explicitly captures the average code length (a number of bits) to
encode each event x in an optimal encoding scheme for the measurements X , while
the information, h(x), represents the code length for any given event x under this
scheme. Creating an optimal coding scheme is not necessarily straightforward, and
we refer the reader to MacKay’s book [208] for details, but we assume that we have
one in what follows. Similarly H(X | Y ) captures the average code length to encode
x given that y occurs, in an optimal encoding scheme for the measurements X given
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Y , while h(x | y) represents the code length for any given events x. Then, I(X : Y )
is the average difference in code length between coding the value x in isolation or
coding the value x given y, while i(x : y) represents this difference in such code
lengths for any specific events x and y under these schemes. In this way we see that
i(x : y) may be either positive or negative for a specific pair x,y. Finally, I(X : Y | Z)
is the average difference in code length between coding the value x given z or coding
the value x given both y and z. while i(x : y | z) represents this difference in such code
lengths for any specific events x, y and z under the optimal schemes.

3.3 Mutual Information and Phase Transitions

So far, we have seen that mutual information has two uses:

1. It tells us if two time sequences share something, a more powerful non-linear
measure than correlation. In the case of Gaussian statistics it reduces to corre-
lation.

2. It is the measure of how much information can be transmitted down a noisy
channel, the application for which Shannon [304] invented it (Sect. 3.2.7).

But it has at least one other use, the importance of which has soared with the
global financial crisis, climate change and numerous other catastrophic or sudden
change phenomena. There is a huge body of theory associated with these transitions,
and there are numerous books, such as that by Ricard Solé [308]. There is also catas-
trophe theory from the 1980s, developed by René Thom, but in some ways before its
time. Without today’s number-crunching power, and particularly computer graphics,
it languished in the domain of interesting but abstruse theories. Catastrophe theory
in Thom’s original description was deterministic.

The other mainstream idea is that of the phase transition. The two are not mu-
tually exclusive, and some catastrophes may be loosely described as phase transi-
tions [307], but work on genuine stochastic catastrophe theory is ongoing.

Phase transitions have an order. The phase transitions we know about already are
the changes in the states of matter – solid to liquid to gas, ice to water to steam.
These are first order, because at the transition point, 0◦C for ice melting or 100◦C
for water boiling at sea level, there is a discontinuity in some key system variable
as a function of a control parameter, temperature in the case of ice melting. In the
case of the states of water, it is the total energy of the system. With temperature
remaining constant, energy is taken in, for the latent heat of ice to water, until all the
ice has melted. So going from just below freezing to just above, the energy jumps.

Just to make things confusing, this system variable is often called the order pa-
rameter, a different use of the word to the order of the transition. A phase transition
exhibits a change from order to disorder, or vice versa.

It does not matter too much what this system variable is, and the excitement
of these ideas lies in the very wide range of systems, physics, chemistry, biology,
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ecology, economics, just to begin with, to which we can apply them. But for this
diverse list, it is often second-order transitions which are usually of interest.

In a second-order phase transition (PT2), the system variable is continuous, but
its first derivative is not. In the physics world, one example of a PT2 which has
received a lot of attention is the ferromagnetic–paramagnetic transition in some ma-
terials. At a definite temperature, the Curie point, the material ceases to be a magnet
(i.e. ferromagnetic) at all higher temperatures. A property, the magnetic susceptibil-
ity, drops to zero at the Curie temperature and stays zero from then on. So, there is
a kink at this temperature, which implies the discontinuity in the first derivative.

It turns out that PT2s have several common properties across many systems, be
they financial stock markets or frog populations:

• Increased variance near the transition.
• Critical slowing down, wherein the system takes longer and longer to respond to

a small perturbation.
• Flickering, where the system briefly flips over to the state on the other side of the

phase transition, and then flips back again [297].
• The MI peaks at a second-order phase transition across many systems, such as

the Ising model [218, 176, 360] and the Vicsek flocking model [353].

It is this last property that is important:

Key Idea 10: Mutual information peaks at a second-order phase transition,
across very many systems.

Chap. 5 describes the phase transitions in various canonical systems and how
the MI peaks accordingly: random Boolean networks and the Ising model. In the
latter case, transfer entropy has turned out to be an effective predictor of the phase
transition going from the disordered to ordered side (see Sect. 5.2 for details).

3.4 Numerical Challenges

Although Shannon’s definition of mutual information dates back to the middle of the
twentieth century, it was only at the end that it became feasible to use empirical data.
Before then one had to rely on Gaussian or other analytical approximations. There
were two reasons for this: the first is that calculating entropy is computationally
demanding; the second is that there were many numerical issues, the resolution of
which only started to appear in the last decade or so. Simple use of formulae such
as Eqn. 3.2, with the probabilities estimated directly, suffers from several problems.
In this section we outline some of them and their solutions.

Numerical estimation of entropy measures is a very complex topic, worthy of a
book in its own right. So, this section can at best get across the essential ideas, and
refer the reader to the more detailed reviews and original papers.
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To begin with we look at the primary concept of entropy estimation itself and
introduce the ideas of bias and variance. Unfortunately, there is no best estimator
for entropy which works across all distributions, thus, with any new problem, some
testing of different methods will be necessary. The case of small data sets presents
additional challenges, and these have been important in the neuroscience world. We
highlight some examples in Sect. 3.4.1.2. Estimation of errors and significance is
also non-trivial. Some brief comments appear in Sect. 3.4.1.3.

Now, one might think that, having got good estimators for entropy, mutual in-
formation, transfer entropy and their conditional extensions would all follow in a
straightforward fashion. Although the theoretical relationships are exact, say, ex-
pressing transfer entropy in terms of mutual information, they are not necessarily a
good way to approach the estimation from a numerical point of view. Thus, we look
at mutual information, and by implication, transfer entropy, as a separate topic in
Sect. 3.4.2.

Key Idea 11: Naively calculating information from frequency estimates is just
that, naive!

3.4.1 Calculating Entropy

Despite its long history, the estimation of entropy, mutual information and transfer
entropy is still an ongoing problem, with new analyses and algorithms still appear-
ing. This section attempts to give an overview of some of the issues, but without too
much attempt at mathematical rigour in the interests of space.

Fortunately there are good open-source software packages around, which allow
the practical researcher interested in applications to steer a reasonably safe course.
Bias is intrinsic to entropy estimation, thus, with a little extra bias in the book,
we might suggest Barnett’s Multivariate Granger Causality Toolbox for Matlab
[26], Lizier’s Java Information Dynamics Toolkit (JIDT) [183], written in Java (but
callable from Matlab, GNU Octave, Python and R) and available from Github. Fur-
ther information is provided in Sect. 4.3.3, and some examples using these toolkits
are included later in this book (e.g. in Chap. 5 and Chap. 7).

3.4.1.1 Plug-in (Max-Likelihood Estimator)

Eqn. 3.2 provides an obvious method for estimating entropic quantities for discrete
data by simply estimating the underlying probabilities p from frequencies of occur-
rence, p̂ j = n j

N for n j events in bin j from N samples in total. This simple estimator,
referred to as the plug-in or maximum-likelihood estimator (MLE), is not free of bias
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and has a finite variance (defined below). In the discussion which follows, HMLE(p̂)
refers to this estimator, where p̂ is the plug-in estimate of the true underlying PDF
p:

HMLE(p̂) = −
M

∑
j=1

p̂ j log2 p̂ j. (3.43)

The search goes on for better quality estimators. Paninski [254] provides a thorough
review and statistical analysis, and we mention briefly some new developments in
Sect. 3.4.1.6. The following results are drawn from Paninski [254], and we refer the
reader to his paper for the fine mathematical details, which we do not have the space
to include.

The challenges are somewhat different for continuous distributions, and we look
at an alternative estimator in Sect. 3.4.1.5, which forms the basis for some of the
mutual information estimators in Sect. 3.4.2. A lot of the innovation in entropy
estimators comes from neuroscience, from Bialek, de Ruyter and others [318, 255,
240, 239].

First we consider bias, i.e. a systematic over-or-under estimation of a quantity. In
fact, the entropy is always underestimated on average:

E{HMLE(p̂)} ≤ H(p), (3.44)

with the difference between these quantities being the bias B of HMLE(p̂). A bias
correction, due to Miller and Madow [223], Eqn. 3.45, has been known for some
time [254]:

HMM = HMLE +
M−1

2N
, (3.45)

where M is the number of bins or symbols and N the number of data points or
samples used to construct the PDF.

We can also consider the variance across our estimates. Paninski [254] also
quotes results for bounds on the variance of HMLE

v(HMLE) ≤
(

(logN)2

N

)
= vmax . (3.46)

The errors in the estimation of H can also be expressed in terms of vmax,
Eqn. 3.47, as the probability, P, that the error exceeds a threshold, ε , decaying ex-
ponentially with ε . Thus, the variance falls almost inversely with N, but the error
falls very rapidly with the threshold and N.

P(|HMLE −E{HMLE}|) > ε) ≤ 2e−
ε2

2vmax . (3.47)

In general, as the bias B for an estimator improves, the variance gets worse and
vice versa, expressed by the ratio, R, Eqn. 3.48, when N is much larger than M

R =
v

B2 ≈ N(logM)2

M2 . (3.48)
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Since R depends linearly on N but inversely on M2, the bias will dominate when
M is large, except for huge N [254]. When N �M, this ratio is greater than 1 and the
bias corrections are not significant with respect to the variance in the estimates. Note
that the Tukey recommendation for the number of bins [233], as M ≈ N0.5, gives a
value of (logM)2 for R, which is greater than 1. When R < 1, the bias corrections
become significant.

Key Idea 12: There is a trade-off between bias and variance in the calculation
of entropy.

3.4.1.2 Estimation for Small Data Sets

Unfortunately, quite a number of situations in which we would like to calculate the
entropy are plagued by small data sets. Bonachela et al. [44] point out that there is no
perfect entropy estimator: different estimators will perform differently on different
data sets. In fact, a bit like the uncertainty principle in quantum mechanics, it is
generally impossible to minimise both the variance and the bias.

They introduce the idea of a balanced estimator, between bias and variance.
Eqn. 3.49 gives the simplest form they derive, but prior knowledge of some charac-
teristics of the probability distribution can improve it.

Hbal(X) =
1

N +2

M

∑
i=1

[
(ni +1)

N+2

∑
j=ni+2

1
j

]
, (3.49)

where ni is the number of occurrences of x in bin i, of which there are M possibil-
ities, and N is the sample size. We can write this using the digamma function, ψ
(eqn Eqn. 3.59) as (in nats)

Hbal(X) =
1

N +2

M

∑
i=1

(ni +1)(ψ(N +3)−ψ(ni +2)). (3.50)

3.4.1.3 Error Estimation

The general variance and bias analysis in Sect. 3.4.1.1 can be made data specific
using results obtained by Roulston [289], for the variance in the observed MLE
entropy, HMLE , using the above nomenclature:

v(HMLE(X)) =
1

N2

M

∑
i=1

(log2 p̂i +HMLE(X))2 v[ni] (3.51)

with
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v[ni] ≈ N p̂i(1− p̂i)+O(εi), (3.52)

where the εi are the random errors in the exact probabilities pi compared with the
observed values, p̂i = ni

N (as defined earlier):

εi =
p̂i − pi

pi
. (3.53)

For the mutual information IMLE as computed following the MLE technique, the
equation is more complicated, reflecting the contribution of several entropy terms

v(IMLE) =
1

N2

MX

∑
i=1

MY

∑
j=1

(
log2

(
MX

∑
k=1

p̂ jk

)
+ log2

(
MY

∑
k=1

p̂ki

)
+ log2 p̂i j + IMLE

)2

v[ni j]

(3.54)
with v[ni j] defined analogously to Eqn. 3.52:

v[ni j] = N p̂i j(1− p̂i j)+O(εi j). (3.55)

A practical test for checking the robustness of a mutual information estimator
is to randomly permute one of the variables (see further discussion on assessing
statistical significance for such measurements, in particular for transfer entropy, in
Sect. 4.5.1). The marginal entropies will not change, but the link between the vari-
ables is destroyed, so the MI estimation will be distributed as though those variables
had no relationship.8

3.4.1.4 Kernel Density Estimation

The difficulties of selecting partitions for a direct estimate of the probabilities and
subsequently entropies may be circumvented by a statistical technique known as
kernel estimation (or kernel density estimation for differential entropies; see below).
The idea is simple: instead of the bins having fixed rigid boundaries, with a point in
one and only one bin, we reconsider or adapt the bins each time we consider the PDF
for a given sample. The bins are described by some kernel function Θ , which may
fall off more gradually at the bin boundaries. Using histograms (as per the previous
section), the probability estimate for a value is constructed by locating the bin in
which it would fall; the probability is then proportional to the number of samples in
the bin, and all other samples are ignored. In contrast, for a kernel density estimate
we now include more, possibly all, samples, but the kernel function weights the
values according to the distance from the test point, and the weight usually falls
monotonically with distance.

Formally (e.g. following [298, 183]), the relevant probability distribution func-
tion (e.g. p̂(xn) for sample n of X) is estimated with a kernel function Θ , which

8 In practical cases, the distribution of estimated MI values here will be above zero – despite
the presence of any underlying relationship between the permuted variables – as discussed in
Sect. 4.5.1.
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measures “similarity” between pairs of samples xn and xn′ using a resolution or ker-
nel width r:9

p̂r(xn) =
1
N

N

∑
n′=1

Θ
(

xn − xn′

r

)
. (3.56)

A simple choice here is the step kernel Θ(|u| ≥ 1) = 0, Θ(|u| < 1) = 1, giving a
box-kernel estimator. This results in p̂r(xn) being the proportion of the N values
which fall within r of xn. This can be thought of as adapting a bin to be centred on
our sample xn with width r. Another common choice is a Gaussian kernel function,
which results in a smooth fall-off of the bin boundaries away from the sample xn;
here the kernel radius r would control the fall-off rate (see [231]). Clearly, Eqn. 3.56
can be generalised to multivariates, e.g. by multiplying kernel functions in each
dimension.

These plug-in estimates for the PDFs are then used directly in evaluating the
Shannon information content (Eqn. 3.1) for each sample n ∈ [1,N] and averaging
these over all samples (Eqn. 3.2) to obtain the entropy, i.e.

H(X) = − 1
N

N

∑
n=1

log2 p̂r(xn). (3.57)

Let us be clear that the definition Eqn. 3.56 provides an adaptive discrete (or
bin/histogram-based) probability distribution function estimate p̂r(xn), and so will
result in producing a kernel estimator for Shannon entropy.

In contrast, if we wish to compute a differential entropy (see Sect. 3.2.5), then one
should correct Eqn. 3.56 to form a probability density function (e.g. see Sect. 2.5.3
and [231, 149]). Generally this means dividing Eqn. 3.56 by a factor of r, or rd for
multivariate kernel functions, where d is the number of dimensions of the multivari-
ate space. Furthermore, it is crucial then that the kernel function be a valid proba-
bility density function itself, i.e. integrate to 1 [231, 149]. This produces a kernel
density estimator for differential entropy. That is, one would use p̂r(xn)/r to correct
the density for the spatial scale in our above example, but also alter Θ(|u| < 1) = 1

2
for proper normalisation.10 In any case, for mutual information calculations (and
conditional MIs, e.g. transfer entropy), these correction factors on each PDF can-
cel (assuming the same kernel width is used for each variable), meaning that either
approach may be used.

Kernel estimation can measure non-linear relationships and is model-free, though
it is sensitive to the parameter choice for resolution r [298, 149]. Selecting a value
for r can be difficult, with too small a value yielding under-sampling effects while
too large values ignore subtleties in the data. One can heuristically determine a lower

9 Though r is more properly a kernel radius rather than a width.
10 Intuitively, we can simply think of this as dividing by 2r to correct p̂r(xn) for the 2r space the
neighbours were counted over.
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bound for r to avoid under-sampling (see [183]). Finally, we note that the estimates
provided by kernel estimation contain a bias; methods for bias correction here are
available for individual entropy estimates (e.g. see [118] for the box kernel).

3.4.1.5 Continuous Distributions: Digamma and Kozachenko–Leonenko

Estimators

An alternate way of estimating the differential entropy of a continuous variable from
a finite number of samples looks nothing like the canonical formulae. Suppose we
have N (univariate) samples, xi, and we order them in increasing size, as x1 < x2... <
xN . Then, the digamma entropy estimator

is given by (see e.g. [168])

H(X) ≈ 1
N −1

N−1

∑
i=1

log(xi+1 − xi)−ψ(1)+ψ(N) (3.58)

in nats, where ψ is the digamma function, which is effectively the derivative of the
log of the gamma function Γ (x), i.e.

ψ(K) =
1

Γ (K)
dΓ (K)

dK
. (3.59)

The digamma function can be defined recursively as

ψ(K +1) = ψ(K)+
1
K

(3.60)

with ψ(1) = −C given in terms of the Euler constant, C, also called the Euler–
Mascheroni constant:

C = 0.5772156 . . . (3.61)

Kozachenko and Leonenko [166] then extend the estimator in Eqn. 3.58 in that
the distances between sorted neighbouring points xi+1 − xi are replaced by Kth
nearest-neighbour distances in d-dimensional space, εi

2 , using their notation (in
Eqn. 3.62). The division by two appears because we want to look at bands in the
marginal planes of width twice the nearest-neighbour distance. The Kozachenko–
Leonenko estimator is given by

Hnn(X) = ψ(N)−ψ(K)+ logcd +
d
N

N

∑
i=1

logεi (3.62)

in nats, where d is the dimension of x and cd is the volume of the d-dimensional unit
ball. Thus, for the maximum norm, logcd vanishes. Comparing Eqn. 3.62 for K = 1
with Eqn. 3.58 for large N, they are roughly the same, since xi+1 − xi or xi − xi−1 is
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the nearest-neighbour distance for xi. Understandably, we refer to this estimator as
a member of the class of “nearest-neighbour” estimators.

3.4.1.6 The State of the Art

The unfortunate fact that there is no perfect estimator for entropy fosters ongoing
research into ever more finely tuned methods. Since the estimators depend on the
data statistics, Bayesian methods with some prior assumptions about the statistics
can improve on the estimators we have discussed. An important innovation from Ne-
menman et al. [240] is to change the way one models the initial assumptions about
what the probability distribution might be. It turns out that assuming a prior distribu-
tion of the entropies as opposed to the probability distribution can give significantly
better results. One such recent analysis by Vinck et al. [339] develops such estima-
tors further, with some improvements at the expense of considerable computational
complexity.

3.4.2 Calculating Mutual Information

When we come to estimate mutual information, we find a range of different contexts
to consider. To begin with we have systems where we know the dynamical behaviour
and have an explicit, continuous, model. Common examples are chaotic systems,
such as the Rössler, used frequently as a canonical test for MI algorithms. In these
systems we can choose when and where to take the sample points we need. The
other systems are typical of experiment or observation, where we have a set of data
points, we do not have much control over when they are taken (such as daily stock
market data (Sect. 6.2.3)), and do not always have a theoretical model.

We can then subdivide the algorithms into two categories:

1. Methods dealing with already discrete or otherwise binned (discretised) data,
where the calculation is based on the probability functions above with variations
on the way the sample points are grouped together into bins.

2. Methods operating on continuous data which use some indirect approach, such
as the nearest-neighbour method we have already seen for entropy (Sect. 3.4.1.5).

The simplest estimators for mutual information are simply extensions of the algo-
rithms of the above two types for entropy, combining estimations of the joint and
marginal entropies as per Eqn. 3.10. For example, Moon et al. [231] introduced
kernel density estimators for the calculation of mutual information, with a view to
getting better estimates from small data sets. Yet such extensions may not work as
well as one hopes; for example bias correction for individual kernel estimates of
entropy [118] is not directly generalisable to sums of entropies because “the finite
sample fluctuations. . . are not independent and we cannot correct their bias sepa-
rately” [149].
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Improvements can be made however by tailoring algorithms specifically to the
mutual information rather than the underlying entropies alone. We consider such
algorithms in this section. A good starting point for the reader wanting detailed
knowledge of the numerical procedures is the article by Cellucci et al. [55], which
covers the issues of partitioning deeply and introduces the simple but effective al-
gorithm we discuss in Sect. 3.4.2.1.

Key Idea 13: Calculating mutual information is tricky and needs to be vali-
dated case by case.

3.4.2.1 Bins, Fixed and Adaptive

In many practical cases, we just have a set of samples or points, collected some-
how. Where these are discrete-valued samples, we can proceed directly to plug-
estimates on these “bins” and improvements on these techniques in Sect. 3.4.1.1 and
Sect. 3.4.1.2. Otherwise, where we have continuous-valued samples, then to use a
binning-based approach, the first step is to put these samples into bins to determine
the probability distributions. If we make the bins too small, then the values will be
very noisy, and in the limit of one point per bin, the distribution will be meaningless.
If the bins are too big, then the precision in the PDF will be very low. Statisticians
have already sorted this out for us [55]: an early, rough estimate is N

1
2 from Tukey

[233], but there are better, albeit more difficult to calculate, measures now available.
Slonim et al. [306] offer the alternative of dynamically testing multiple subdivisions
and provides criteria for selecting the best one.

But we are still not out of the woods. A uniform partitioning in X and Y, is not
optimal. The procedure introduced by Cellucci et al. [55] is to use partitions of
varying size, such that the number of samples in each marginal bin along the X and
Y axes is equal (with the same number of bins ME = MX = MY along each axis).11

If there are N samples then the number of bins ME for each marginal is chosen
to be the largest integer such that N

M2
E
≥ 5; in other words, such that there are at

least five samples on average in each of the M2
E bins in the joint X–Y space. The

marginal entropies are now simply given by log2 ME (for N a multiple of ME ), and
using this partitioning it is now possible to calculate p(X ,Y ), hence the joint entropy
and the mutual information via Eqn. 3.10. The search for better mutual information
estimators for discrete variables continues. The surge in big data has driven the need
for better estimators of shared information and causality, sometimes now with large
numbers of data categories. Seok and Kang [300] introduced a new partitioning

11 Since an equal number of samples in each bin will give the maximum possible entropy for the
marginal distributions over X and Y , this is sometimes referred to as a maximum entropy binning.
Obviously having precisely the same number of samples is only possible where N is an integer
multiple of ME .
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algorithm for mutual information calculation, which shows big improvements on
simulated data. Similar to the ideas presented in Cellucci et al. [55], the goal is to
find partitions in the marginal densities, where the probabilities are uniform. But
now sub-categorisation of each variable is sought, in which each sub-category is
uniform. The joint distribution is then recursively made uniform. Early results for
health care data of several thousand records look promising.

3.4.2.2 The KSG (Kraskov, Stögbauer and Grassberger) Algorithm

Kraskov et al. [168] created an effective estimator for MI for continuous distribu-
tions by extending entropy estimators in Sect. 3.4.1.5. Rather than attempt to esti-
mate the probability distributions directly (as the kernel estimator in Sect. 3.4.1.4
does), it makes use of nearest-neighbours. Getting an intuition for this estimator is
even more difficult than the digamma estimator for the entropy!

There are two slightly different algorithms to estimate I(X : Y ). Both start with a
variation on the Kozachenko–Leonenko estimator Hnn(X) [166] (see Eqn. 3.62).

Now we sit on one point in the joint space, zi = {xi,yi}, and measure the distance,
εi, to the Kth nearest neighbour. The distance metric is the maximum norm:

||z− zi|| = max(||x− xi||, ||y− yi||). (3.63)

The x and y norms do not have to be maximum norms, and they could be quite
different spaces, with quite different norms. So, we might want to find out how
much information there is between the amount of sunshine at the beach (hours) and
the amount of ice cream sold (litres, tons, maybe, not in England, though).

Now, imagine that x and y have no mutual information, that we have randomly
scattered values. Then for any given y, x could be anything. Suppose we consider the
mutual information between something unlikely to affect ice cream sales, say, the
price of modern art. When we discuss transfer entropy, we will consider the impor-
tance of conditioning out other factors (Sect. 4.2.3). It is possible to think up all sorts
of strange indirect links, but let us assume here that there is no direct link. Thus, for
any given art price, the probability of selling particular amounts of ice cream will be
the same. If we take a sample of ice cream volume and art price (maybe measured
at random times) and plot them on a two grid, they will be scattered randomly over
it.

For the case of sunshine, however, the situation is quite different. High sunshine
means a cluster of ice cream sales around high volume.

The first algorithm, given by Eqn. 3.64, then works like this: For each point we
find its Kth nearest neighbour in the joint X–Y space, a distance ε

2 away (in the
notation of the Hnn(X) estimator in Eqn. 3.62). Since this is the maximum norm
over those taken in the X and Y spaces, we project this value back onto the X and Y
axes and count the number of points, nx and ny, strictly within a row (X) and column
(Y ) of width ε .

For multi-dimensional X and Y these rows and columns become hyper-stripes.
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I(1) = ψ(K)+ψ(N)−E
{

ψ(nx +1)+ψ(ny +1)
}

. (3.64)

Key Idea 14: The key innovation of the KSG algorithm is getting the numeri-
cal errors to partially cancel in the marginal and joint entropy estimates.

It does this by finding the nearest-neighbour distance for the joint distribution
{X ,Y}. Then it works backwards to find what the number of nearest neighbours
would have been for each of the marginal distributions, in order for that to have
been the nearest-neighbour distance. So the K value is different for the marginals,
and is obtained from the nearest-neighbour counts. This is valid because Hnn(X) in
Eqn. 3.62 holds for any value of K and does not have to be fixed when estimating
the marginal entropies. So, combining Hnn(X), Hnn(Y ) and Hnn(X ,Y ) for a fixed
value of K in the {X ,Y} space keeps the same scale in all spaces, with bias terms of
the same order that oppose each other and (mostly) cancel.

To get a bit more intuition for this estimator, let us go back to ice cream and
modern art. Since the distribution is random, let us say across a square of size D,
there will be a density ρ = N

D2 of points per unit area. So the column and row will
have around Dερ = Nε

D points. The number of nearest neighbours, K, determines

the value of ε as approximately D
√

K
N . Making use of the asymptotic approximation

ψ(x) ≈ log(x), then

E
{

ψ(nx +1)+ψ(ny +1)
}≈ log(KN) ≈ ψ(K)+ψ(N). (3.65)

with a generous neglect of smallish terms. Thus, I ≈ 0 as expected.
The maximum mutual information occurs when one variable completely predicts

the other. So, imagine, then, that our sample points form a tight cluster around a
diagonal line. Then row and column bands miss most of the points. Thus, nx and ny
are small (→ K) and I is maximal.

As this line swings round to vertical, the y value strongly predicts the x value
because it is always the same. But x has no predictive value (nx → N), and mutual
information is symmetric. Its value in this case is close to zero, because the entropy
of x is very low. Similarly H(X |Y ) is very low, because there is simply no entropy
in X regardless of Y . Thus, we can see from Eqn. 3.9 that the mutual information
will be very small.

The extension to the second algorithm involves reinterpretation of nx and ny.
Instead of using the same ε for both x and y, we use the respective x,y norms εx,εy
from the Kth nearest neighbour for the width of the column and row about each
point. We then count points within or on these boundaries, and estimate the MI as

I(2) = ψ(K)+ψ(N)− 1
K
−E

{
ψ(nx)+ψ(ny)

}
. (3.66)
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Keeping in mind that entropy estimators are PDF dependent, estimator 1 is likely
to have a lower statistical but higher systematic error than 2. The second estimator
is likely to prove better when the dimensionality is high. Similarly, the best values
of K need to be determined empirically, though generally the estimator is robust to
the choice of K from k = 4 upwards, as variance in the estimate decreases with K.

3.4.2.3 KSG Estimator for Conditional Mutual Information

As we shall see in the next chapter (Sect. 4.3.1), to calculate the transfer entropy
we effectively need to estimate the conditional mutual information. To achieve the
same cancellation of errors, we need to go back to the original entropies and apply
the same argument for back-estimating the number of nearest neighbours.

Starting with Eqn. 3.16, we can rewrite the conditional entropies in terms of joint
entropies as follows:

I(X : Y | Z) = H(X ,Z)+H(Y,Z)−H(X ,Y,Z)−H(Z) . (3.67)

Now, we calculate the nearest-neighbour distance for the three-variable, joint
distribution, and calculate the effective number of neighbours for each marginal.
For the two-variable joint terms, such as H(X ,Z), we have to count the number of
neighbours in a box surrounding each point, as opposed to a stripe. This is explained
in detail in Sect. 4.3.1.

� 3.4.3 The Non-stationary Case

The assumption underlying all these measures based on time series is that, over the
window for which the probabilities are calculated, the series is stationary. Unfortu-
nately, this is not always the case, and misleading results may occur. The estimate
of mutual information is not meaningful in this case [340]. Nason [236] presents
new, powerful methods, based on wavelets, for determining stationarity, to which
we refer the interested reader.

Open Research Question 2: Can wavelet methods be used to get better mu-
tual information for non-stationary systems?

Furthermore, approaches utilising an ensemble of repeated trials in neuroscien-
tific experiments are discussed in Sect. 4.3.1.1.



Chapter 4

Transfer Entropy

In this chapter we get to the essential mathematics of the book—a detailed discus-
sion of transfer entropy. To begin with we look at the basic formalism (Sect. 4.2) and
some variants thereof, which appear in later chapters (Sect. 4.2.5). We then go on to
compare it with the earlier, closely related concept of Granger causality (Sect. 4.4).
The relevance to phase transitions is taken up in Sect. 4.6, and the chapter concludes
with extension of the discrete-time case to continuous-time processes (Sect. 4.7).

4.1 Introduction

Given jointly distributed random variables X ,Y —discrete or continuous, and pos-
sibly multivariate—we have seen in Chap. 3 that the mutual information I(X : Y )
furnishes a principled and intuitive answer to the questions:

• How much uncertainty about the state of Y is resolved by knowing the state of X
(and vice versa)?

• How much information is shared between X and Y ?
• How may we quantify the degree of statistical dependence between X and Y ?

Suppose now that, rather than static variables, we have jointly distributed se-
quences of random variables Xt ,Yt labelled by a sequentially enumerable index
t = . . . ,1,2,3, . . .. Intuitively the processes Xt ,Yt may be thought of as an evolu-
tion in time (t) of some unpredictable variables X ,Y , that is, random time-series
processes (Sect. 2.3.5). Such joint or multivariate stochastic processes are natural
models for a huge variety of real-world phenomena, from stock market prices to
schooling fish to neural signals, which may be viewed (generally through lack of
detailed knowledge) as non-deterministic dynamic processes.

How, then, might we want to frame, interpret and answer comparable questions to
the above for dynamic stochastic processes rather than static variables? We may, of
course, consider the mutual information I(Xt : Yt) between variables at a given fixed
time t. But note that, by jointly distributed for stochastic processes, we mean that

�
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there may be dependencies within any subset {Xt ,Ys : t ∈ T,s ∈ S} of the individual
variables. Thus, for instance, Xt , the variable X as observed at time t, may have a
statistical dependency on its value Xt−s at the earlier time t−s, or indeed on its entire
history Xt−1,Xt−2, . . ., or the history Yt−1,Yt−2, . . . of the variable Y . A particularly
attractive notion is that of quantifying a time-directed transfer or flow of information
between variables. Thus we might seek to answer the question:

• How much information is transferred (at time step t) from the past of Y to the
current state of X (and vice versa)?

This information transfer, which we would expect—unlike the contemporaneous
mutual information I(Xt : Yt)—to be asymmetric in X and Y , is precisely the notion
that transfer entropy aspires to quantify.

4.2 Definition of Transfer Entropy

The notion of transfer entropy (TE) was formalised by Thomas Schreiber [298]
and independently by Milan Paluš [253],1 although it may be argued that, histori-
cally, similar concepts have surfaced periodically in various guises since as early
as the 1950s [354], partly via a somewhat tangled shared provenance with the
closely related concept of Wiener–Granger causality [354, 112, 114, 105, 285] (See
Sect. 4.2.4.) Amblard [2] provides a useful historical review of this area.

Schreiber and Paluš realised that an obvious candidate for a time-asymmetric
measure of information transfer from Y to X , namely the lagged mutual informa-
tion I(Xt : Yt−s) [298, 149], is unsatisfactory for the reason that it fails to take into
account shared history (as well as common external driving influences) between the
processes X and Y , and that this is likely to lead to spurious inferences of directed
information transfer. This is neatly illustrated by a minimal example (4.1), which
we adapt from [149].

Example 4.1. In this example Xt ,Yt is a two-variable, first-order, stationary Markov
chain (Sect. 2.3.6) with X and Y binary variables taking values ±1. The time index
runs from t = −∞ to t = +∞. The process Y is autonomous, in the sense that its
current state depends only on its own past and has no dependency at all on X . It
transitions deterministically from state y to state −y (i.e. it flips) at each successive
time step. The current state of X , on the other hand, has no direct dependence on
its own history, but depends probabilistically on the state of Y at the previous time
step. Specifically, at each time t, Xt =Yt−1 with probability 1+c

2 and Xt =−Yt−1 with
probability 1−c

2 for some constant −1 ≤ c ≤ 1. The joint transition probabilities are
thus
1 On an historical note, the term “transfer entropy” was coined by Schreiber in [298], which pre-
ceded Paluš’ publication [253] by a few months. As is oft the way in science, it is thus Schreiber’s
formalism that is the more influential and most often cited, although Paluš’ exposition is somewhat
more general and purely information theoretic in spirit. Paluš also makes explicit the link with
Granger causality.
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P
(

Xt = x′,Yt = y′
∣∣ Xt−1 = x,Yt−1 = y

)
=

δ (y′,−y)
[

δ (x′,y)
1+ c

2
+δ (x′,−y)

1− c
2

]
. (4.1)

Stationarity implies that the distribution of the joint process at any time t is given by

P(Xt = x,Yt = y) =
1
2

[
δ (x,−y)

1+ c
2

+δ (x,y)
1− c

2

]
. (4.2)

The marginal probabilities are P(Xt = x) = P(Yt = y) = 1
2 .

Intuitively, a useful measure of information transfer should yield zero in the
X → Y direction (since Y is autonomous), while we might expect to see a non-zero
transfer of information in the Y → X direction (since X depends on the past state
of Y ). But from (4.1) and (4.2) we have P(Xt = x,Yt−1 = y) = P(Yt = y,Xt−1 = x) =
1
2 [δ (x,y) 1+c

2 + δ (x,−y) 1−c
2 ], and we may calculate, working to a single lag—that

is, a single step back in time (cf. [149]):

I(Xt : Yt−1) = I(Yt : Xt−1) = 1
2 [(1+ c) log(1+ c)+(1− c) log(1− c)] . (4.3)

Since (at least if c �= 0) I(Yt : Xt−1) > 0, lagged mutual information, as a notional
measure of information transfer, suggests a spurious transfer of information in the
X → Y direction. The explanation for this failure is that there is indeed shared in-
formation between the previous state of X and the current state of Y : in this case (if
c �= 0), knowing Xt−1 tells us something about Yt−2 which, in turn, tells us something
(in fact everything!) about Yt ; in other words, X and Y share a common history.

The problem in the above example is essentially that, even without explicit
knowledge of the past of Y , the past of X already yields information about its own
current state.

Key Idea 15: Schreiber and Paluš’ insight was that, to assess the influence of
the past of Y on current X, the shared information between X and its own past
must be accounted for.

Information theory supplies just the tool to effect this accounting: we must condi-
tion on the past of X as a conditional mutual information (Sect. 3.2.3, Eqn. 3.16 and
Eqn. 4.4). Such conditioning removes any redundant or shared information between
current X and its own past, but also includes any synergistic information about cur-
rent X in the source Y that can only be revealed in the context of the past of X .2

This motivates the definition of transfer entropy for the special case of history
length (lag) 1:

2 Williams and Beer [359] continue this partial information decomposition of the TE to label the
synergistic component as state-dependent transfer entropy and the unique component from the
source as state-independent transfer entropy. See also [195, 28].
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Definition 4.1.

TY→X (t) ≡ I(Xt : Yt−1 | Xt−1)
= H(Xt | Xt−1)−H(Xt | Xt−1,Yt−1) .

(4.4)

We can then say that:3

Key Idea 16: TY→X (t) with lag 1 may be interpreted intuitively as the degree
of uncertainty about current X resolved by past Y and X, over and above the
degree of uncertainty about current X already resolved by its own past alone.

Note that TY→X (t), as a conditional mutual information, is always non-negative
(inclusion of Yt−1 in the conditioning variables cannot increase the conditional en-
tropy). Previously (Sect. 3.2.2), we have also seen that mutual information may be
interpreted as a measure of statistical dependence. Thus we have an intuitive inter-
pretation for vanishing TY→X (t):

TY→X = 0 ⇐⇒ X, conditional on its own past, is independent of the past of
Y .

We shall generally refer to X as the target and Y as the source variable. Note
that we retain the argument t in the definition of TY→X ; although the process in
the example above was stationary (and [298] only considered stationary processes),
Definition 4.1 makes sense equally for non-stationary processes, in which case the
PDFs and therefore the transfer entropy will generally depend on the time t. Esti-
mation of transfer entropy from non-stationary empirical time-series data, however,
will require some special techniques (Sect. 4.3.1.1); otherwise spurious results may
be obtained [340]. For stationary processes we omit the time argument.

Returning to Example 4.1, we may calculate

H(Xt | Xt−1,Yt−1) = log2− 1
2 [(1+ c) log(1+ c)+(1− c) log(1− c)] , (4.5)

H(Xt | Xt−1) = log2− 1
2

[
(1+ c2) log(1+ c2)+(1− c2) log(1− c2)

]
, (4.6)

H(Yt | Xt−1,Yt−1) = H(Yt | Yt−1) = 0, (4.7)

[note that (4.7) holds since Y transitions autonomously and deterministically] so that
(cf. [149])

TY→X = 1
2 [(1+ c) log(1+ c)+(1− c) log(1− c)]

− 1
2

[
(1+ c2) log(1+ c2)+(1− c2) log(1− c2)

]
,

(4.8)

TX→Y = 0, (4.9)

3 We remark that this is closer to the approach of Paluš [253]. Schreiber [298] derived his formu-
lation in somewhat different terms—see below for details.
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history length k for Example 4.1

and therefore the transfer entropy correctly yields non-zero information transfer in
the Y → X , but not in the X → Y , direction (see Fig. 4.1, k = 1 plot).

4.2.1 Determination of History Lengths

So far we have only considered histories of length 1 for both target and source vari-
ables. But what if the shared information between the target and its past extends
to a longer history length? What if the earlier values of the source contain addi-
tional information about the target? How, then, should we specify history lengths
in general? Broadly speaking, too short a history for the target variable risks over-
estimating transfer entropy, since we may fail to condition out the full influence
of the past of the target on itself. Too long a history for the target variable also
risks over-estimating transfer entropy due to under-sampling the multi-dimensional
PDFs. Conversely, too short a history for the source variable risks under-estimating
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transfer entropy, since we may fail to incorporate the full influence of the past of
the source on the target variable. (Note, though, that this simplified argument ig-
nores the possible effects of synergy between historical states of target and source
variables on the current state of the source variable—see Sect. 3.2.3.1, Sect. 4.2 and
[195, 28] regarding synergy in TE.)

4.2.1.1 Target History Length

Schreiber [298] mainly addresses the case where the target variable is a kth-order
Markov process (Sect. 2.3.6), and specifies a history length of k for the target vari-
able in the expression for transfer entropy. This ensures that the entire (independent)
historical influence of the target variable on its current state is conditioned out.

To frame this mathematically, we introduce the notation

UUU (k)
t ≡ (Ut ,Ut−1, . . . ,Ut−k+1). (4.10)

for the length-k history of a variable U , up to and including time t. We note that this
is a Takens embedding vector of embedding dimension k and embedding delay τ = 1
(see Sect. 2.3.5). Recall formally that the underlying state of a Markov process U is
captured by a sufficiently embedded vector UUU (k)

t (i.e. where the embedding length
is greater than the order of the Markov process). This means that, once we move to
examine proper embeddings of the time series, the transfer entropy considers state
transitions of the target XXX (k)

t →{Xt+1,XXX
(k)
t }, and

Key Idea 17: Transfer entropy measures how much information the source
process provides about state transitions in the target.

Of course, one could also use an embedding delay τ > 1 should this produce
more appropriate embedding vectors UUU (k,τ)

t (see Sect. 2.3.5). Similarly, it is possible
to compute TE with non-uniform embeddings of the variables, i.e. selecting k ir-
regularly spaced variables Ut−i as a representation of the past state of U (see [85]).
For simplicity in this book however, we will concentrate on representing TE with
standard embedding vectors, with embedding delay τ = 1.

Schreiber also suggests that, if the target variable is non-Markov, we should let
its history length k → ∞ (see further discussion in [195]).

Note, however, that even if the joint process Xt ,Yt is Markov, the marginal (target
and source) variables Xt and Yt will generally not be Markov processes; for example,
values in the past of X may include information about Xt that is redundant with that
held by Y , even for Xt−m for m beyond the joint Markovian order. This is the case, for
instance, in Example 4.1, where the joint process is first-order Markov, as is the Yt
process, but (as may easily be verified) Xt is not Markov. We consider this in more
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detail in Sect. 4.2.2, recommending that, for proper interpretation as information
transfer, the target should be embedded before source embedding is considered.

4.2.1.2 Source History Length

It is less clear how much history of the source variable should be taken into account.
If the target variable is kth-order Markov, Schreiber suggests a history length of k
or 1 for the source variable, although if the joint process is Markov of order � (or,
less stringently, if Xt is known to only depend on � lags of Yt ) it would seem to make
more sense to take a history length of � for the source variable (taking a longer
history will not alter the result in this case); see further discussion in [184]. In one
sense, history length for the source variable is an open choice; notwithstanding, we
take the view that there is no harm in (theoretically) taking infinite histories for both
source and target variables: this ensures that all relevant history is always accounted
for.

4.2.1.3 Empirical Determination of History Lengths

Of course, for empirical estimation of transfer entropies from finite time series
(Sect. 4.3), practical choices of history lengths will be severely constrained by the
amount of data available (the data requirement of transfer entropy scales exponen-
tially with history length), and some scheme for truncating histories will be required.
For example, Wibral et al. [350] suggest using the Ragwitz and Kantz criterion [279]
of setting the history or embedding lengths (and embedding delays, if these are used
also) to provide minimal error in predicting the next value of each series.4

4.2.1.4 General (k, �)-History Definition of Transfer Entropy

We can now define the general form of the (k, �)-history transfer entropy:

Definition 4.2.

T
(k,�)
Y→X (t) ≡ I

(
Xt : YYY (�)

t−1

∣∣∣ XXX (k)
t−1

)
= H

(
Xt | XXX (k)

t−1

)
−H

(
Xt | XXX (k)

t−1,YYY
(�)
t−1

)
.

(4.11)

Key Idea 18: T
(k,�)
Y→X (t) may be interpreted intuitively as the degree of uncer-

tainty about current X resolved by the past states Y and X, over and above the

4 Note that this criterion does not account for synergies between the source and target’s pasts, and
so should be extended in the future.
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degree of uncertainty about current X already resolved by its own past state
alone.

T
(∞,�)
Y→X (t), T

(∞,∞)
Y→X (t) etc. denote the corresponding limits (if they exist). Again

T
(k,�)
Y→X (t) is non-negative, and for stationary processes we drop the time dependency

argument t. If history lengths are clear or irrelevant we also omit the superscripts.

In Schreiber’s original formulation [298] he in fact defines T
(k,�)
Y→X (t) for a Markov

process Xt , equivalently, as the KL divergence (Sect. 3.2.4) between the distributions
of Xt conditional on just XXX (k)

t−1, and on both XXX (k)
t−1 and YYY (�)

t−1, yielding the alternative
formula

T
(k,�)
Y→X (t) = ∑

xt ,xxx
(k)
t−1,yyy(�)

t−1

p
(

xt ,xxx
(k)
t−1,yyy

(�)
t−1

)
log2

p
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
p
(

xt

∣∣∣xxx(k)
t−1

) (4.12)

= ∑
xxx(k)

t−1,yyy(�)
t−1

p
(

xxx(k)
t−1,yyy

(�)
t−1

)
∑
xt

p
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
log2

p
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
p
(

xt

∣∣∣xxx(k)
t−1

) ,

(4.13)

where p(·), p(·|·) denote the (conditional) probabilities of corresponding (histories
of) states.

4.2.2 Computational Interpretation as Information Transfer

The conditioning on the past history XXX (k)
t−1 of the target X plays an important role

in giving TE an interpretation in terms of distributed information processing [188,
182].

In the first place, Schreiber’s original description of TE [298] can be rephrased
as information provided by the source about a state transition xxx(k)

t → xt+1 in the
target (or including redundant information xxx(k)

t → xxx(k)
t+1). This is seen in that the xxx(k)

t
are embedding vectors [320] capturing the underlying state of the process X for
Markov processes (see Sect. 4.2.1.1). We can then consider TE in the wider context
of where information is contributed for this state transition or computation of the
next value Xt . A first step there is to examine how much information is contained in
the past state XXX (k)

t−1 of X about its next value Xt , the active information storage (AIS)
[198]:

Definition 4.3.
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A
(k)
X (t) ≡ I

(
XXX (k)

t−1 : Xt

)
(4.14)

= H(Xt)−H
(

Xt | XXX (k)
t−1

)
. (4.15)

The entropy rate term H′
X (t) = H

(
Xt | XXX (k)

t−1

)
includes any information transferred

from other variables to X , plus any remaining intrinsic uncertainty. Expanding
H′

X (t) we see that AIS is complementary to the transfer entropy terms, since they
are non-overlapping components of the information in Xt [196]:

H(Xt) = I
(

XXX (k)
t−1 : Xt

)
+ I

(
Xt : YYY (�)

t−1

∣∣∣ XXX (k)
t−1

)
+H

(
Xt | XXX (k)

t−1,YYY
(�)
t−1

)
(4.16)

= A
(k)
X (t)+T

(k,�)
Y→X (t)+H

(
Xt | XXX (k)

t−1,YYY
(�)
t−1

)
. (4.17)

The above equations demonstrate how the computation of the next value Xt is com-
posed of stored information and transferred information from YYY (�)

t−1,5 and the con-

sideration of the past history XXX (k)
t−1 serves to separate the two. Indeed, it is clear that

using too short a history length k will serve to under-estimate the AIS, perhaps over-
estimating the TE by confusing some stored information as having been transferred.

Finally, recall from Sect. 4.2 (in particular footnote 2) that Transfer Entropy con-
tains a state-dependent component, due to the synergy between the source YYY (�)

t−1 and

past history XXX (k)
t−1 of the target X . This component is symmetric in the source Y and

past of X , however it is viewed as information transfer from Y by TE rather than as
storage due to our perspective of information processing here. We can understand
this in two ways (see further details in [188]). First, as this perspective focusses on
the state transition of X (outlined above), it considers information from the past of X
about that transition first (as storage, including any redundant information with the
source), and then considers transfer from other sources (which includes that syner-
gistic component with the past of X). Second, the perspective considers transfer as
the contribution of the source Y in the context of the target past, which as described
in Sect. 4.2 has a natural interpretation as conditional MI and naturally includes the
synergistic component.

� 4.2.2.1 Information Transfer and Causality

Returning to Example 4.1 on p. 66, we note that, since the joint process and also
Yt are first-order Markov, while Xt is non-Markov, then following the discussion
above we should really consider T

(∞,1)
Y→X and T

(1,1)
X→Y . We have already seen (Eqn. 4.9)

that T
(1,1)
X→Y is zero. But in fact T

(∞,1)
Y→X is also zero! For (if c �= 0) as we take

longer and longer histories of X , we gain more and more information about the

5 We can of course decompose the remaining uncertainty term H
(

Xt | XXX (k)
t−1,YYY

(�)
t−1

)
in Eqn. 4.17

into further higher-order transfer entropy terms, see Sect. 4.2.3.
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phase of Y in A
(k)
X (t) (which represents the true state of X). In the long history

limit, knowing the complete history of X is tantamount to knowing Y , so that as
k →∞, H

(
Xt | XXX (k)

t−1

)
→H(Xt | Yt−1) and T

(k,1)
Y→X → 0 (Fig. 4.1). So, perhaps counter-

intuitively, if we take full histories into account, there is no information transfer in
either direction in Example 4.1. From a computational perspective though, this can
be resolved in that the embedded state of X in fact stores information about the phase
of Y , and thus although Y does causally influence X , it does not transfer dynami-
cally new information at each update because that causal link serves to maintain
information storage instead. The concept of causality is typically related to whether
interventions on a source can be identified to have an effect on the target, rather than
whether observation of the source can help predict state transitions of the target. The
latter concept here is information transfer, whilst the former (causality) may support
information transfer or it may support distributed information storage instead. In
other words [191]:

Key Idea 19: Information transfer and causality are related but distinct con-
cepts.

We refer the reader to [191, 11, 60] for further discussion of the complex re-
lationship between concepts of information transfer and causality. Importantly, the
vanishing transfer entropy in the long history limit in this example is due essentially
to the deterministic transition of the Y variable. In a more general setting we would
not expect T

(∞,1)
Y→X to vanish if current X has a dependence on the history of Y .

4.2.3 Conditional Transfer Entropy

With many systems there are many interacting variables, so we need to be able to
handle additional influences on the pairwise interaction we have discussed so far.
When a third (possibly multivariate) process, Zt , say, is jointly distributed with the
processes Xt ,Yt then the pairwise, bivariate or apparent transfer entropy TY→X may
report a spurious information flow from Y to X , due to (possibly lagged) joint in-
fluences of Z on X and Y (i.e. Z → X and Z → Y ). This is known as a common
driver effect. Similarly, TY→X may report a spurious information flow from Y to X
due to cascade effects, e.g. where we actually have Y → Z → X . Further, TY→X will
not detect any synergistic transfer from Y and Z together in these scenarios. It is,
however, a simple matter to discount redundant joint influences and include syner-
gies by conditioning on the past of Z. We thus define conditional transfer entropy
[195, 196, 335]:

Definition 4.4.
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T
(k,�,m)
Y→X |Z(t) ≡ I

(
Xt : YYY (�)

t−1

∣∣∣ XXX (k)
t−1,ZZZ

(m)
t−1

)
= H

(
Xt | XXX (k)

t−1,ZZZ
(m)
t−1

)
−H

(
Xt | XXX (k)

t−1,YYY
(�)
t−1,ZZZ

(m)
t−1

)
.

(4.18)

Key Idea 20: TY→X |Z(t) may be interpreted intuitively as the degree of un-
certainty about current X resolved by the past state of Y , X and Z together,
over and above the degree of uncertainty about current X already resolved by
its own past state and the past state of Z.

We also have:

TY→X |Z = 0 ⇐⇒ X, conditional on its own past and on the past of Z, is
independent of the past of Y .

We refer to Z as the conditioning variable. Regarding our previous discussion on
history lengths, here even if the joint process Xt ,Yt ,Zt is �th-order Markov, we would
still recommend letting the history length m of the conditioning variable → ∞, since
now the joint process Xt ,Zt will generally not be Markov (but we may still use
history length � for the source variable Y ).

A case of particular practical importance is where we have a system of n jointly
distributed processes6 XXXt = (X1,t , . . . ,Xn,t). Then since, as we have seen, the pair-
wise transfer entropies TXj→Xi(t), i, j = 1, . . . ,n are susceptible to confounds due to
common influences of the remaining Xk, an alternative measure of pairwise informa-
tion flows in the full system XXX is given by the pairwise- or bivariate-conditional or
complete transfer entropies [195] (we omit history superscripts, although we should
let them all → ∞ here):

Definition 4.5.

T Xj→Xi |XXX [i j]
(t) ≡ I

(
Xi,t : Xj,t−1

∣∣ XXX [i j],t−1
)

= H
(

Xi,t | XXX [ j],t−1
)−H(Xi,t | XXXt−1) ,

(4.19)

where the notation [· · · ] indicates omission of the corresponding indices. The condi-
tioning may be limited to only the (other) causal parents of Xi where these are known
[195, 191], denoting this variant cT

(k,l,m)
Y→X . The quantities T Xj→Xi |XXX [i j]

(t), i �= j, may
be considered as a directed graph describing the network of information flows be-
tween elements of the multivariate system XXX , closely related to the causal graph
[301, 29] of bivariate-conditional Granger causalities (see below, Sect. 4.4; this is
of particular interest in information flow analysis of neural systems—see Sect. 7.3).

6 Here bold type denotes vector (multivariate) quantities.



76 4 Transfer Entropy

Similarly, we may define collective transfer entropy [196] as the transfer from
some multivariate set of n jointly distributed processes YYYt = (Y1,t , . . . ,Yn,t)7 to a
specific univariate process, X :

Definition 4.6.

T
(k,���)
YYY→X (t) ≡ I

(
Xt : YYY (���)

t−1

∣∣∣ XXX (k)
t−1

)
. (4.20)

Averaging this over all X in the system under consideration gives the global transfer
entropy introduced in Barnett et al. [24] and discussed further in Sect. 5.2.

Finally, with these quantities we may then extend our decomposition of the infor-
mation content of Xt from Eqn. 4.17, though now considering the information from
several sources YYYt (omitting history superscripts on the Yi,t for ease of notation)
[196]:

H(Xt) = I
(

XXX (k)
t−1 : Xt

)
+T

(k)
YYY→X (t)+H

(
Xt | XXX (k)

t−1,YYYt−1

)
(4.21)

= I
(

XXX (k)
t−1 : Xt

)
+

(
∑

i
I
(

Xt : YYY i,t−1 | XXX (k)
t−1,YYY [i...n],t−1

))
+H

(
Xt | XXX (k)

t−1,YYYt−1

)
(4.22)

= A
(k)
X (t)+

(
∑

i
TYi→X |YYY [i...n]

(t)

)
+H

(
Xt | XXX (k)

t−1,YYYt−1

)
. (4.23)

Each term in the iterative sum over the Yi above8 is a transfer entropy term, of in-
creasing order. The sum begins with pairwise TE from Y1, then adds in conditional
TEs from Y2 through Yn−1, and finally a pairwise- or bivariate-conditional or com-
plete TE from Yn. Crucially, this equation shows that:

Key Idea 21: TE terms of various orders are all complementary, and all of
these orders of TE terms are required to properly account for the information
in the target Xt .

For example, if we only consider pairwise TE terms, then we would never see
the synergistic (see Sect. 3.2.3.1) conditional TEs involved in an XOR operation
Xt = Yt−1 XOR Zt−1. Conversely, if we only consider conditional TE terms, then
we would never see the redundant (see Sect. 3.2.3.1) pairwise TEs involved in a
redundant copying operation Xt = Yt−1 = Zt−1.

7 We write ��� in vector notation to indicate that potentially different history lengths may be used for
each variable in YYYt .
8 Of course, the ordering of the sum over the i is arbitrary, so long as terms already included are
conditioned out in later terms.
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Key Idea 22: The term information dynamics [195, 196, 198, 182, 199] is
used to refer to investigations of the decomposition of information storage and
transfer components in Eqn. 4.21–Eqn. 4.23, and also their local dynamics in
space and time (see e.g. local transfer entropy in Sect. 4.2.5).

4.2.4 Source–Target Lag

Transfer entropy may be measured over an arbitrary source–target lag or delay of u
time steps [348]:

Definition 4.7.

T
(k,�)
Y→X (t,u) ≡ I

(
Xt : YYY (�)

t−u

∣∣∣ XXX (k)
t−1

)
= H

(
Xt | XXX (k)

t−1

)
−H

(
Xt | XXX (k)

t−1,YYY
(�)
t−u

)
.

(4.24)

Crucially, the lag must only be taken between YYY (�)
t−u and Xt ; i.e. XXX (k)

t−1 should remain
the immediate past of Xt . This is because this form: preserves the computational
interpretation of TE as information transfer (see Sect. 4.2.2); is the only relevant op-
tion in keeping with Wiener’s principle of causality [348]; and crucially, it has been
demonstrated that, for a causal relationship Y → X over a single lag δ , T

(k,�)
Y→X (t,u)

is maximised at u = δ [348].
In the previous and the following, we have used u = 1 for simplicity, but all

formulations can be extended to accommodate an arbitrary delay. Indeed, u should
be selected so as to maximise T

(k,�)
Y→X (t,u), as described in [348].

4.2.5 Local Transfer Entropy

Since the TE is simply a conditional MI, one can define local transfer entropy [195]
as a pointwise (local) conditional mutual information (see Eqn. 3.18) from a specific
source event state yyy(�)

t−1 to a specific target event xt in the context of the specific event

state history of the target xxx(k)
t−1:
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Definition 4.8.

t
(k,�)
Y→X (t) ≡ i

(
xt : yyy(�)

t−1

∣∣∣ xxx(k)
t−1

)
(4.25)

= log2

p
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
p
(

xt

∣∣∣xxx(k)
t−1,

) , (4.26)

T
(k,�)
Y→X (t) = E

{
t
(k,�)
Y→X (t)

}
. (4.27)

T
(k,�)
Y→X (t) is the average difference in code length between coding the value xt

given xxx(k)
t−1 (under the optimal encoding scheme for Xt given XXX (k)

t−1) or coding the

value xt given both xxx(k)
t−1 and yyy(�)

t−1 (under the optimal encoding scheme for X given Y

and Z), while t
(k,�)
Y→X (t) represents this difference in such code lengths for any specific

events {xt ,xxx
(k)
t−1,yyy

(�)
t−1} under these schemes. As such:

Key Idea 23: The local transfer entropy tells us about the dynamics of infor-
mation transfer in time.

We will see specific examples of such dynamics in Chap. 5.
The local transfer entropy may be either positive or negative (with the source

yyy(�)
t−1 being either informative or misinformative respectively) for a specific event set

{xt ,xxx
(k)
t−1,yyy

(�)
t−1}, as explained in Sect. 3.2.2 and Sect. 3.2.3 for local MI and local

conditional MI values. Further examples are given in Sect. 5.1.
Of course, the conditional TE (Eqn. 4.18), complete TE (Eqn. 4.19) and collec-

tive TE can all be localised in a similar manner using the local conditional MI in
Eqn. 3.18 [195].

4.3 Transfer Entropy Estimators

The same issues which plague the estimation of entropy and mutual information
discussed in Chap. 3 plague transfer entropy to an even greater extent due to its
generally larger dimensionality. To some degree, estimators for MI and conditional
MI introduced in Sect. 3.4 may be directly applied to estimate the transfer entropy.
One should keep in mind though that, as we saw in Sect. 3.4, the straightforward
plug-in entropy estimator, in which we estimate the probabilities from the counts
and apply Eqn. 3.2, has a positive bias and behaves less well than other, indirect
estimators. In this section then, we describe direct estimation of the transfer entropy.

Finding good estimators is an open research area, and the reader is recommended
to use some of the available toolboxes described in Sect. 4.3.3 at the outset of a
project.
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4.3.1 KSG Estimation for Transfer Entropy

Considerable work has gone into the direct estimation of mutual information, us-
ing kernels (Sect. 3.4.1.4) and the Kozachenko–Leonenkov entropy estimator, in
the KSG (Kraskov) estimator (Sect. 3.4.2.2). As a result it might be tempting to use
the mutual information to estimate the transfer entropy. Indeed, Kraskov [167] ini-
tially suggested that TE could be computed as the difference between two mutual
information terms:

T
(k,�)
Y→X (t) = I

(
Xt ,XXX

(k)
t−1 : YYY (�)

t−1

)
− I

(
XXX (k)

t−1 : YYY (�)
t−1

)
(4.28)

= I
(

XXX (k)
t−1,YYY

(�)
t−1 : Xt

)
− I

(
XXX (k)

t−1 : Xt

)
, (4.29)

and similarly it is easy to verify that

T
(k,�)
Y→X (t) = I(XXX (k)

t−1 : YYY (�)
t−1 : Xt)− I

(
XXX (k)

t−1 : YYY (�)
t−1

)
− I

(
XXX (k)

t−1 : Xt

)
. (4.30)

The above expressions are exact, theoretically, but numerically there can be
problems. So if we calculate the mutual information using the KSG estimator
(Sect. 3.4.2.2), then there is a positive bias, causing the TE to be over-estimated.
Using a difference of mutual information terms here leads to an over-estimate, be-
cause the nearest-neighbour distances would be calculated separately for each term.
Thus the balls are smaller for the two-dimensional MIs, leading to a smaller estimate
for the effective nearest-neighbour count.

This issue has been addressed by extending the KSG algorithm for direct esti-
mation of the conditional mutual information [93, 110, 337, 350], as alluded to in
Sect. 3.4.2.3. To understand this, we demonstrate the application of the Kraskov
approach (algorithm 1) directly for I(X : Y | Z). In terms of entropies we have

I(X : Y | Z) = H(X ,Z)+H(Y,Z)−H(X ,Y,Z)−H(Z). (4.31)

Applying the same logic as Kraskov et al. did for mutual information, but here with
a single ball for the Kth nearest neighbour in the joint distribution, {x,y,z}, leads to
(for algorithm 1)

I(1)(X : Y | Z) = ψ(K)−E
{

ψ(nxz)−ψ(nyz)+ψ(nz)
}

. (4.32)

in nats. Here ε is the (max) norm to the Kth nearest neighbour in the joint space
{x,y,z} for each given test point, nz is the neighbour count strictly within norm ε in
the z marginal space, and nxz and nyz are the neighbour counts strictly within (max)
norms of ε in the joint {x,z} and {y,z} spaces, respectively.

Similarly, following KSG algorithm 2, {εx,εy,εz} are set separately to the marginal
distances to the Kth nearest neighbour in the joint space {x,y,z} for each given test
point, and one then counts {nz,nxz,nyz} within or on these widths to obtain [350]
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I(2)(X : Y | Z) = ψ(K)− 2
K

+E
{

ψ(nz)−ψ(nxz)+
1

nxz
−ψ(nyz)+

1
nyz

}
(4.33)

in nats.
As a conditional MI (cf. Eqn. 4.11), direct estimation of transfer entropy may

then be performed via these algorithms [110, 337, 350]. Crucially, the search for
nearest neighbours may be performed using optimised algorithms in O(KN logN)
time (for N samples) instead of O

(
KN2

)
for a naive all-to-all neighbour search over

N samples (see [183]).

Open Research Question 3: What are the best estimators for different prob-
ability distributions and for large dimensionality?

� 4.3.1.1 Non-stationarity

When the statistics are non-stationary, the formulae for TE still apply, taken over
ensembles. In some situations, one has access to or is able to generate such an en-
semble, e.g. see TE analysis of ensembles of repeated trials of event-driven stimulus
in neuroscientific experiments in [110, 350, 180, 363]. In other practical situations
such ensembles would often not be available. For example, in financial time series,
there is only one time record of the price of shares and the share index for a given
stock exchange. Thus the only practical course of action is to use time windows of a
small enough size that the statistics are (approximately) stationary over the window.
But a small window may make the estimation with such a small number of data
points very unreliable.

Open Research Question 4: Are there better methods for calculating TE,
suitable for real data, for non-stationary systems without ensemble data?

4.3.2 Symbolic Transfer Entropy

One way around handling continuous distributions with relatively small number of
data points is a different form of discretisation or binning, symbolic transfer entropy,
introduced by Staniek and Lehnertz [313]. The idea here is to take the embedding
dimension m (see Sect. 2.3.5; i.e. k for XXX (k)) for the time series in question and for
each data value look at the ordering of the current and previous m− 1 values and
assign a symbol according to which permutation of magnitudes it corresponds.
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Thus for three values, x3 > x2 > x1 would have a different symbol to x2 > x3 > x1.
The statistics of occurrence of the symbols are then combined and these probability
distributions used to calculate the entropy of the series, with entropy combinations
used for MI and TE, etc.

This is a particularly fast approach, since it effectively computes a discrete en-
tropy after the ordinal symbolisation. It is important to note, however, that it is model
based, assuming that all relevant information is in the ordinal relationship between
the variables. This is not necessarily the case in the variables we are analysing, and
can lead to misleading results, as has been demonstrated by Wibral et al. [348].

4.3.3 Open-Source Transfer Entropy Software

A number of existing open-source toolkits are available for computing the transfer
entropy empirically from time-series data, as described in the following. For each
toolkit, we describe its purpose, the type of data it handles, and which estimators
are implemented. At the risk of including bias, the first two toolkits presented are
associated with authors of this book.

The MVGC (multivariate Granger causality toolbox)9 (GPL v3 licence) by Bar-
nett (an author of this book) and Seth [26] provides general-purpose calculation of
the Granger causality for MATLAB (MVGC also requires the MATLAB Statistics,
Signal Processing Toolbox). MVGC allows specification of embedding dimension,
but not source–target delay parameters.

The Java Information Dynamics Toolkit (JIDT)10 (GPL v3 licence) by Lizier
(an author of this book) [183] provides general-purpose calculation of the transfer
entropy on a variety of platforms (while written in Java, it is usable in MATLAB,
Octave, Python, R etc.). JIDT implements TE and conditional TE, plus a range of
related measures (entropy, MI, conditional MI, AIS and more). This is done using a
variety of estimator types (discrete/binned, Gaussian, box-kernel and KSG including
fast nearest-neighbour search and parallel computation). JIDT allows specification
and auto selection of embedding dimension and source–target delay parameters,
and adds capabilities to compute local information-theoretic values (e.g. local trans-
fer entropy, see Sect. 4.2.5), collective TE and statistical significance testing (see
Sect. 4.5.1). Several demonstrations of computing TE using JIDT are distributed
with the toolkit, and some are described here in Chaps. 5 and 7.

TRENTOOL11 (GPL v3 licence) by Lindner et al. [180] is a MATLAB toolbox
designed from the ground up for transfer entropy analysis of (continuous) neural
data, utilising the FieldTrip [250] data format for electroencephalography (EEG),
magnetoencephalography (MEG), and local field potential (LFP) recordings. In par-
ticular, it is designed for performing effective network or connectivity analysis (see

9 http://www.sussex.ac.uk/sackler/mvgc/
10 http://jlizier.github.io/jidt/
11 http://www.trentool.de
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Sect. 7.2) between the input variables, including statistical significance testing of TE
results (see Sect. 4.5.1) and other steps to deal with volume conduction and identify
cascade or common driver effects in the inferred network. TRENTOOL automates
selection of embedding parameters for input time-series data and for source–target
lags, and implements KSG estimation via fast nearest-neighbour search, parallel
computation and graphics processing unit (GPU)-based algorithms [363].

The MuTE toolbox12 by Montalto et al. [230] (CC-BY license) implements TE
estimation for MATLAB. MuTE is capable of computing conditional TE and in-
cludes a number of estimator types (discrete/binned, Gaussian, and KSG including
fast nearest-neighbour search). It also adds non-uniform embedding (see Faes et al.
[85]), methods to assist with embedding parameter selection, and statistical signifi-
cance testing.

TIM13 (GNU Lesser GPL licence) by Rutanen [292] provides C++ code (callable
from MATLAB) for general-purpose calculation of a wide range of information-
theoretic measures on continuous-valued data. TIM implements entropy (Shannon,
Rényi and Tsallis variants), Kullback–Leibler divergence, MI, conditional MI, TE
and conditional TE. TIM includes various estimators for these, notably with KSG
estimators (using fast nearest-neighbour search). Estimators are also included for
multi-dimensional variables.

The Transfer Entropy Toolbox (TET)14 (BSD licence) by Ito et al. [142] provides
TE analysis of spiking (binary, discrete) data for MATLAB. TET allows specifica-
tion of embedding dimension and source–target delay parameters.

Users should make a careful choice of which toolkit suits their requirements, con-
sidering data types, estimators and application domain. For example, TRENTOOL
is dedicated to effective network inference in neural imaging data, and so is an ideal
tool for that application. For more general-purpose applications, a toolkit such as
MVGC or JIDT would be more suitable.

4.4 Relationship with Wiener–Granger Causality

As mentioned in the introduction to this chapter, transfer entropy is closely related to
and (arguably) shares a common history with Wiener–Granger causality (Granger
causality for short) [354, 114, 112, 105, 285]. It was not, however, till [22, 23]
that the precise relationship between the concepts was formally elucidated. In this
section we provide a brief introduction to the conceptual, operational and inferential
basis of Granger causality. We then examine in more detail its relationship with
transfer entropy.

12 http://figshare.com/articles/MuTE toolbox to evaluate Multivariate Transfer Entropy/1005245/1
13 http://www.cs.tut.fi/%7etimhome/tim/tim.htm
14 http://code.google.com/p/transfer-entropy-toolbox/



4.4 Relationship with Wiener–Granger Causality 83

4.4.1 Granger Causality Captures Causality as Predictive of Effect

Firstly, however, no mention of Granger causality can avoid some remarks as to the
notion of causality intended by the nomenclature. Causality in the Wiener–Granger
sense is perhaps best summarised as [114]

Key Idea 24: Granger causality is based on the premise that cause precedes
effect, and a cause contains information about the effect that is unique, and is
in no other variable.

It would seem to be the case that, to many people, this notion of causality fails to
tally with preconceived ideas based on distinctly different premises (in particular
interventionist approaches [261, 11, 191, 60]; see Sect. 4.2.2.1). We do not intend
to engage in this debate here, which we feel has generated rather more heat than
light. Rather, we are happy instead to accept Granger causality at face value as a (as
opposed to the) notion of causality—in particular, of predictive effect—and allow
Granger himself the last (somewhat jaundiced) word on the matter:

At that time, I had little idea that so many people had very fixed ideas about causation, but
they did agree that my definition was not true causation in their eyes, it was only Granger
causation. I would ask for a definition of true causation, but no one would reply. However,
my definition was pragmatic and any applied researcher with two or more time series could
apply it, so I got plenty of citations. Of course, many ridiculous papers appeared.

Clive W. J. Granger, Nobel Lecture, December 8, 2003 [114]

4.4.2 Definition of Granger Causality

For simplicity we consider just the bivariate case of two jointly stationary, possibly
multivariate, stochastic processes Xt ,Yt—as for transfer entropy, Granger causality
extends (in a reasonably straightforward manner) to the non-stationary/conditional
cases. In its purest (though not historically original) form, the essence of the idea
is surprisingly close to that of transfer entropy. Let F

(
xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
denote the

distribution function of the target variable X conditional on the joint (k, �)-history
XXX (k)

t−1,YYY
(�)
t−1 of both itself and the source variable Y , and let F

(
xt

∣∣∣xxx(k)
t−1

)
denote the

distribution function of Xt conditional on just its own k-history. Then [112, 115]
variable Y is said to Granger-cause variable X (with lags k, �) iff

F
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1

)
�= F

(
xt

∣∣∣xxx(k)
t−1

)
. (4.34)

In other words:
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Key Idea 25: Y Granger-causes X iff X, conditional on its own history, is not
independent of the history of Y .

The connection with transfer entropy is clear: in fact (4.34) holds precisely
when T

(k,�)
Y→X �= 0. Thus Transfer Entropy might be construed as a non-parametric

test statistic for pure Granger causality! But this is not the historical path that
the development of Granger causality took. In [113] Granger remarks regarding
(4.34) The general definition [. . . ] is not operational, in that it cannot be used
with actual data. To become operational, a number of constraints need to be intro-
duced. In fact Granger had already—apparently inspired by an idea due to Wiener
[354]—operationalised the concept via parametric predictive modelling, and the
non-parametric, information-theoretic version was (rather surprisingly, one might
think) to wait another 40 years to emerge in coherent form.

Granger’s parametric formulation was, specifically, based on linear vector au-
toregressive (VAR) modelling [126, 207]. Xt ,Yt are assumed to be multivariate real-
valued, zero-mean, jointly stationary stochastic processes, subject to some restric-
tions, which we clarify below. We are then asked to consider15 the nested VAR
models

Xt = A1 ·Xt−1 + . . .+Ak ·Xt−k +B1 ·Yt−1 + . . .+B� ·Yt−� + εt , (4.35)
Xt = A′

1 ·Xt−1 + . . .+A′
k ·Xt−k + ε ′t . (4.36)

The parameters of the models are the VAR coefficient matrices Ai,B j,A′
i and the

covariance matrices Σ ≡ c(εt) ,Σ ′ ≡ c(ε ′t ) where εt ,ε ′t are the residuals, assumed
to be serially (though not necessarily contemporaneously) uncorrelated; (4.35) and
(4.36) are referred to, respectively, as the full and reduced models. There are now
two approaches, which turn out to be roughly equivalent.

The first—Granger’s original approach (via Wiener)—views (4.35), (4.36) as
predictive models for the target variable X in terms of, respectively, the joint past of
itself and the source variable Y (full model), and its own past only (reduced model).
Then the Y → X Granger causality statistic stands to quantify the degree to which
the full model yields a better prediction of the target variable (perhaps in the least-
squares sense) than the reduced model. Standard linear prediction theory [126, 207]
suggests that this should be measured by some R2-like statistic based on the ratio
of residuals variances. Following Geweke [105], the most convenient form for the
Granger causality statistic (for reasons which will become clear) is given by

Definition 4.9.

F(k,�)
Y→X ≡ log

|Σ ′|
|Σ | , (4.37)

where |·| denotes the matrix determinant.

15 Our presentation here is closer to that of Geweke [105], who developed the now-standard modern
approach to Granger-causal inference, in both the time and (see below) spectral domains.
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(The determinant of a residuals covariance matrix is sometimes known as the gen-
eralised variance, as opposed to the total variance, i.e. sum of variances.) In Defi-
nition 4.9 the model parameters are assumed to have been chosen [e.g. by ordinary
least-squares (OLS)] to minimise the total variance (or, equivalently, as it turns out,
the generalised variance) of the respective models.16

The second, perhaps more principled, approach, is within a maximum-likelihood
(ML) framework [82]. Here we note that FY→X (again we drop the superscripts if
convenient) is precisely the log-likelihood ratio statistic for the model (4.35) under
the null hypothesis

H0 : B1 = B2 = . . . = B� = 0. (4.38)

Note that, given that Xt ,Yt is described by the model (4.35), the null hypothesis
(4.38) is precisely the negation of condition (4.34) for non-causality. An immediate
payoff of the ML approach is that we have an (asymptotic) expression for the sam-
ple distribution of the statistic FY→X as a χ2 with degrees of freedom equal to the
difference in number of free parameters between the full and reduced models.17

A further property of Granger causality is that (unlike transfer entropy) it ex-
tends naturally to the spectral domain [105, 106], so that causal interactions may be
decomposed by frequency.

In [25] it is also shown that the Granger causality statistic (in both time and fre-
quency domains) is on the analytical level invariant under arbitrary stable invertible
filtering. However, it is also demonstrated that, for empirical estimation from time-
series data, (invertible) filtering will, in general, degrade Granger-causal inference.
The reason for this is that filtering a VAR process will generally increase the VAR
model order and/or induce a moving average (MA) component, resulting in poor
VAR modelling and an increased number of model parameters. This is a serious
practical issue, particularly in applications of Granger causality to neurophysiolog-
ical data (Sect. 7.3), where time series are routinely filtered as a pre-processing
step, often with the intention of eliminating frequency bands deemed biophysically
implausible, or for suppression of artefacts. It is also not uncommon in the neuro-
science literature to find that data has been band-filtered with the stated objective of
estimating Granger causality restricted to a specific frequency band. [25] show that
such pre-filtering not only fails to achieve this goal, but may well increase the inci-
dence of false positives and false negatives in causal inference. Rather, band-limited
Granger causality should be calculated by integrating frequency-domain Granger
causality over the requisite frequncy range. [25] recommend that pre-filtering be
kept to an absolute minimum required, e.g., to achieve better stationarity; thus notch
filtering to suppress line noise, or high-pass filtering to eliminate slow transients, is
acceptable if the alternative is failure of VAR modelling due to non-stationarity.

16 We note that Granger himself considered the total rather than generalised variance for his test
statistic. For further discussion on the preferability of the generalised variance, see [29].
17 If the target X is univariate, the sample distribution of the R2 statistic exp(FY→X )−1 is asymp-
totically described by an F-distribution, which has somewhat fatter tails than the corresponding χ2

and, in this case, yields better statistical inference. This is, presumably, the origin of the conven-
tional F notation for the Granger statistic.



86 4 Transfer Entropy

Open Research Question 5: Is transfer entropy invariant under arbitrary
non-linear invertible causal filtering?

It seems likely that this corresponding result for transfer entropy ought to be
obtained, although further technical conditions may be required.

� 4.4.3 Maximum-Likelihood Estimation of Granger Causality

How should the statistic FY→X be applied for time-series data? Standard VAR model
fitting techniques (such as OLS or Levinson–Wiggins–Robinson (LWR) algorithms
[178, 355, 232]) may be deployed to derive least-squares/ML estimates for VAR
parameters of the full and reduced regressions, in particular the covariance matri-
ces Σ ,Σ ′. Firstly—as for transfer entropy—we will need to select suitable numbers
of historical lags (k, �)—the model orders, in the VAR framework—for the regres-
sions.18 Again, the ML framework is useful here since the generalised residuals
variance is also the likelihood for a ML estimate of the corresponding regression,
and may be supplied to popular model order estimation criteria such as the Akaike
or Bayesian information criteria [221]. The covariance matrices Σ ,Σ ′ for the opti-
mal model order may then be plugged directly into Eqn. 4.37. If the amount of data
is sufficient, the appropriate theoretical asymptotic χ2 (or F) distribution may be
used for statistical inference (for short time series or high model orders, standard
sub-sampling or surrogate data techniques may be more reliable).

Barnett et al. [22] prove the following theorem:

Theorem 4.1. If the joint process Xt ,Yt is Gaussian (more precisely, if any finite
subset {Xt1 ,Yt2 : (tt , t2) ∈ S} of the variables is distributed as a multivariate Gaus-
sian) then there is an exact equivalence between the Granger causality and transfer
entropy statistics:

T
(k,�)
Y→X = 1

2 F(k,�)
Y→X . (4.39)

The proof is rather straightforward, and is based on the facts that: (i) given an arbi-
trary vector linear regression U = A ·V + ε , the least-squares/ML estimate for the
residuals covariance matrix c(ε) is given by the partial covariance

c(U |V ) ≡ c(U)− c(U,V )c(V )−1
c(V,U) , (4.40)

and (ii) the conditional entropy of jointly multivariate Gaussian variables U,V is

H(U |V ) = 1
2 log(|c(U |V )|)+ 1

2 n log(2πe), (4.41)

18 On a technical point, we note that the same target model order k should be used in both full
and reduced regressions and should, preferably, be estimated from the reduced regression. For the
reasons, see [26].
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where n = dim(U). Then taking U = Xt and V =
(

XXX (k)
t−1,YYY

(�)
t−1

)
(full regression)

and V = XXX (k)
t−1 (reduced regression), respectively, the result follows directly from

Definition 4.2 for transfer entropy and Definition 4.9 for Granger causality. This
result was subsequently extended (for VAR models) to various generalised Gaus-
sian/exponential distributions [138] and finally by Barnett et al. [23] to a very gen-
eral class of predictive models in a ML framework (see also [285]). The chief result
in [23] may be stated as:

Theorem 4.2. Suppose that the conditional distribution function of the target vari-
able Xt on its own entire past and that of the source variable Yt satisfies the order-
(k, �) partial Markov model

F
(

xt

∣∣∣xxx(∞)
t−1,yyy

(∞)
t−1

)
= f

(
xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1;θθθ

)
, (4.42)

where θθθ is a (finite-dimensional) parameter vector. Then, under assumption that the
model (4.42) is identifiable and well-specified, and that a certain (non-restrictive)
ergodicity condition is satisfied, the ML transfer entropy estimator

T̂
(k,�)
Y→X

(
xxx(N)

t ,yyy(N)
t

)
≡− 1

N − k
logΛ (k,�)

(
xxx(N)

t ,yyy(N)
t

)
(4.43)

converges almost surely to the actual transfer entropy:

T̂
(k,�)
Y→X

(
xxx(N)

t ,yyy(N)
t

)
a.s.−−→ T

(k,�)
Y→X (4.44)

as the sample size N → ∞, where Λ (k,�)
(

xxx(N)
t ,yyy(N)

t

)
is the likelihood ratio for the

model (4.42) and the nested model defined by the null hypothesis [cf. (4.38)]

H0 : f
(

xt

∣∣∣xxx(k)
t−1,yyy

(�)
t−1;θθθ

)
does not depend on yyy(�)

t−1. (4.45)

Theorem 4.2 states, in other words, that the ML estimator T̂
(k,�)
Y→X

(
xxx(N)

t ,yyy(N)
t

)
of

(4.43) is a consistent estimator for the actual transfer entropy T
(k,�)
Y→X . As a corollary,

the scaled estimator 2(N − k)T̂(k,�)
Y→X

(
xxx(N)

t ,yyy(N)
t

)
has an asymptotic χ2(d) distribu-

tion under the null hypothesis H0 (zero transfer entropy), where the number of de-
grees of freedom d is the difference between the number of free parameters in the
unrestricted and null models, while under the alternative hypothesis (non-zero trans-
fer entropy) the asymptotic distribution is non-central χ2(d;λ ) with non-centrality
parameter λ = 2(N − k)T(k,�)

Y→X . For a linear finite-order VAR model, we recover the
result of Theorem 4.1, albeit only asymptotically.

Key Idea 26: Theorem 4.2 blurs the boundaries between Granger causality
and transfer entropy; thus we might consider the ML estimator (4.43) as defin-



88 4 Transfer Entropy

ing a generalised (non-linear) Granger causality or, alternatively, a paramet-
ric transfer entropy statistic.

The theorem has far-reaching consequences: if we may assume (perhaps on domain-
specific or empirical grounds) that a predictive model of the form (4.42) is appropri-
ate to our data and if, in addition, efficient algorithms are available for ML parameter
estimation, then the ML estimator of Theorem 4.2 may well prove easier to cal-
culate and more efficient than direct entropy/mutual information-based estimators
(cf. Sect. 4.3). Furthermore, a χ2 sampling distribution becomes available for free.
This suggests potential principled extensions of Granger causality beyond simple
linear VAR modelling to a range of standard, well-understood, parametric predic-
tive stochastic models, such as VARMA (vector autoregressive moving-average),
VARFIMA (vector autoregressive fractionally-integrated moving-average) and var-
ious flavours of GARCH (generalised autoregressive heteroscedastic) models. A
particular case of interest is finite-state discrete Markov chain models; here, consid-
ering the Markov transition probabilities themselves as model parameters, the ML
parameter estimators are just the standard plug-in estimators for these probabilities,
and the naı̈ve plug-in transfer entropy estimator (Sect. 3.4.1.1) is seen to have a χ2

distribution [23]. Further discussion on this is provided in Sect. 4.5.1.

Open Research Question 6: Can more sophisticated estimators (kernel-
based, adaptive partitioning, k-nearest neighbour, etc., see Sect. 3.4.2) be ex-
pressed as predictive parametric models, to which Theorem 4.2 applies?

�� 4.4.4 Granger Causality Versus Transfer Entropy

It should be clear by now that Granger causality (or perhaps more broadly the gen-
eralised Granger causality of Theorem 4.2) offers some obvious advantages over
non-parametric transfer entropy as a data-driven, time-directed, functional analysis
technique; in particular the ease and efficiency of VAR model parameter estimation
as compared with the difficulties (and comparative statistical inefficiency) of en-
tropy/mutual information estimation, as well as the existence of known theoretical
sampling distributions for statistical inference. Coupled with the equivalence with
transfer entropy for Gaussian processes, why, then, should we bother with (non-
parametric) transfer entropy at all? The answer depends largely on the nature of the
data and the stochastic generative processes underlying it. Obviously some classes
of data (e.g. discrete data with low-cardinality state spaces) are inherently unsuited
to VAR modelling.
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Other reasons relate to two common misconceptions regarding Granger causality.
The first is that Granger causality can only detect linear dependencies between vari-
ables. That this is by no means the case stems from a “universality” of VAR models,
in the following sense: by the celebrated Wold decomposition theorem [80, 128],
a broad class of (covariance stationary) stochastic processes—including many pro-
cesses with non-linear feedback between variables—have a moving average (MA)
representation. If this representation is, furthermore, square-summable and invert-
ible, then the process also admits an (albeit, in general infinite-dimensional) VAR
representation. Under some further spectral conditions (which ensure that sub-
processes are also representable as VARs) the process will then be amenable to
Granger causality analysis—see [290] and [105] [in particular eq. (2.4)] for techni-
cal details. We note that the invertibility condition precludes, for instance, stationary
invertible processes that have been filtered by non-invertible linear filters (e.g. finite
differencing19). In these cases it is possible that transfer entropy may still yield
meaningful results, although little appears to be known on this issue.

The second misconception is that Granger-causal inference is viable only for
Gaussian processes. Of course we should, at the risk of model mis-specification,
be cautious that our VAR model-fitting techniques do not depend too heavily on
Gaussian assumptions. As to statistical inference, the standard large-scale theory
for ML estimation [242, 243, 356, 341] holds for non-Gaussian processes, although
asymptotic convergence of ML estimators to the appropriate χ2 may suffer.

Perhaps more pertinently, though, even if the data satisfy the technical conditions
for a linear VAR model amenable to Granger-causal analysis, it does not follow
that the VAR model will necessarily be parsimonious. In practice, especially with
limited data, this may manifest itself in unacceptably high empirical model orders
and poor model fit, which are likely to compromise statistical inference. This may be
the case, for instance, for highly non-linear and/or non-Gaussian data, for data with
a strong moving average component, or for data which is fractionally integrated
[13] or highly heteroscedastic [126]. For such data, in lieu of an appropriate and
tractable parametric model (in the sense of Theorem 4.2), non-parametric transfer
entropy may well be preferable—for further discussion on this issue see [23].

Key Idea 27: Finally, we should stress that, for non-Gaussian processes,
transfer entropy and Granger causality are simply not measuring the same
thing!

As such, if the intention is explicitly to measure information flow—as opposed
to causality in the Granger–Wiener sense—we must use transfer entropy.

19 Finite differencing is sometimes used to improve stationarity of time series, but in fact renders
the resulting process inappropriate for direct Granger-causal analysis. A non-stationary process
for which the (perhaps multiply) finite-differenced process is stationary is known as a unit root
process. Granger causality may, in fact, be estimated for such processes via co-integration models,
such as vector-error correction (VECM) models. We refer the reader to [207] for the theoretical
background.
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4.5 Comparing Transfer Entropy Values

A question which naturally arises is whether measurements of transfer entropy in
two different systems are directly comparable or not. In particular—given that TE
measurements contain bias—is any one TE measurement statistically different from
zero or not? Also, different systems may have very different types of dynamics—
should we normalise the TE measurements somehow before comparing them? We
consider these types of questions in the following.

4.5.1 Statistical Significance

In theory, the TE between two variables Y and X with no directed relationship (con-
ditional on the past of X) is equal to 0. In practice, where the TE is empirically
measured from a finite number of samples N, a bias of a non-zero measurement may
result even where there is no such (directed) relationship. Even for bias-corrected
estimators, statistical fluctuations give rise to a variance in our measurement here.
So a key question is whether a given empirical measurement of TE is statistically
different from 0, and implies a directed relationship.

To address this, standard sub-sampling techniques such as permutation testing
and bootstrapping may be employed for significance testing and estimation of con-
fidence intervals for the transfer entropy [56, 335, 337, 180, 187, 23, 350, 183].
This is done by forming a null hypothesis H0 that there is no such relationship, and
making a test of evidence (our original measurement) in support of that hypothesis.
To perform such a test, we need to know what the distribution for our measurement
would look like if H0 was true, and then evaluate a p-value for sampling our actual
measurement from this distribution. If the test fails, we may accept the alternate
hypothesis that there is a (directed) relationship.

For a TE measurement T̂
(k,�)
Y→X , we consider the distribution of surrogate measure-

ments T̂
(k,�)
Y s→X under the assumption of H0. Here, Y s represents surrogate variables

for Y generated under H0, which have the same statistical properties as Y , but any
potential (conditional) directed relationship with X is destroyed. Specifically, this
means that p(xt | xxx(k)

t−1,yyy
(�)
t−1) in Eqn. 4.11 is empirically distributed as p(xt | xxx(k)

t−1)

(with p(yyy(�)
t−1) retained).

In some situations, we can compute the surrogate distribution T̂
(k,�)
Y s→X analytically.

As described in Sect. 4.4, for Gaussian estimation the null T̂
(k,�)
Y s→X (in nats) is asymp-

totically χ2/2N distributed with �dX dY degrees of freedom (for dimensionalities dX
and dY of potentially multivariate X and Y ) [105, 23]. Similarly, for discrete X and
Y with cardinality MX and MY , T̂

(k,�)
Y s→X (in bits) is asymptotically χ2/(2N log2) dis-

tributed with (MX −1)(M�
Y −1)Mk

X degrees of freedom [23] (building on [47, 58]).
We must emphasise that such analytic distributions are asymptotically correct as

the number of samples N → ∞, and the approach is slower for increasing dimen-
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sionality of the variables or for discrete variables with skewed distributions (e.g. see
[183]). For use in statistical significance testing, the role of a given finite N in the
form of the distribution is a crucial factor, so if using an analytic distribution for
T̂

(k,�)
Y s→X , then one needs to be careful that it is not too divergent from the true under-

lying distribution for the given N. Further, analytic surrogate distributions for other
estimators remain an open topic of research (see Open Research Question 26).

As such, the distribution of T̂
(k,�)
Y s→X in these cases is empirically computed by

sub-sampling techniques such as permutation testing or bootstrapping [56, 335, 337,
180, 187, 350], i.e. manually creating a large number of surrogate time-series pairs
{Y s,X} (which meet the statistical form described above), and computing a popu-
lation of T̂

(k,�)
Y s→X values. Directly shuffling the time series Y to create the set of Y s

is not valid, since it destroys the yyy(�)
t−1 samples (unless � = 1). It is valid however

to: shuffle (or redraw) the yyy(�)
t−1 amongst the set of {xt ,xxx

(k)
t−1,yyy

(�)
t−1} tuples; rotate the

Y time series (where we have stationarity); or swap sample source time series Yi
between different trials i in an ensemble approach [337, 350, 180, 363].20

Finally, with the distribution of T̂
(k,�)
Y s→X determined, one can compute a p-value

for sampling the measured T̂
(k,�)
Y→X under H0 and compare it with some threshold α .

We will discuss in Sect. 7.2 the important application of such tests of statistical
significance in effective network inference from multivariate time-series data.

4.5.2 Normalising Transfer Entropy

One often wishes to compare TE values between different pairs of variables—e.g.
between which pair of brain regions is most information transferred in a given
functional magnetic resonance imaging (fMRI) brain image recording? Yet differ-
ent systems—or even different pairs of variables in the same system—experience
different types of dynamics, and perhaps one should correct somehow for these dif-
ferences before making comparisons. Here we consider a number of suggestions on
how to make such corrections, or normalise, TE values.

One key method here is bias correction, since bias could be higher or lower under
different dynamics. While some estimators include such correction automatically
(e.g. the KSG estimator, see Sect. 4.3.1), this may be performed for other estimators
by computing the null distribution T̂

(k,�)
Y s→X as per Sect. 4.5.1 and then subtracting out

the mean E
{

T̂
(k,�)
Y s→X

}
of this distribution. Marschinski and Kantz [216] introduce

this as the effective transfer entropy.
Another step is to consider TE as a fraction of the maximum value that it could

potentially take under the given dynamics. At first glance, one may consider this
maximum to be the entropy in the next value of the target; however it is actually

20 Extension to conditional TE is straightforward by considering the conditioned variable jointly
with the past target state xxx(k)

t−1.
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capped by the entropy rate of the target, H′
X (t) (Sect. 4.2.2), as one may ascertain

from Eqn. 4.11. As such, Gourévitch and Eggermont [111] proposed the normalised
transfer entropy as:

nT
(k,�)
Y→X =

T̂
(k,�)
Y→X −E

{
T̂

(k,�)
Y s→X

}
H′

X (t)
, (4.46)

which first removes the bias (as per the effective TE, above) and then normalises by
the entropy rate H′

X (t). Gourévitch and Eggermont explain that this represents the
fraction of information in the target X not explained by its own past that is explained
by Y in conjunction with that past. This normalisation has been used for example in
various studies in computational neuroscience [244, 323].

4.6 Information Transfer Density and Phase Transitions

To gauge the density of information flows within a system XXX , one can simply use
the average pairwise transfer entropy:

Tpw(XXX) ≡ 1
n(n−1) ∑

i �= j
TXj→Xi(t), (4.47)

or the average bivariate-conditional transfer entropy:

Tbv(XXX) ≡ 1
n(n−1) ∑

i �= j
T Xj→Xi |XXX [i j]

(t). (4.48)

Note that, since transfer entropies are non-negative, Tbv(XXX) vanishes iff, for each
pair i �= j, Xi, conditional on the past of the entire remaining system excluding Xj
(i.e. XXX [i j]), is independent of Xj. Where we know the existence of structural links
j → i in the system, it may be appropriate to average the TEs only over these links.
The Granger causality analogue of (4.48), termed causal density, was introduced in
[301].

Another candidate, which we term information transfer density or global transfer
entropy [24], is given by

Tgl(XXX) ≡ 1
n ∑

i
TXXX [i]→Xi(t)

=
1
n ∑

i
[H(Xi,t | Xi,t−1)−H(Xi,t | XXXt−1)] ,

(4.49)

which averages over the collective TE (Eqn. 4.20) into each variable i in the system.
Tgl(XXX) vanishes iff each Xi, conditional on its own past, is independent of the past
of the rest of the system, i.e. the past of XXX [i].
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Measures like Tbv(XXX) and Tgl(XXX) have been proposed in the neurosciences
(Sect. 7.3) as reflecting a balance between integration and segregation of com-
plex networks of dynamic processes [326, 301, 29]. For a highly segregated system,
where elements behave near-independently, the measures will take on small values
since there will be little feedback between processes. However for highly integrated
systems the measures will also be expected to take on small values, since the sys-
tem as a whole will have little information to add to that already contained in the
past of a sub-process. Thus these measures will be highest for systems exhibiting a
balance between integration and segregation, which has, in particular, been mooted
as a hallmark of consciousness in the neuroscience literature [326, 302].

A further application of the measures is in the detection of phase transitions
in large, complex ensembles of interacting elements. It has been established for a
wide variety of model and real-world systems featuring order-disorder phase tran-
sitions (including spin systems, particle swarm systems, random Boolean networks
(Sect. 5.3), neural systems (Sect. 7.3), financial markets (Chap. 6), and ecosystems)
that mutual information between system elements tends to peak precisely at the
phase transition. However, there is recent evidence [24] (see Sect. 5.2) that, at least
for some systems, (global) information flow peaks on the disordered side of a tran-
sition, raising the possibility of predicting an imminent disorder → order transition
in a system with slowly changing control parameters. This is of particular impor-
tance since, for many real-world systems (e.g. neural and financial market systems),
order is associated with pathological dynamics (e.g. epileptic seizures and market
crashes) whereas a healthy system features disordered dynamics.

� 4.7 Continuous-Time Processes

So far we have considered only processes where the time variable t is discrete. Here
we ask how information transfer might be defined for processes with a continuous
time variable. We remark that surprisingly little research appears to have been done
in this area (but see e.g. [294]), with the notable exception of point processes, where
Granger causality-like parametric measures have been proposed (see Sect. 7.3.2).

We consider jointly stochastic processes X(t),Y (t) with a continuous (one-
dimensional, real) time parameter t. One might then be tempted to define TY→X (t)
as limdt→0 I(X(t) : Y (t −dt) | X(t −dt)). However there are problems with this:
firstly, work in progress by the authors indicates that, for a class of multivari-
ate Ornstein–Uhlenbeck (OU) processes [330, 80], which may be thought of as
continuous-time analogues of VAR processes, in fact
I(X(t) : Y (t −dt) | X(t −dt)) → 0 as dt → 0, although

lim
dt→0

1
dt

I(X(t) : Y (t −dt) | X(t −dt)) (4.50)

generally approaches a non-zero finite value. This is perhaps not so surprising, and
suggests that transfer entropy is best viewed as an information transfer rate—that
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is, it measures the amount of information transferred per unit time. But a more seri-
ous problem with (4.50) is that in the limit dt → 0 historical dependencies become
instantaneous, whereas the joint processes may well feature feedback at finite time
lags. This will be the case, for instance, for the vector OU process with distributed
lags [27]

dU(t) =
[∫ ∞

s=0
A(t − s) ·U(s)ds

]
dt +dW (t), (4.51)

where W (t) is a Wiener process [80] (roughly, an integrated white noise process or
random walk in continuous time) and the autoregression kernel A(u) has finite mass
in some interval away from zero.

We would, of course, like feedback at finite temporal lags to be taken into ac-
count. Now for a continuous-time stochastic process U(t), the analogue of the his-
tory (4.10) of a discrete-time process Ut , UUU (k)

t−1 ≡ (Ut−1, . . . ,Ut−k), is history-length
τ past UUU (τ)(t) ≡ {U(t − s) : 0 < s ≤ τ}. The problem here is that (even for finite
τ) UUU (τ)(t) is an uncountably infinite set of random variables, and as such cannot
be used naı̈vely in a putative expression like I

(
X(t) : YYY (υ)(t)

∣∣∣ XXX (τ)(t)
)

for trans-
fer entropy; moreover, such an expression would not in any case be operational for
estimation from empirical data. A better approach is suggested by the practicality
that, given a continuous-time process, empirically we will at best have computa-
tional access only to a finite sample of values; that is, a discretisation in time (or
down-sampling) of the process. Thus for a continuous-time process U(t), a small
time increment dt and a finite history time lag τ we define [cf. (4.10)] the (finite)
discretised history

UUU (τ)(t;dt) ≡U(t −dt),U(t −2dt), . . . ,U(t − [τ/dt]dt), (4.52)

where [x] denotes rounding towards the nearest integer. We propose that the
continuous-time transfer entropy with history (τ,υ) be defined as

Definition 4.10.

T
(τ,υ)
Y→X (t) ≡ lim

dt→0

1
dt

I
(

X(t) : YYY (υ)(t;dt)
∣∣∣ XXX (τ)(t;dt)

)
, (4.53)

assuming the limit exists. Recent results [370, 27] indicate that this definition yields
meaningful results, at least for processes of the form (4.51). However, further re-
search is required to establish the class of processes for which Definition 4.10 is
appropriate, or whether other types of continuous-time processes may require dif-
ferent treatment. We also remark that, empirically, care must be taken to choose a
down-sampling time increment dt of size appropriate to the feedback time scales of
the process. Recent results [27] indicate that (i) for optimal detection of informa-
tion transfer at a given time lag, there is a “sweet spot” for dt slightly greater than
the largest/typical causal lag time, and (ii) the ability to detect information trans-
fer drops off exponentially for dt larger than the lag. As for discrete-time transfer
entropy, parametric methods may often be preferable.
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An important class of continuous-time stochastic processes are point processes,
where discrete events occur at randomly distributed time intervals [71]. Point pro-
cesses are of particular significance as models for neural spike trains in neuro-
science; they require a rather specialised approach to definition and estimation of
transfer entropy, and are discussed in detail in Sect. 7.3.2.



Chapter 5

Information Transfer in Canonical Systems

Having introduced the transfer entropy in Chap. 4, we now turn our attention for
the remainder of the book to reviewing what this measure can tell us about various
complex systems, and guiding the reader through these relevant applications of the
measure.

In this chapter, we review applications of the transfer entropy to canonical
systems—simple models of complex systems and networks which are widely used
to study the nature of self-organisation and emergent behaviour. In particular, we
describe the novel insights that TE produces when applied to:

• Cellular automata (Sect. 5.1)—that the well-known glider structures are the pri-
mary information transfer carriers;

• Spin systems (Sect. 5.2)—where maximisation of a multivariate TE near to a
second-order phase transition may enable prediction of such upcoming transi-
tions;

• Complex networks—including random Boolean networks (Sect. 5.3), where we
observe a balance of computational capabilities near to criticality; and small-
world networks (Sect. 5.4) which demonstrate that long links promote informa-
tion transfer;

• Flocking models (Sect. 5.5)—revealing waves of co-ordinated motion as infor-
mation cascades;

• Synchronisation processes (Sect. 5.6)—where TE activity is seen to be a key
driver of synchronisation.

We will review the application to each of these model systems by describing:

1. What the model is and how it functions;
2. Why the concept of information transfer is important for that system;
3. How transfer entropy was measured;
4. What transfer entropy revealed.

This structure serves to didactically guide the reader’s thinking about how to apply
the transfer entropy to their own systems.

�
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DOI 10.1007/978-3-319-43222-9_5

Springer International Publishing Switzerland 2016 97
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Crucially, the application of TE in each of these situations is more subtle than
simply trying to use it as the elusive measure of complexity: we will see the use of
the dynamics of information transfer in space and time, as well as its interaction with
related quantities such as information storage, to build a description of a system. A
crucial message from these applications is that:

Key Idea 28: Using transfer entropy, even in these simple systems, requires
some subtlety and thought about which information channels to measure and
how to approach such measurement.

These applications provide a foundation for the later chapters which examine the
utilisation of TE in finance and economics (Chap. 6) and other application domains
(Chap. 7) including neuroscience (Sect. 7.3).

5.1 Cellular Automata

We begin by reviewing the application of local transfer entropy to cellular automata
(as presented in [193, 195, 191, 196, 198, 182]), revealing emergent “glider” struc-
tures as dominant information transfer entities.

What are cellular automata? As discussed earlier in Sect. 1.2.1, the canonical
or original form of cellular automata (CAs) are discrete dynamical systems with an
array of cells that synchronously update their value as a function of a fixed number
of spatial neighbours using a uniform rule [362]. (There are variants to this form,
e.g. with asynchronous connectivity.) The update rule is specified by listing the next
value for a given cell as a function of each possible configuration of its neighbour-
hood in a rule table—see Table 5.1—and summarising this specification in a single
number (known as a Wolfram number; see [362]). We focus here on elementary
CAs (ECAs), which are 1D arrays of binary-valued cells with one neighbour on
either side.

Although the behaviour of each individual cell in a CA is very simple, the (non-
linear) interactions between all cells can lead to very intricate global behaviour,
meaning CAs have become a classic example of self-organised complex dynamics.
Of particular importance, CAs have been used to model real-world spatial dynamical
processes, including fluid flow, earthquakes and biological pattern formation [225].

A particular reason for the interest in CAs within complex systems science is the
emergence of self-organised coherent structures in the dynamics of certain rules.
As described in Sect. 1.2.1, Wolfram [362] sought to classify the asymptotic be-
haviour of CA rules into four classes: I. homogeneous state; II. simple stable or
periodic structures; III. chaotic aperiodic behaviour; and IV. complicated localised
structures, some propagating. Class IV CAs (e.g. rules 110 and 54—see Fig. 5.1)
are those with the aforementioned self-organised coherent structures; these complex
rules are conjectured to lie at the “edge of chaos” (see e.g. Langton [174] and also
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[251, 70, 228]) between the ordered rules of class I and II and the chaotic rules of
class III (e.g. rule 22). Trying to automatically classify such rules has attracted much
attention (e.g. [174, 366]) and indeed important questions over whether this is at all
possible [119] – certainly (at this stage), there is no measure which can differenti-
ate between ordered–complex–chaotic CA rules. Regardless, the idea of the classes
does provide an interesting analogy (for discrete-state and time) to our knowledge
of dynamical systems, and for our purposes, we are interested in the self-organised
coherent structures as representative of dynamics of complex systems.

These emergent structures are known as particles, gliders, blinkers and domains
(see e.g. Fig. 5.1). A domain is a set of background configurations in a CA, any
of which will update to another configuration in the set in the absence of any dis-
turbance. Particles are dynamic elements of coherent spatiotemporal structure, as
disturbances or in contrast to the background domain. Gliders are regular particles,
and blinkers are stationary gliders.1 Several techniques exist to filter particles from
background domains (e.g. [116, 117, 129, 130, 366, 136, 137, 303, 195, 196, 198]).

Why is information transfer important in CAs? These emergent structures
have been quite important to studies of distributed computation in CAs, e.g. regard-
ing universal computation (see [225]), and dynamics of intrinsic or other specific
computation ([174, 129, 229]). Such studies typically discuss the computation in
terms of three primitive functions of computation and their apparent analogues in
CA dynamics [225, 174]:

• Blinkers as the basis of information storage, since they periodically repeat at a
fixed location

• Particles as the basis of information transfer, since they communicate informa-
tion about the dynamics of one spatial part of the CA to another part

• Collisions between these structures as information modification, since collision
events combine and modify the local dynamical structures

Table 5.1 Rule table for ECA rule 110. The Wolfram rule number for this rule table is composed
by taking the next cell value for each configuration, concatenating them into a binary code starting
from the bottom of the rule table as the most significant bit (e.g. b01101110 = 110 here), and then
forming the decimal rule number from that binary encoding.

Neighbourhood configuration for cell i at time n Next cell value xi,n+1 at time n+1cell xi−1,n value (left) cell xi,n value cell xi+1,n value (right)
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

1 See formal definitions of these terms in [129].
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Fig. 5.1 Local transfer entropy in ECA rule 54 for the raw values in (a) (black for “1”, white
for “0”). 35 time steps are displayed for 35 cells, and time increases down the page for all CA
plots. Local pairwise transfer entropy highlights gliders moving in the corresponding direction:
(b) TE one cell to the right, and (c) TE one cell to the left per time step. Units are in bits—
see scale at right-hand side. Reprinted with kind permission from Springer Science+Business
Media ( c©holder), Figure No. 2 from [184]: J. T. Lizier, “Measuring the dynamics of information
processing on a local scale in time and space”, in M. Wibral, R. Vicente, and J. T. Lizier, editors,
“Directed Information Measures in Neuroscience”, Understanding Complex Systems, pages 161–
193. Springer, Berlin/Heidelberg, 2014

These analogies remained conjecture only, based on qualitative observation of
CA dynamics. There was a strong need for a quantitative metric, which TE turned
out to be.

How was transfer entropy measured in CAs? Observations for the relevant
PDFs were taken over a short transient period for a large number of cells, and local
transfer entropy t

(k=16,�=1)
Y→X (t) (see Sect. 4.2.5) was computed for each time step t

for each target cell X and for the two causal sources Y on either side of X (referred
to as channels j = 1 and −1 for transfer across one cell to the right or left). TE was
computed by plugging in the discrete PDFs estimated from the data here.

The use of observations from only a short transient period aims to avoid non-
stationarities in the data, and in particular to avoid sampling when the CA state has
reached an attractor. This is because, once an attractor has been reached, each cell
in the CA executes a periodic pattern which can only contain information storage
(Sect. 4.2.2), leaving no scope for information transfer. From another perspective,
we can say that the computation (of the attractor) by the CA would be completed at
this point, leaving nothing for the TE to measure.

Sample results of this application are displayed for rules 54 and 18 in Fig. 5.1
and Fig. 5.2. The figures displayed here were produced using the open-source Java
Information Dynamics Toolkit (JIDT) [183], which can be used in Matlab or Octave
and Python as well as Java. All results can be reproduced using the Matlab or Octave
script TeBook2013.m in the demos/octave/CellularAutomata example
distributed with this toolkit.

What did transfer entropy reveal about CAs? The most important result from
this application is that local transfer entropy is typically strongly positive at mov-
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(a) Raw CA values (b) t
(k=16,�=1)
Y→X (t) left

( j = −1 channel)
(c) t

(k=16,�=1)
Y→X |Z (t) left

( j = −1 channel)

Fig. 5.2 Local transfer entropy in ECA rule 18 for the raw values in (a) (black for “1”, white for
“0”). 50 time steps are displayed for 50 cells. (b) Local pairwise transfer entropy one cell to the
left per time step; (c) Local conditional transfer entropy one cell to the left per time step. Units are
in bits—see scales at right-hand side of figures. This figure first appeared in [184] Reprinted with
kind permission from Springer Science+Business Media ( c©holder), Figure No. 3 from [184]: J. T.
Lizier, “Measuring the dynamics of information processing on a local scale in time and space”, in
M. Wibral, R. Vicente, and J. T. Lizier, editors, “Directed Information Measures in Neuroscience”,
Understanding Complex Systems, pages 161–193. Springer, Berlin/Heidelberg, 2014

ing particles in comparison with blinkers and background domains [195]. This is
when the local information transfer is measured at a particle in the same direc-
tion or channel j as the macroscopic motion of that particle. For example, see the
highlighting of left (γ−) and right (γ+) moving gliders for rule 54 in Fig. 5.1b and
Fig. 5.1c by transfer entropy to the left and right, respectively. Similarly, see the
left moving sections of domain walls for rule 18 in Fig. 5.2b and Fig. 5.2c high-
lighted by transfer entropy to the left (TE to right omitted). In these examples, the
source cell yt which is in the particle at the previous time step t (be that the left or
right neighbour, as relevant for that particular particle) is highly predictive about the
next value of the target xt+1 (in the context of its past state x

(k)
t , which is part of the

background domain and cannot predict the particle being encountered). As such, we
have p(xt+1 | x

(k)
t ,yt) > p(xt+1 | x

(k)
t ), giving large positive values of t

(k,�=1)
Y→X (t + 1)

via Eqn. 4.26. In contrast, in the domain the past state x
(k)
t is generally highly pre-

dictive of the next state—this executes strong information storage operations (see
[198] and Sect. 4.2.2), but leaves little possibility for the source to add additional
information transfer.

These results for local transfer entropy are particularly important because:

Key Result 1: Local transfer entropy provides the first quantitative evidence
that particles are the dominant information transfer agents in cellular au-
tomata. This result holds for related moving coherent spatiotemporal struc-
tures in other systems—see Sect. 5.5.
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An adequate embedded history length k is essential to properly capture the past
state of the cell, and the results could not be observed with a value say of k = 1
(as discussed in further detail in [195, 337] and Sect. 4.2). Adequately capturing
the past state of the cell can also be viewed as properly accounting for the role of
information storage, or memory in the dynamics. Blinkers and regular background
domains are dominant information storage entities, as identified via local active in-
formation storage [198]. We see the complementary nature of information storage
and transfer here (as outlined in Sect. 4.2.2).

It is important to note that particles are not the only points with positive local
transfer entropy (see discussion in [195]), though they are dominant.

Local information transfer is often found to be negative at moving particles, when
measured in the orthogonal direction to macroscopic particle motion in space–time
[195]. For example, see the measurement for TE to the left for the right-moving
gliders in Fig. 5.1c. This is because the source Y here, being on the opposite side
of the target to the incoming particle and therefore still part of the domain observed
in the target’s past, would suggest that this domain pattern would continue, which
is mis-informative. (Recall that local MI and conditional MI values can be nega-
tive, where observing a source variable reduces an observer’s expectation of the
given actual outcome of the target variable—see Sect. 4.2.5.) That is to say, we have
here p(xt+1 | x

(k)
t ,yt) < p(xt+1 | x

(k)
t ), giving negative values of t

(k=16,�=1)
Y→X (t + 1)

via Eqn. 4.26. These negative or mis-informative values are quite useful, since they
imply that there is an extra feature in the dynamics that is unaccounted for in the
past of the source and target alone.

We get complementary results if we condition out all the other interactions in
determining the transfer entropy between two entities [195]. We know that con-
ditioning can remove redundant information (see e.g. the φpar CA rule analysed
in [182]), but it can also include synergies (Sect. 3.2.3.1). For example, the back-
ground domain of rule 18 (see Fig. 5.2a) executes an exclusive OR operation (XOR)
between left and right neighbours to determine the next state for a given cell. As we
saw in Sect. 3.2.3.1, XOR is a highly synergistic operation. As such, we see that
the pairwise (or “apparent”) TE from one source only in Fig. 5.2b reports no infor-
mation transfer in the background domain here; on the other hand the conditional2

TE, which examines both sources, reveals strong higher-order transfer in Fig. 5.2c
in capturing the synergies underpinning the dynamics here. We pick up on the com-
plementary nature of these different TEs again in Sect. 5.3.

The differences between the concepts of information transfer (as captured by the
transfer entropy) and causal effect were explored using local dynamics in CAs in
[191]. The results may be qualitatively summarised as follows:3. A neighbour cell
has the same direct causal effect on a target every time the same neighbourhood
configuration (represented by a row in the rule table, see Table 5.1) occurs. Now
since the same neighbourhood configurations which occur in the gliders also occur

2 In fact, given that there is only one other causal source here, this conditional TE is a complete
TE (see Sect. 4.2.3).
3 Formally, this paper measured an intervention-based measure of causal information flow (from
[11]) at every point on the CA.
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in the background domains, then there is no difference in the level of direct causality
that occurs in the gliders or the background domains. This is in contrast to transfer
entropy, which as above was only comparatively high in gliders. This is because in
dealing with state updates of the target, and in particular in separating information
storage from transfer, the transfer entropy has a very different perspective to causal
effect. A causal effect can be seen to serve either information storage (background
domain) or transfer (glider), depending on the context of the past state of the target
(as per Sect. 4.2.2). Again:

Key Result 2: Neither a perspective of information transfer in computation
nor causality in mechanics is more correct than the other—they both provide
useful insights and are complementary.

We emphasise also that only local measures reveal the richly structured spa-
tiotemporal profiles here; this is not possible with the average measures (which only
return a single number). Furthermore, the average values do not give so much as a
hint towards the complexities of these local dynamics. The chaotic ECA rule 22 has
no emergent self-organised particle structures (i.e. no coherent propagating struc-
tures), and yet has much larger average transfer entropy values than the complex
rule 54 (0.19 versus 0.08 bits for each, respectively, in both left and right directions)
[197]. That is:

Key Result 3: High average TE does not imply the presence of coherent par-
ticle structures; only the local TE can reveal this.

Similarly, while we do not yet have a single measure to differentiate between
ordered–complex–chaotic CA rules (see Sect. 1.2.1), the local dynamics of emer-
gent structures do seem more informative about the complexity of a given rule rather
than any single measure (further explored in [197]).

Open Research Question 7: Can local (or another variant of) transfer en-
tropy be used to formally separate complex from ordered or chaotic dynamics?

The above insights are in some sense similar to the results in the next two sec-
tions that TE does not necessarily peak directly at the critical point during a phase
transition.�

Finally, the reader may wonder whether there is some conservation of the in-
formation measured above in these systems. This is not the case, because the cellular
automaton is not thermodynamically closed. Were we to examine both the CA and
the underlying implementation of it (e.g. bit registers in a CPU), then this would
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be the case. Investigations of relationships between transfer entropy and thermo-
dynamic variables, as well as conservation properties, are currently underway; e.g.
[275, 273], as discussed in Sect. 8.3.

5.2 Spin Models

We now want to consider another system, which looks very much like a cellular
automaton at first glance. Spin models date back nearly a hundred years, and there
is a huge literature surrounding them. But the new, exciting results obtained for
transfer entropy are for one of the very simplest, the two-dimensional Ising model.
There are many different spin models, but at the time of writing, transfer entropy
has been computed for just one, the 2D Ising model, thus this will be the primary
focus of our attention.

What are spin models? Just as a basic cellular automaton is a set of cells on
a lattice, with a number of discrete states, mostly just binary, 0 and 1, as found in
Sect. 1.2.1 and Sect. 5.1, so too is the Potts model. This is the eponymous model
created by Renfrey Potts in the 1950s. If we make the states binary, effectively
considering the spins as pointing up or down, then we have the Ising model [141],
created by Ernst Ising.

The difference from 2D cellular automata arises in the way the cells are updated.
In the CA this is based on a rule taking into account the states of the neighbours.
The Ising model is more akin to a physical system. Spins interact with one another:
their energy is lower when they are pointing in the same direction, as compared with
when they are pointing in opposite directions. Thus at very low temperature, all the
spins point in the same direction, but at very high temperatures, the directions of all
the spins in the lattice are completely random.

Ising introduced his model as a theory of magnetic materials: an external mag-
netic field causes the spins to line up with the field, but in ferromagnetic, naturally
magnetic, materials, when a sufficient number of spins line up the material becomes
magnetic. But what might be a bit surprising is that the magnetisation does not
gradually appear as the material is cooled down. There is a specific temperature, the
Curie temperature, at which the magnetisation appears.

The Ising model shows the same sharp onset of magnetisation, and was solved
exactly by Lars Onsager, for which he received the Nobel Prize in chemistry. The
Curie temperature in fact marks a second-order phase transition, as discussed in
Sect. 3.3.

Why is information transfer important in spin models? The Ising model sub-
sequently became a canonical model for second-order phase transitions, and numer-
ous studies have looked at the information-theoretic quantities. The mutual infor-
mation was found to peak at the phase transition by Matsuda [218], and other more
refined estimates have been made as recently as 2013 [176]. Until 2013, however,
what happened to the transfer entropy was unknown. For the 2D Ising model, no
known physical quantity shows a peak away from the phase transition. But finding
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such a quantity could be enormously important: it would make impending second-
order phase transitions predictable.

How was transfer entropy measured in spin models? There are different ways
of updating spin systems, not something we have space to go into in great detail
here. Barnett et al. [24] used Glauber updating [108]. Basically a spin is chosen at
random as a candidate to be flipped at each time step. The flip goes ahead according
to a probability, Pf lip, dependent upon the energy, ΔE, required for the spin flip to
occur:

Pf lip =
1

1+ eβΔE , (5.1)

where β is called the inverse temperature. At very large temperatures, as β tends to
zero, Pf lip tends to 0.5. If ΔE is positive, in other words if it requires energy input
to make the spin flip, then as the temperature falls to zero, the denominator tends to
infinity and the probability of the spinflip is zero.

Calculating mutual information and transfer entropy (as a function of tempera-
ture) follows the methods in Chap. 4, with the spin statistics computed from long
time series after an initial settling period (in Barnett et al. [24] this was 105 updates
after a settling period of 104 updates).

There is one last thing to consider. We can calculate the MI and TE between pairs
of spins and average across all pairs—this gives the average pairwise MI and TE.
Alternatively we can calculate the MI or TE between a spin and all the other spins
(i.e. collective TE, see Eqn. 4.20), and average over all spins. This gives the global
MI and TE (see Eqn. 4.49).

What did transfer entropy reveal about spin models? Neither the pairwise nor
global mutual information show anything unusual with respect to temperature: they
peak exactly at the phase transition (Curie point). Fig. 5.3 illustrates this and also
shows that the pairwise transfer entropy peaks at the Curie point too. This maximi-
sation of pairwise transfer entropy at the critical point is echoed by an empirical
investigation of transfer entropy in the Ising model implemented on a human brain
network [214].

But the global TE (i.e. the average collective TE) is completely different. It peaks
on the disordered side of the transition. This result is very new (2013), and a full
intuitive understanding has not yet been achieved.4 But the implications are very far
reaching. Second-order phase transitions abound in the natural and socio-economic
world. Thus this result might enable us to predict upcoming transitions.

Before leaving this exciting possibility, we might mention a couple of caveats.
Firstly, in practice we may not have enough data to get very accurate estimates of
the global TE, which is far more data hungry than the other quantities. Simulation is
limited only by computational grunt, but real data, from finance, ecology, wherever,
may just not be sufficiently plentiful for accurate prediction.

4 We note the corresponding results in [77] of TE being maximised in the disordered phase, when
TE is estimated with an extension of the Rényi rather than Shannon entropy.
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The second caveat is more subtle. The information flow before the transition
might be predictive, but it might intrinsically mean that the system under observation
is in some way committed, and cannot be diverted from the forthcoming tipping
point. Think of heading for a collision in a large truck: it may be obvious that the
collision is going to occur, but there is neither enough braking distance nor room
to manoeuvre to actually avoid it. This is speculation, of course, and much further
work needs to be done.

5.3 Random Boolean Networks

Random Boolean networks were introduced in Sect. 1.2.5 and here we examine the
transfer entropy characteristics of the dynamics [194], showing that transfer peaks
near an order–chaos phase transition as the network structure is altered.

What are Random Boolean networks? Random Boolean networks (RBNs) are
a class of generic discrete dynamical network models. They are particularly im-
portant in Artificial Life, since they were proposed as models of gene regulatory
networks by Kauffman [154] (and see [102]).

An RBN consists of NG nodes in a directed network structure (the following con-
cepts are shown in Fig. 5.4). The nodes take Boolean activity values, and update
these in time as a function of the activity values of the nodes from which they have
incoming links. The network structure is determined at random, subject to whether
the in-degree5 for each node is constant or stochastically determined given an aver-
age in-degree K̄. Given the structure, the deterministic Boolean function or lookup
table by which each node computes its next state from its parent nodes is also de-
cided at random for each node individually, subject to a probability p of producing
“1” outputs (p close to 1 or 0 gives low activity, close to 0.5 gives high activity).
The nodes here are heterogeneous agents: there is no spatial pattern to the network
structure (indeed there is no inherent concept of locality), nor do the nodes have the
same update functions. In classical RBNs (CRBNs) considered here, the nodes all
update their states synchronously as for CAs.6

RBNs are known to exhibit three distinct phases of dynamics, depending on their
parameters: ordered, chaotic and critical. At relatively low connectivity (i.e. low
degree K̄) or activity (i.e. p close to 0 or 1), the network is in an ordered phase,
characterised by high stability of states and strong convergence of similar macro
states in state space. Alternatively, at relatively high connectivity and activity, the
network is in a chaotic phase, characterised by low stability of states and divergence
of similar macro states. In the critical phase (the edge of chaos [174]), there is per-

5 The degree of a node in a network refers to the number of edges it has. Specifically, for a directed
network structure, in-degree refers to the number of incoming edges to a node, whilst out-degree
refers to the number of outgoing edges from a node.
6 Asynchronous updating schemes are more biologically realistic [135], though all exhibit similar
order–chaos phase transitions [104, 103].



Fig. 5.3 Mutual information and transfer entropy for the Ising model. The red vertical line denotes
the phase transition (Curie temperature). The green line shows the position of the peak for the
global transfer entropy (after [24])
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Fig. 5.4 A portion of an example RBN, showing the randomly determined update rule for node X
as a function of its input nodes Y1 and Y2, and the synchronous time-series updates of these nodes
(after [190])

colation in nodes remaining static or updating their values, and uncertainty in the
convergence or divergence of similar macro states.

Why is information transfer in RBNs important? Much has been speculated
on the possibility that gene regulatory and other biological networks function in (or
evolve to) the critical regime (see [102]). It has been suggested that computation
occurs more naturally with the balance of order and chaos there, i.e. at the edge
of chaos [174], with maximisation of computational properties there [154]. There
are conflicting interpretations however on such computation. Langton [174] sug-
gests that an intermediate level of information propagation and storage gives rise
to complex computation in critical dynamics, with too much of either decaying the
computational capability. Others argue for maximisation of information transfer in
this regime, e.g. [280, 309].

Recently, Ribeiro et al. [283] measured mutual information in the states of ran-
dom node pairs as a function of connectivity in the network, and Rämö et al. [280]
measured the uncertainty (entropy) in the size of perturbation avalanches as a func-
tion of an order parameter. Both studies found maximisations near the critical point,
and claimed that their results imply maximisation of information propagation in this
regime. The results are certainly interesting, but do not directly measure the concept
of dynamic, directed information transfer.

How was transfer entropy measured in RBNs? Lizier et al. [194] sought to
improve on these attempts to measure information transfer, by using TE. The main
goal was to characterise the average information dynamics in an RBN as a function
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of the average in-degree K̄, through the order–chaos phase transition with respect
to that parameter. To facilitate empirical measurements, many RBNs were gener-
ated with NG = 250 nodes, balanced activity p = 0.5, for several values of K̄, with
their dynamics generated by the RBNLab software [101]. Observations for the rel-
evant PDFs for TY→X for each directed edge Y → X in each given network were
accumulated over short transient periods7 from many random initial conditions for
the network. Each TY→X was computed by plugging in the discrete PDFs estimated
from the data here. The average TE was taken across all directed edges in all net-
works for the given K̄ (i.e. as per Eqn. 4.47, but only where edges existed). In a
similar fashion, Lizier et al. also measured the complete (or pairwise-conditional)
transfer entropy (Eqn. 4.19), and the complementary measure of active information
storage (Eqn. 4.14), averaged across all edges and nodes, respectively.

What did transfer entropy reveal about RBNs? The measurements of infor-
mation dynamics in [194]—see Fig. 5.5—demonstrated that:

Key Result 4: The ordered phase in RBNs is dominated by information stor-
age (information already in nodes dominates their next states; the chaotic
phase is dominated by information transfer (information from incoming links,
in the context of the nodes’ past, dominates their next states); there appears
to be a balance between these operations near the critical phase.

This correlates very well with Langton’s conjectures regarding computational
properties in complex systems [174]. The results also correlated well with a similar
study of information storage and transfer through an order–chaos phase transition
in recurrent neural networks [41].

More specifically, Lizier et al. investigated the decomposition of the information
from incoming links. The pairwise TE (also referred to as apparent, single-source or
bivariate TE) rises to a maximum value close to the critical phase, then falls away
as the dynamics became more chaotic. The complete TE (Eqn. 4.19), on the other
hand continues to increase into the chaotic phase. This implies that as the activity
level increases, single sources are first observed to be having large predictive effects
on the targets, allowing propagation of coherent effects near the critical regime.
However these coherent single-source effects are swamped by the increasing level
of interaction in the network, as activity increases with K̄ in the chaotic regime.
Prediction of the state transitions of targets becomes more efficient in examining
multiple source nodes; in other words, information shifts more into higher-order
transfer entropy terms such as the complete TE.

Interestingly, these results help to resolve the conjecture around information
transfer through the phase transition, by using these two complementary informa-
tion transfer measurements. Together, they clarify that it is single-source coherent
transfer which peaks near the critical regime, while higher-order multivariate trans-

7 Where the network is still computing its attractor; see Sect. 5.1 and [194].
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Fig. 5.5 Average information dynamics versus average connectivity K̄ for RBNs of size NG = 250.
Plotted here are the average single node entropy H(X), entropy rate H′

X (t) (see Eqn. 4.15), active
information storage (Eqn. 4.14), and average pairwise transfer entropy and complete transfer en-
tropy on each directed edge. Note that entropy rate represents the sum of all orders of transfer
entropy terms here (see [194, 196], Sect. 4.2.2 and Sect. 4.2.3). Error bars (omitted) are on the
scale of the data points. Reprinted from [194]: J. T. Lizier, M. Prokopenko, and A. Y. Zomaya,
“The information dynamics of phase transitions in random Boolean networks”, in S. Bullock, J.
Noble, R. Watson, and M. A. Bedau, editors, “Artificial Life XI: Proceedings of the Eleventh Inter-
national Conference on the Simulation and Synthesis of Living Systems, (ALife XI)”, Winchester,
UK, pages 374–381, c© 2008 Massachusetts Institute of Technology, published by the MIT Press,
Cambridge, MA

fer continues to increase into the chaotic regime. Considering these results, along
with those for CAs in Sect. 5.1, we see that:

Key Result 5: Conditional and pairwise transfer entropies reveal different
aspects of the dynamics of a system—neither is more correct than the other;
they are both useful and complementary.

Comparing with Sect. 5.2, of course, the higher-order multivariate transfer terms
themselves peak and decay in the chaotic regime if we have stochastic dynamics
which cannibalise the predictability of sources. This is what we see with the Ising
model, but it does not occur here since the dynamics are deterministic. Further,
there are some indications that the peak for the pairwise TE would move towards
criticality (as per the Ising model results) as the system size NG →∞ (e.g. see [283]).
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5.4 Small-World Networks

What are small-world networks? The small-world network model was proposed
by Watts and Strogatz [347] to explore the “six degrees of separation” phenomenon
[222] in complex networks; that is, how apparently highly clustered networks such
as regular lattices can have small average path lengths similar to random graphs. The
model has become one of the most influential concepts in complex systems science
(e.g. see [152, 175, 204, 322, 369]), because of its ability to explain this phenomenon
in a simple fashion, as well as the prevalence of small-world-type networks in both
naturally occurring and man-made networks (e.g. in power grid networks and neural
networks).

The model specifies how to tune networks from ordered, lattice-like structures,
through small-world networks, and finally to fully random topologies. To start, con-
struct a regular lattice network, such as a ring lattice with NG nodes where each
node is connected to K̄ nearest neighbours. Then, rewire each edge in the network
with a probability γ (moving one end of the edge to another node selected at ran-
dom). This induces a phase transition in the network (seemingly of first order; see
[241, 6]) between being completely ordered at one extreme (γ = 0) and completely
random at the other (γ = 1). To quantify the effect of these random rewirings, Watts
and Strogatz [347] suggest measuring the average clustering coefficient C(γ) across
all nodes, and the average path length L(γ) between all node pairs. The clustering
coefficient Ci for a node i is defined as the proportion of pairs of neighbours j and
k of i that have an edge. For undirected, unweighted networks, we write i ∼ j to in-
dicate an edge between nodes i and j, and write the degree of i as di; the clustering
coefficient is then defined as:

C = E{Ci} , (5.2)

Ci =
1

di(di −1)/2 ∑
j, j∼i

∑
k,k∼i

{
1 j ∼ k
0 otherwise.

(5.3)

The path length Li j for a node pair i and j is the length of the shortest path of edges
connecting i and j, so we have

L = E
{

Li j
}

. (5.4)

In ordered, lattice-like networks, the high proportion of local links in these spatially
embedded networks means that C(0) is high, while L(0) is also large. In contrast,
the lack of spatial structure in random networks means that both C(1) and L(1) are
small. Intermediate values of γ provide very interesting results however. Watts and
Strogatz [347] demonstrated that there is a significant range of γ values for which the
networks exhibit high clustering C(γ) (comparable to fully ordered networks) and
small average path length L(γ) (comparable to fully random networks). Networks
in this intermediate range are labelled small-world networks. The convergence of
these properties occurs because even a small level of randomisation of the edges
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creates “short cuts” across the network, which drop L(γ) very quickly with respect
to γ . Since this occurs with a relatively small level of randomisation though, the
clustering C(γ) remains relatively high. This means that one can reach a given node
very quickly from any other node, even though the network “feels” very clustered.

Why is information transfer in small-world networks important? The struc-
ture and generation of small-world networks are well understood, yet questions re-
main over what the dynamic computational properties are that make them so useful
in nature. Indeed, this issue pertains to the wider field of network science: network
structure has attracted much attention, while time-series dynamics remain “much
less well understood” [226]. Understanding the dynamics on networks is of vital
importance: certainly structure gives rise to time-series dynamics on networks, but
dynamics represent the specific action of a network, and only they can answer why
a network is actually useful.

While much work regarding time-series dynamics has focussed on state-space
trajectories and damage spreading, Mitchell [226] suggests that “the main challenge
is understanding the dynamics of the propagation of information ... in networks,
and how these networks process such information.” This comment very nicely sum-
marises the speculation regarding computational properties of networks, underlin-
ing why quantitative studies of transfer entropy on complex networks will be im-
portant.

Indeed, much of this speculation has focussed on the computational properties
of small-world networks. Watts and Strogatz [347] themselves claimed that small-
world topologies impart both “enhanced signal-propagation speed” and “compu-
tational power”. Similarly, Latora and Marchiori [175] suggest that small-world
networks are prevalent in nature because they balance local efficiency and global
efficiency of information transport, suggested to be supported by local structure and
long links, respectively. Tassier and Menczer [322] infer that small-world networks
emerge in a model of evolutionary labour markets as a means to transfer informa-
tion, while Katare and West [152] claim that small-world structures have “maximum
capability to store, process, and transfer information”. Despite such interest, the in-
formation storage and transfer capabilities of these networks (in particular using
transfer entropy) had not been directly measured.

How was transfer entropy measured in small-world networks? Lizier et
al. [190] aimed to directly investigate whether small-world networks do indeed
maximise information transfer capability, using TE. The network structures under
investigation were imbued with time-series dynamics by assigning random Boolean
functions to their nodes, which amounts to combining RBNs with small-world net-
work structures. RBN dynamics were selected for their ability to generate a wide
range of dynamics, which was very suitable for an ensemble study of the dynamic
properties of small-world networks. The main goal was to characterise the average
information dynamics in these networks as a function of (the small-world parame-
ter) rewiring probability γ , average in-degree or connectivity K̄, and activity level r
in the Boolean dynamics.

The ensemble study was conducted in the same manner as described for general
RBNs in Sect. 5.3, with the addition of the extra parameter γ , with networks of size
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Fig. 5.6 Information measures versus γ , for networks with K̄ = 4 and r = 0.36 (after [190]). Infor-
mation measures are in bits and plotted against the left y-axis: entropy, H(X); active information
storage, A

(k=14)
X ; entropy rate, H′

X ; pairwise TE, T
(k=14)
Y→X ; complete TE, cT

(k=14)
Y→X . Note that the en-

tropy rate here represents the sum of all orders of transfer entropy terms HμX (see Sect. 4.2.2).
A measure of complexity in dynamics, σδ (a standard deviation of perturbation avalanche sizes;
see [190] for full definition), is plotted against the right y-axis, with its peak indicating the critical
regime of dynamics here—we have a subcritical regime to the left of this peak, and supercritical to
the right. Error bars indicate the standard deviation of the values across the 250 sampled networks.
(The standard error of the mean is too small to be visible)

NG = 264. A key point is that the undirected regular networks which are rewired
with probability γ were converted into directed networks, with each undirected link
becoming two directed links, subjected separately to rewiring. Rewiring of both the
source and target of links was investigated, giving mostly similar results, though
only source rewiring is considered here (maintaining the in-degree of each node).

What did transfer entropy reveal about small-world networks? The mea-
surements of information dynamics in regular–small-world–random networks in
[190]—see Fig. 5.6—demonstrated order–chaos phase transitions of a similar na-
ture to those for traditional RBNs, but with additional structure due to the rewiring
parameter γ (see Fig. 5.6):

Key Result 6: Networks with low levels of rewiring γ (more regular structure)
and small activity r exhibit more ordered dynamics which is dominated by
information storage, while networks with higher levels of rewiring γ (more
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(a) Three-node feedback loop (b) Three- node feedforward
loop

Fig. 5.7 Motifs implicated in calculation of information storage at node i include directed feedback
cycles and feedforward loop motifs (loops of length 3 shown for both types). This figure first
appeared in [185] and is c© American Physical Society, and is reprinted with permission

random structure) and higher activity r exhibit more chaotic dynamics which
is dominated by information transfer.

The results suggest first that information storage is strongly supported by the
clustered structure in regular or locally connected networks (with a significant corre-
lation between storage and clustering coefficient reported). This would be expected
with neighbours sharing common information here: in feedback loops for example
(see Fig. 5.7), one can easily imagine information cycling around the loop to re-
cur in the same node at multiple time steps. Similarly, the clustered structure here
serves to segregate nodes and therefore limits the availability of novel or surpris-
ing information to be transferred to them. Further evidence for the dominance of
active information storage dynamics in regular networks was provided by analytic
findings that feedback and feedforward loop motifs (see Fig. 5.7—these are particu-
larly prevalent in locally connected networks) directly support information storage
operations for coupled Gaussian dynamics [185]. The results also suggest that infor-
mation transfer is strongly supported by the introduction of long links as the network
is randomised (with a significant anti-correlation between transfer and average path
length). Again, one would expect long links to provide new information to target
nodes that they would not receive from spatially close sources.

Further, the results indicate that the structural crossover between regular and ran-
dom structure is mirrored by a crossover in dynamics from information storage to
transfer being dominant. While the precise location of the critical regime with re-
spect to γ varies with r and K̄, in general small-world networks exhibit a propensity
to balance information storage and transfer in their dynamics. These results (from
transfer entropy and other measures) could be seen to add evidence for findings that:
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Key Result 7: Small-world networks hold computational advantages over
regular or random network structures, in supporting both intrinsic informa-
tion storage and transfer operations.

In conjunction with structural constraints such as wiring costs, such computa-
tional advantages could be a driver in the emergence of small-world structures in
networks in nature, in particular in brain networks.

Finally, in a similar fashion to the transition in RBNs, the results in Fig. 5.6 indi-
cated that pairwise transfer entropy peaks on the chaotic side of the phase transition
in dynamics (driven either by network randomisation γ or activity r). As the dynam-
ics were driven further into the chaotic regime, the information composition again
moved towards higher-order transfer entropy terms (see Sect. 4.2.3), as can be seen
with the complete TE in Fig. 5.6.8

5.5 Swarming Models

What is swarming behaviour? Swarm behaviour refers to collective behaviour ex-
hibited in movement by a group of animals [181, 257], or indeed artificial systems
such as robots [43]. For specific types of animals, it is also known as flocking (birds),
schooling (fish—see Fig. 5.8) or herding (buffalo). Such behaviour is thought to
provide biological advantages in terms of protection from predators, mate choices,
foraging etc. [52, 107]. As described in Sect. 1.2.6, intricate large-scale patterns and
structures can emerge from swarm behaviour, including cascades of small perturba-
tions travelling across a swarm in a wave-like manner [266] (e.g. waves of turning
motion [278]), splitting and reforming of groups [258], group avoidance of obsta-
cles and vortex-like “milling” behaviour where individuals rotate around an empty
core [257].

Realistic simulation of swarm behaviour can be generated using three simple
rules for the behaviour of each individual in the swarm, originally captured in
Reynolds’ boids model [282]:

• Separation—move to avoid collisions with other local individuals
• Alignment—move towards the average heading of other local individuals
• Cohesion—move towards the average position of other local individuals

The parameters of these models (e.g. sensory ranges or radii of local interactions),
with some variations, can be tailored to simulate behaviour of many different species
[153, 224].

Why is information transfer in swarming important? Concepts of informa-
tion flow have often been used to qualitatively describe the dynamics of swarms.

8 Again, unlike the Ising model, there is no stochasticity to reduce the higher-order TE terms as we
move into the chaotic regime.
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Fig. 5.8 Schooling groups of predator and prey fish. Schooling in fish produces apparent informa-
tion cascades [67, 39], e.g. in handling predator avoidance by the school. This figure “Moofushi
Kandu fish.jpg” is copyright by Bruno de Giusti, used under Creative Commons CC-BY-SA-2.5-IT
[75]

Several authors argue for a relationship between critical swarming behaviour and
some type of optimisation of information transfer. Couzin [66] invokes information
transfer to interpret effective flocking behaviour occurring only at intermediate sen-
sory ranges between individuals, suggesting that too short a sensory range does not
allow enough information transfer to form cohesive groups, while too large a range
permits rampant spreading of irrelevant information which erodes group cohesion.
From another perspective, Vanni et al. [333] suggest that long-range correlations
induced by criticality in the swarm enable efficient information transmission across
the swarm.

More specifically, the aforementioned cascades of perturbations which cross
swarms in a wave-like manner [266, 278] have been conjectured to embody infor-
mation transfer, being labelled as information cascades [67, 39]. This seems quite
reasonable as one can easily interpret information about turning to avoid obstacles or
predators as being communicated in this fashion (see Fig. 5.8). Indeed, it has been
observed that these mechanisms seem to allow information to be transferred over
long ranges, and at faster speeds than incoming predators travel, perhaps conveying
an evolutionary advantage [127, 67]. With that said, it has also been observed that
such sensitivity to cascades comes at a price of fragility of co-ordinated behaviour
[39] and susceptibility to noise or false alarms [107, 97, 67]. The importance of
such coherent wave structures is underlined in that they are observed in many other
animal groups, e.g. giant honeybees [151] and Emperor penguins [371], and indeed
have analogies in other systems including perturbation waves in protein networks
[5], the dynamic opening and closing of stomatal apertures in plants [260] and in
gliders in cellular automata (as discussed in Sect. 5.1).

Information is a crucial currency for animals, with biological information pro-
cessing important from both a behavioural and evolutionary perspective [263, 72].
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This is the case at several levels, starting at the level of genetic networks as dis-
cussed later in Sect. 7.4, coming up to information processing in the brain as dis-
cussed in Sect. 7.3, and then information processing at the social level, for example,
by swarms. Katz et al. [153] draw attention to exploring how animals in swarms
integrate information from widely disparate sources and how this translates into
higher-order computational capabilities. Couzin [66] concludes that swarms “may
adapt to compute ‘the right thing’ in different contexts”, where the right thing may
be the optimal escape manoeuvre from a predator or the route around an obstacle,
and Couzin et al. describe information cascades as being part of information pro-
cessing in fish schools along with “collective memory” [67]. While swarms provide
a simple model of dynamic interactions, information processing in social systems is
not restricted only to swarms, being observed in human systems too of course, for
example the existence of memory in collective editing on Wikipedia [76].

How was transfer entropy measured in a swarming model? Wang et al. mea-
sured transfer entropy in a three-zone swarming model using time series of positions
and velocities of the agents in the swarm [344, 345]. Two important modifications
were made to the usual calculation of transfer entropy.

First, Wang et al. noted that, unlike the homogeneous coupled pairs of variables
in CAs or the heterogeneous but fixed coupled pairs in RBNs, “swarm computation
is amorphous, with neither homogeneous computational structure across agents, nor
with fixed computational relationships between heterogeneous causal pairs” [344].
That is, one should not simply compute TE on the whole time series for two inter-
acting agents in a swarm, because they are highly unlikely to be within each other’s
relevant radii of interaction for many of those time steps, impairing the meaning
of the measure. Instead, Wang et al. recommended taking advantage of the homo-
geneous functionality across agents in the swarming model, and using observations
from every (within radii) pairwise causal interaction in computing the relevant PDFs
for a TE calculation. This would then represent TE for a typical causally interacting
pair in the swarm.

Second, Wang et al. used relative position and heading variables (with respect
to those of the previous state of the information target agent) in the TE calcula-
tion instead of the absolute position and heading of the agents. The idea here is
that the causal interactions depend only on these relative rather than absolute vari-
ables, and using these allows more observations for and better representation of the
PDFs describing the interactions. The calculation performed was a conditional TE
(Eqn. 4.18), conditioning on the absolute speed of the information target, since this
has the potential to modulate the interaction.

TE was computed via kernel estimation, with kernel widths of 0.23 standard de-
viations for each variable. Local (conditional) TEs (see Sect. 4.2.5) were then com-
puted for every causal interaction between locally connected agents in the swarm,
with [344] analysing the temporal dynamics of these TE values averaged over all
connected pairs at each given time step, and [345] examining the full spatiotempo-
ral dynamics of local TE in the swarm.

What did transfer entropy reveal about swarming? The initial examination of
the averages across the swarm in [344] indicated that TE peaked in the swarm during
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Fig. 5.9 Local transfer entropy at each agent in a swarm at several time steps as three separate
swarms merge. The x–y coordinates of each agent in the swarm are indicated by the axes; the colour
of each agent represents its local TE (averaged over TE contributions from each source to that
agent)—red represents positive local TE, while blue is negative. These figures were first published
in [345], and are copyright to the authors of that paper; the figures are re-used under the Creative
Commons attribution licence. A video showing the local TE during this merge in more fine-grained
detail is available on YouTube at http://youtu.be/vwfhijoq4cs, with further videos available in the
playlist http://goo.gl/3QbQE8

transition stages of collective behaviour, e.g. with two swarm fragments merging.
The results verified the concept that “swarming dynamics can be interpreted as a
type of distributed computation”, i.e. with the agents transferring information via
their relative positions and headings in order to compute their next stable group
configuration.

Perhaps more importantly, the investigation of local transfer entropy in [345] re-
vealed interesting patterns of space–time information dynamics in the swarm. These
patterns are displayed for example in Fig. 5.9 (with links to more detailed videos in
the figure caption). Crucially:

Key Result 8: Wang et al. provided the first quantification of coherent infor-
mation cascades in the swarm as waves of large, coherent information trans-
fer.

See for example the (red) wave of strongly positive local TE on the right side
of Fig. 5.9b. This finding was particularly important as it provided the first direct
information-theoretic evidence for such information cascades, which had been con-
jectured previously as described in Sect. 5.5.

The information cascades included wavefronts of both positive transfer entropy—
indicating waves of strong influence, and negative transfer entropy (see blue-
coloured waves in Fig. 5.9c)—indicating misinformation, perhaps as ineffectual
influence, where the target agents respond in a different way to the source agents
than would usually be predicted. The latter may occur where multiple sources are
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(a) Unsynchronised (b) Emerging synchronisation (c) Synchronised

Fig. 5.10 Snapshots during a synchronisation process emerging from locally coupled oscillators.
Grey-scale indicates the phase of each oscillator. We see the system move from: (a) an unsynchro-
nised state, through (b) emerging synchronised pockets, to (c) a fully synchronised state. (Figures
generated using the NetLogo model “Sync model” [53])

influencing a target agent in different ways, and the behaviour of the target is not
predictable from a single source in isolation.

5.6 Synchronisation Processes

What are synchronisation phenomena? “Synchronisation phenomena” refers to
the ability of a group of weakly interacting oscillators to mutually entrain [262], ap-
proaching a configuration where their individual states either coincide or have a con-
stant phase difference. A simulated example is shown in Fig. 5.10. As described in
Sect. 1.2.3, synchronisation phenomena have been independently observed in many
different fields, including in swarms of flashing fireflies, clusters of pacemaker cells
in the human heart and in electrons in superconductors [317, 262]. Researchers also
study synchronisation in its own right, rather than in the subject-specific domains
mentioned above, and have made synchrony a particularly important concept within
complex systems science.

There are two aspects to consider regarding models of synchronisation phenom-
ena: the dynamics of the individual units, and the connection structure between
them. Arguably, the Kuramoto model [169, 170] has been the most influential model
of dynamics of individual units.9 The Kuramoto model considers a set of P con-
nected oscillators X with fixed individual natural frequencies ωX , and non-linear
couplings between individuals either speeding up or slowing down their oscillations
in a fashion to pull their phases closer together. The rate of change dθX (t)

dt of the

9 Analysis of linear dynamics, including eigenvalue analysis, has also yielded many important
insights into synchronisation (e.g. [8, 147]), and can be viewed as examining weakly coupled
near-linear dynamics around a synchronised attractor state in a non-linear system (e.g. a system of
Kuramoto oscillators).
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phase θX (t) of oscillator X is defined as a function of the adjacency matrix A (where
AXY = 1 for a connection Y → X and 0 otherwise), coupling strength κ and the
phase differences θY (t)−θX (t) from the oscillators Y to which it is coupled:

dθX (t)
dt

= ωX +κ
P

∑
Y=1

AXY sin(θY (t)−θX (t)). (5.5)

For most connection structures the Kuramoto model exhibits a phase transition
(which may be first or second order [30]) from unsynchronised to synchronised
behaviour as the coupling strength κ between the elements is increased. Yet while
the behaviour of some special structures (e.g. fully connected systems), or under
linearisations or mean-field assumptions, can be identified by tractable analytic so-
lutions [165, 31, 9], in general other topologies yield intricate behaviour, and it is
non-trivial to determine whether a given non-linear system will support synchroni-
sation without running a full simulation.

Empirically, the coherence of the system is generally measured using an order
parameter (see Sect. 3.3), defined here as the magnitude of the average of all oscil-
lators’ phase vectors—the parameter is 0 for a uniform distribution of phases, and
reaches 1 under complete synchronisation. A phase transition in this parameter may
be observed for most connection structures as the coupling strength between units
(as a control parameter) is increased.

Why is information transfer in synchronisation processes important? The
idea that oscillators are communicating information about their states, and using
such communication to settle on a shared information state, is quite intuitive. In-
deed, Ceguerra et al. [54] interpret the synchronisation process as a distributed
computation of whether or not synchronisation will occur and what the synchro-
nised state will be, and discuss the information transfer and storage operations un-
derpinning this process. This information processing perspective was later echoed
by Bollt [42]. Ceguerra et al. [54] argue that the examination of transfer entropy in
the synchronisation process has the potential to generate new insights in this fash-
ion, in particular in revealing time-series dynamics of the information processing
involved, and providing findings comparable to dynamics in other systems.

Yet what transfer entropy may reveal is not immediately clear. At first glance,
stronger coupling may imply stronger transfer, but this certainly is not always the
case in other systems (see e.g. [11] or Fig. 4.1). Furthermore, we also expect that
transfer should be zero once synchronisation is achieved (since the oscillators’ fu-
tures are then predictable from their past alone), and it is unclear how to resolve
these potentially conflicting intuitions.

Similar impetus is provided by the communication through coherence hypothe-
sis in neuroscience [94]. This hypothesis suggests that “only coherently oscillating
neuronal groups can interact effectively because their communication windows for
input and for output are open at the same times” [94]. In other words, the suggestion
is that synchronisation influences the interaction between neural groups. In investi-
gating this claim, Buehlmann and Deco [50] found that transfer entropy increased
with synchronisation in the gamma frequency band. This is a complicated result—
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we would not expect transfer to take place in the synchronised band alone—and
studies of fundamentally simpler synchronising systems are required to understand
the findings.

How was transfer entropy measured in a synchronisation process? Bollt [42]
measured TE during a synchronisation process, but only for a pair of coupled os-
cillators, noting the impetus to go on to analyse TE during synchronisation in a
complex network.

Ceguerra et al. [54] earlier made a more comprehensive study of transfer en-
tropy in the dynamics of the synchronisation process in complex networks using the
Kuramoto model. They constructed networks with structure derived from wireless
sensor networks, with NG = 100 nodes scattered randomly on a grid, and connec-
tivity between all neighbours within a fixed radius of each other. The nodes began
each simulation run from random phases, with subsequent Kuramoto updates. Net-
works were simulated with a range of coupling strengths across the critical coupling
strength.

Transfer entropy calculations focussed on the transient period in which those net-
works with above-critical coupling achieved synchronisation. This provides insight
into the information dynamics during the distributed computation by the network of
whether it will synchronise and what the synchronised phase will be. Calculations
were made for every connected pair in the network, and produced average TEs for
each pair, as well as local TE values (see Sect. 4.2.5) for every time step for each
pair. The calculations used the time series of relative phases and phase differentials
computed by the Kuramoto updates, rather than the absolute phases of each oscil-
lator. This choice was made for similar reasons to that of relative speeds etc. for
swarms (as discussed in Sect. 5.5):

1. The state update information is contained directly in the relative phases and
phase differentials rather than proxied in the absolute phases.

2. This allows accumulation of observations in the PDFs of interactions which are
dynamically equivalent despite occurring at different absolute phases.

TE was computed using box-kernel estimation [150, 298].
What did transfer entropy reveal about synchronisation? Ceguerra et al. re-

vealed several new insights into the dynamics of synchronisation with TE here [54].
While these insights have only been observed on these locally connected networks,
it is expected that they will generalise to other complex network structures.

First, Ceguerra et al. examined the dynamics of local transfer entropy (averaged
across all nodes in the network at each time step) as the synchronisation process
unfolded. The local TE was observed to take large values initially, but then drop
away to zero by the time the network synchronised (i.e. when the distributed com-
putation had finished because the system reached an attractor). This result was as
expected, since once coherence is achieved the nodes’ behaviour is predictable from
their own pasts, and they execute information storage rather than transfer dynamics.
More interestingly, however, was that:
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Key Result 9: The transfer entropy dropped to zero significantly earlier than
the order parameter indicated that synchronisation had been achieved.

This is an important result, indicating that the distributed computation of what
will be the synchronised state was completed much earlier than synchronisation is
observable using conventional application-specific measures.

Next, Ceguerra et al. observed that the average transfer entropy (over time and all
node pairs) increased with the coupling strength between the nodes, as the system
is moved from an incoherent to synchronised state (in the parameter space of the
coupling strength). This is intuitive to a large degree, but is not always the case
in other systems, e.g. see [11]. Even in this case, the intuition is unclear, because
increased coupling strength meant shorter transient time for transfer to occur; yet,
the result indicates larger transfer taking place in less time as the coupling strength
increases.

Finally, Ceguerra et al. examine the relationship between the transfer entropy to
or from each node, and the position of the node within the network structure. This
revealed an interesting hierarchy in the network, including a computational core,
with large incoming and outgoing transfer, and a communication shell, exhibiting
large outgoing but low incoming transfer. Also:

Key Result 10: Strong correlations were observed between node degree and
outgoing transfer entropy

This is perhaps because the larger diversity of inputs for high degree nodes pro-
vides more novel information to transfer to other nodes. Seemingly conflicting re-
sults were found using a related measure under different (Gibbs) dynamics [276],
possibly explained in that these dynamics seem to constrain the diversity in be-
haviour of high-degree nodes. Further work is required to fully explore the relation-
ship of TE to degree.

5.7 Summary

In this chapter, we have reviewed applications of the transfer entropy to several clas-
sic complex systems, including cellular automata, the Ising model, random Boolean
networks, small-world networks, swarming models and synchronisation processes.
These applications of TE are important because of the central position of these mod-
els in complex systems science and their relation to many other real-world systems,
as well as previous conjectures about the nature of information transfer in their
dynamics. In each case, TE has brought us new understanding of the role of in-
formation transfer in the intrinsic computation in these processes, for example the



5.7 Summary 123

fundamental result that gliders in CAs are indeed the dominant information trans-
fer entities in those systems. As flagged in Key Idea 28, we have seen that using
transfer entropy, even in these simple systems, requires some subtlety and thought
into which information channels to measure and how to approach such measure-
ment (e.g. whether any pre-processing is required, and which estimator to use). For
example, we measured TE on relative variables in Sect. 5.5 and Sect. 5.6, used the
dynamics of local transfer entropy to understand space–time dynamics in Sect. 5.1
and Sect. 5.5, and only gained full understanding of the computational behaviour of
a system when combining TE with related quantities such as information storage in
Sect. 5.1, Sect. 5.3 and Sect. 5.4.

These applications provide a solid theoretical grounding for the next chapters,
which explore the application of TE to real-world data (or at least more detailed
models), including in finance and economics in Chap. 6 and neuroscience and other
application domains in Chap. 7.



Chapter 6

Information Transfer in Financial Markets

In 1900 a young French mathematician named Louis Bachelier published his PhD
thesis entitled Théorie de la spéculation (The Theory of Speculation) [12, 65], and
in many respects this remarkable work was more than half a century before its time.
In it Bachelier described the statistical properties of the fluctuations in price move-
ments in financial instruments and their derivatives. Perhaps the most fascinating
aspect of Bachelier’s thesis is that in it he develops a general theory of the statistical
fluctuations that is used in a large variety of different applications [98] including
ecology, chemical reactions and physics. This would later be called Brownian mo-
tion, predating Einstein’s work [83] in this area by five years.

In this way the process of mathematising the fluctuations in financial instruments
was begun. Perhaps the most important result in this area is the Black–Scholes equa-
tion [40] used for pricing certain financial derivatives. Myron Scholes would be
awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel (Nobel Prize in Economics) in 1997 for his work in this area and would later
play a more direct role in the financial markets by co-founding the company Long-
Term Capital Management (LTCM). LTCM was a hedge fund founded in 1993 that
was extremely successful in its early years, but after the 1997 Asian financial cri-
sis and the 1998 Russian financial crisis, LTCM would lose around US $4.6 billion
[203].

This loss is striking for a number of reasons. First, LTCM had some of the best
mathematical technology available at the time in order to understand price move-
ments: two Nobel prize winners were on the board (R. Merton and M. Scholes),
both of whom had won the prize for their work on estimating prices in stochastic
markets. Second, they had some excellent practical market experience in a former
vice chairman of Salomon Brothers (J. Meriwether) and a vice chairman of the US
Federal Reserve (D. Mullins Jr.). Finally, they were very well capitalised with over
US $1 billion in initial funding in 1994 and by the time they collapsed had US $4.6
billion in equity.

So what went wrong? An intriguing perspective is provided by the sociology
of arbitrage [209]. As circumstances change it is possible for a (comparatively)
unrelated event to cause strong correlations between prices that were previously
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uncorrelated. For example the Russian financial crisis may have been responsible
for unwanted price correlations that were the onset of LTCM’s trouble [209]:

Crucially, correlations between the different components of LTCM’s portfolio leapt upwards
from their typical level of 0.1 or less to around 0.7. Suddenly, a whole range of positionsd—
hedged, and with little or nothing in common at the level of economic fundamentals—
started to incur losses virtually across the board. LTCM’s losses were stunning in their size
and rapidity: in August 1998 [the month of the Russian financial crisis], it lost 44 per cent
of its capital.

These correlations are critical because an uncorrelated portfolio of stocks has a
lower risk profile than a correlated portfolio [249]

So in very nearly 100 years of research, from 1900 to 1998, we have moved from
trying to understand the independent price fluctuations through Brownian motion
to understanding correlated price fluctuations driven by sociological factors. In this
chapter we will look at what is currently understood about the drivers of financial
and economic systems through the use of transfer entropy.

6.1 Introduction to Financial Markets

Financial markets such as the New York Stock Exchange (NYSE) or the NASDAQ
stock market are a cornerstone of modern financial economics. Stock exchanges in
particular enable companies to raise capital in order to grow through the funding
of new projects by providing a place where investors can buy a stake in a com-
pany through the purchasing of shares. As a reward for investing in a company that
performs well an investor can earn a profit through dividends, a percentage of the
companies profits that are divided amongst the shareholders, as well as through sell-
ing the shares at a higher price than the original price of purchasing the shares.

One of the most important measures of overall market performance is provided
by market indices. These are aggregate measures of the overall market performance
of a subset of the equities traded on that market. For example the Standard and
Poors 500 (S&P 500) is the weighted average of the 500 largest (by market capi-
talisation), publicly traded equities on the NASDAQ and the New York Stock Ex-
change. An alternative index for the US stock market is the Dow Jones Industrial
Average (DJIA), an adjusted average of 30 publicly traded equities. A market index
is a summary statistic of the performance of the equity market that has an in-built
bias in terms of which equities are included and how they are weighted. From this
point of view the NASDAQ Composite index (an index of technology stocks traded
in the United States) summarises the technology market’s performance, the DJIA
summarises (approximately) the US manufacturing base and the S&P 500 (approx-
imately) summarises the most highly capitalised equities. Other indices around the
world reflect different biases and weightings on their respective markets such as the
Frankfurt Stock Exchange (DAX), the London Stock Exchange (FTSE 100) and the
Australian share market (All Ordinaries Index, AO).
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The importance of these indices has extended beyond the simple summary of
equity values. It is now common to cite the performance of a market index as a
measure of the economic performance of a market sector or even the country as a
whole. This extension of financial markets to national economic performance is im-
portant. A financial market is a mechanism by which companies can raise financial
capital to fund their operations by selling off a portion of the ownership of their
company in the form of shares. In turn the investor can expect to receive dividends
from the company based on the profit performance of the company they own a part
of. The investor can also make a profit by selling their shares in a company at a
later date if the price of their shares has increased. These two ideas are related: a
strongly performing company may be able to increase its dividends, and higher than
expected dividends can push up the price of the shares.

So a strong performance in the operation of the companies that make up a fi-
nancial market index may result in an increase in the value of the index, but there
are many other factors that also influence the price of shares that are not directly
related to the underlying performance of the company. The terrorist attacks on the
World Trade Center and the US Pentagon on September 11, 2001 are a striking
example: nothing changed regarding the underlying performance of the companies
that were part of any index, certainly not in the days immediately following the at-
tacks. Despite this disconnect between the attacks and economic performance, the
DJIA initially dropped 684.81 points (7.14%), the largest single-day decline in its
history until the 2008 Global Financial Crisis, and it took 40 days to recover from
this fall [79]. The underlying performance of the companies that make up the econ-
omy did not decrease by more than 7% and then rebound over the following 40
days [57], but the investors were responding at least in part to what they expected
would happen in the future, and the future looked very unsettled if not downright
terrifying. From this point of view, sometimes markets move as a reflection of the
underlying performance of the economy and sometimes it is due to effects that are
not part of our nominal economic expectations but have a psychological impact on
market expectations nonetheless (See Keynes’ beauty pageant (Sect. 6.4.1).

However, the changes in prices of equities show some unusual behaviours that
have made the study of their statistics a non-trivial matter. So in practice what is
most likely being observed in the price variations is the very rapid diffusion of both
relevant and irrelevant information through a financial market and its influence on
how traders perceive the future value of individual equities. In this sense transfer
entropy measures a combination of both market sentiment and market fundamen-
tals. For an informative introduction to these two ideas see for example [15] and
references therein.

So the share markets reflect to some extent the expectations of the market’s per-
formance and the economy as a whole, but the world is a non-linear place and ex-
pectations are often misguided. While markets themselves are exceptionally hard to
predict with any level of assurance, there may be very broad drivers in the wider
economy that can guide our expectations of what might happen in the financial mar-
kets. With this in mind there is considerable interest in finding out what the underly-
ing drivers of our markets and economies really are: does unemployment drive the
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GDP or is it the cost of imported goods as a function of the foreign exchange rate?
So an interesting area to explore is the relationship between equities and indices,
indices and indices, and indices and the economy as a whole in order to understand
the extent to which changes in one financial or economic measure act as a precur-
sor or driver to changes in the other. The following sections highlight some of the
key findings in the recent literature where transfer entropy has been used in order to
explain which aspects of finance or economics is driving another.

6.2 Information Theory Applied to Financial Markets

Information theory as applied to economics and finance has a history almost as
long as that of information theory itself. In 1956, just eight years after Shannon’s
seminal 1948 article A Mathematical Theory of Communication, J. L. Kelly Jr. used
information theory to prove what the optimal gambling strategy should be in many
useful circumstances [155]; he also speculated on the possibility of using his result
as an investment strategy for share traders. With this in mind we review some of the
more interesting ways in which information theory has been applied in economics
and finance.

6.2.1 Entropy and Economic Diversity: an Early Ecology of
Economics

In 1975, Hackbart et al. put forward an interesting proposal [122]: Can you use
entropy to measure the changing diversity of an economic system? The thought
appears to have been inspired by the use of entropy as a measure of diversity in
ecological studies of bio-diversity, see [148] for an overview of the most common
measures used and their relationships. This seems to be remarkably prescient of
Hackbart and colleagues in light of recent calls for an ecology of economics [219,
125], and particularly of banking systems in light of the 2007-2008 financial crises.
This leads to an interesting interdisciplinary question:

Key Idea 29: The notion of ecological diversity, as measured by entropy and
its generalisations, can help us understand the interconnectedness, stability
and sustainability of our modern financial systems.
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6.2.2 Maximum Entropy: Maximum Diversity?

If entropy is a useful measure of diversity, be the system ecological or economic,
then is it possible to understand our ecologies or economies as maximisers of di-
versity via the maximisation of the system’s entropy? The question arises because,
returning to the physical notion of Brownian motion, maximising the entropy ap-
pears to be what some physical systems do. This includes the suspended particles
considered by Einstein in 1905 that led to his work on Brownian motion and a vast
array of other systems studies since then. E.T. Jaynes notably addressed this by
showing that it is possible to reconstruct much of modern physics by maximising
the entropy of an appropriately described (i.e. constrained) system [145, 146] with-
out needing to know anything about the microscopic interactions of the elements of
which the system is composed. This is called the MaxEnt method, and it provides a
very straightforward way in which to construct probabilistic models of systems with
otherwise opaque internal processes.

This has been an incredibly powerful heuristic in physics, and just as Brownian
motion was used to describe both the physics of particle movements and the fluc-
tuations in financial prices, it then leaves open an interesting question: To what ex-
tent can the MaxEnt principle be applied to economics and finance? Some progress
has been made in this area, particularly in the direction of the micro-economics of
gametheory. Several recent studies [364, 133, 134] have shown that maximising the
entropy of each player’s choice probabilities results in a generalised form of the clas-
sical Nash equilibrium called the quantal response equilibrium (QRE). The QRE has
been empirically investigated as a model of bounded rationality in decision-making
experiments [109, 368].

Key Idea 30: Jaynes’ MaxEnt principle can be used to model the decisions of
economic agents in micro-economics.

6.2.3 Mutual Information: Phase Transitions and Market Crashes

In keeping with the shared intellectual history of financial markets and physics,
many researchers had noted that there is an analogy between market crashes in fi-
nance and phase transitions in physics (see Sect. 3.3). Some earlier studies observed
that the significant property to a market crash was the level by which the whole mar-
ket suddenly dropped as measured by a market index. However, the key to phase
transitions in physics lies in the changes in the correlations between the interacting
elements of the system: as a phase transition approaches, correlations grow stronger
across the whole system. An early empirical study [160] into this analogy for fi-
nancial markets looked at the S&P 500 index around the Black Monday crash of
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1987 and the correlations between equities. It was found that the financial market
behaves a lot like a physical system as it approaches a critical point via the variation
in a control parameter. This is an explicit example of the non-stationary aspect of
financial markets: there appears to be an underlying parameter of the system that
varies over time, changing the shape of the probability distribution of price changes.
See Sect. 2.3.6 for a discussion of non-stationarity.

This gives strong support to the notion that a market crash is in some sense like a
phase transition in physics. However the drop in a market index does not tell us any-
thing about the underlying interactions, and correlations can rise and fall across a
range of values without necessarily going through a phase transition. The mutual in-
formation of a system is known to peak precisely at a phase transition in a multitude
of different systems, from spin systems in physics [218] to more general systems
beyond physics [353]. So a recent study looked at whether the mutual information
across a large portion of a financial market peaks during a crash [132], thereby pro-
viding an important piece of the puzzle in forming the analogy connecting market
crashes with the physics of phase transitions. The data was taken from a 13-year
period spanning several key crashes including the 1997 Asian financial crisis, the
1998 Russian crisis, the dot-com collapse and the beginning of the 2009 market col-
lapse. All of these events showed clear changes in their information measures at the
known critical points.

Key Idea 31: Information theory can be used to analyse the critical phenom-
ena of financial markets, such as market crashes, just as it can be used in
other complex systems.

6.3 Information Transferred from One Market Index to Another

Perhaps the most natural question that we might ask of the relationship between two
financial indices is: To what extent does one index drive the behaviour of another?
For example we might use the NASDAQ index as a proxy for the technology in-
dustries and the DJIA as a proxy for the industrial and manufacturing industries.
Then if we were to use transfer entropy to study in which direction the information
flowed from one index to the other we would get an indication of the extent to which
the expectations of one industry’s performance influences the other. In practice this
is an imperfect measure: the indices only measure aggregate price movements and
aggregate expectations, not the underlying economic fundamentals, so the buying
and selling patterns of the traders fluctuate more rapidly than any real economic
variation in the businesses they buy equity in. This implies that, whatever connec-
tion exists between the indices, it is not going to be on an economic time scale of
months or years, it will be on the time scale at which information diffuses through
the marketplace, and given the speed of modern communication, what people are
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saying now will be reflected in market prices within hours if not minutes. It is also
important to note that information will typically flow in both directions, i.e. for two
time series X and Y : TX→Y > 0 and TY→X > 0, so more often than not we are in-
terested in the net information flow (NIF): TX→Y −TY→X as an indicator of which
time series has the stronger influence over the other.

Marschinski and Kantz, one of the first research teams to tackle the question of
index-to-index analysis using transfer entropy, considered the relationship between
the DJIA and the DAX between May 2000 and June 2001 (63,867 data points) [216].
In this work the DJIA and the DAX are analysed using the first application of the
transfer entropy by an approximation called the effective transfer entropy (ET) (see
Sect. 4.5.2) and the relative explanation added (REA), both information-based mea-
sures of causal relationships. The ET addresses a key issue with estimating TE from
real data: because the TE is always non-negative, it has a tendency to over-estimate
the TE signal, i.e. it is a biased estimator of the real TE (see Sect. 3.2.2 for a dis-
cussion of biases in entropy estimation, and Sect. 4.5.2 for ET). In order to reduce
this bias the TE can be calculated for the original data and then recalculated using
the same data but shuffled to remove any relationship between the two data sets.
The shuffled data will have a TE which is typically greater than zero (due to ran-
dom variations resulting in coincidental shared information between the data sets)
that can be subtracted directly from the measured TE to give the effective transfer
entropy:

Teff
X→Y = TX→Y −Tshuffled

X→Y . (6.1)

The second new measure introduced in this work is the REA (for notational con-
sistency labelled R), a measure of how much of the total information flow HY (m)
in series Y from the last m time periods is explained by the effective transfer entropy
from X to Y based on the last n time periods in X :

RX→Y (m,n) =
TX→Y (m,n)

HY (m)
∈ [0,1]. (6.2)

RX→Y (m,n) can be interpreted as the percentage of the total entropy transfer in
Y that is explained by the effective transfer of entropy from X .

The key finding in this work is that, at the time scale of less than a minute, the
DJIA → DAX has approximately three times the REA signal (average 1.25%) com-
pared with the information flow as measured by the REA in the opposite direction
DAX → DJIA (average 0.42%). So the net effective transfer of entropy was in the
direction DJIA → DAX (average 0.83%).

In order to understand this result for market indices X(t) and Y (t), they compared
it with an equivalent linear autoregressively coupled system of the following form:

x(t) = r(t)+ εy(t −1). (6.3)
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where r(t) and y(t) are random Gaussian noise with zero mean and unit standard
deviation. Note that ε controls the strength of the coupling between x(t) and y(t −
1). Using this model they found the ε value that most accurately reflects the REA
observed between the two indices: for DAX → DJIA, ε � 0.1 and DJIA → DAX,
ε � 0.2. These coupling strengths translated into an ability to forecast the direction
in which one time series was going to shift from another approximately 56.5% of
the time, despite the author’s caution that the actual coupling between these time
series is a non-linear one.

A second study [281] used a similar approach but applied it to the log price
returns of the Indian stock market using the Nifty index and the US$/Indian rupee
exchange rate (FOREX) as the two time series. Unlike the DAX and the DJIA, this is
a comparison between two financial markets using one index within the country (the
Nifty) and one on the economic border of the country, as the US$/rupee exchange
rate might usefully be thought of as the border between the internal markets of India
and the financial world denominated in US$ (this simplified world view excludes
speculative traders who have no fundamental economic interest in India). Much
like the previous study, the REA and the NIF were used, and a third measure was
introduced, called the normalised directionality index:

d(X ,Y ) =
TX→Y −TY→X

TX→Y +TY→X
∈ [−1,1]. (6.4)

The term “normalised” is a misnomer in the statistical sense as d(X ,Y ) is not
bounded between 0 and 1 as a (normalised) probability distribution would be. In-
stead it more closely resembles a measure of divergence or market leverage as it is
maximised when one of the TE values is zero and minimised when they are equal.
However, it does regularise the TE measure such that d(X ,Y ) will always lie be-
tween −1 and 1, a useful approach when we want to compare measures across
different partitions or different systems.

Over the time period considered (November 1997 to March 2007) a small net
information flow was detected where the dominant direction was from the Nifty to
the FOREX market. At times the d(X ,Y ) measured for Nifty → FOREX reached
values of 1 as the flow in the FOREX → Nifty direction dropped to zero. But these
weak signals may be an indicator of the time frame over which information diffuses
through financial markets. Over the period of a whole day (the finest resolution of
the data set used) price data has likely already integrated most of the information
that has passed from one market to another, and hence the market prices have equili-
brated with respect to this information. This is peculiar to modern financial markets:
the speed with which we can communicate with each other as well as the speed with
which we can trade on the markets has made day-close price signals less informative
than they have been in the past.

These two data sets had very different resolution scales: the DAX and DJIA
data set recorded every single increment on a second-by-second basis, whereas the
Indian Nifty and FOREX data were recorded at daily intervals. This enabled the
DAX/DJIA study to detect significant signals at the sub-minute level, suggesting
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that information encoded in equity prices diffuses through the market incredibly
quickly. This information dissipated quickly and markets absorbed it, or equili-
brated, very quickly. This was also true for the Nifty/FOREX data set: the signals
were very weak at the daily level making it difficult to draw strong conclusions.
However, what was made clear is that, if data is of a fine enough resolution, then
conclusions regarding the amount and direction of market influence could be de-
rived from financial data, opening up the possibilities of new ways in which both
financial and economic signals could be analysed.

6.4 From Indices to Equities and from Equities to Indices

Market indices such as the S&P 500, the DJIA or the FTSE 100 act as indicators of
overall market conditions, sometimes with a deliberate bias reflected in the compo-
sition of a particular index. If a market index increases over a single day’s trading
then the equities that make up the index have, on weighted average, done well for
that day. Likewise if the index has decreased over the day’s trading then the indexed
equities have performed poorly. Analysts and economists can also refer to particu-
lar indices in order to indicate how the market (or market sector depending on the
index) is performing without too great a concern for the actual composition of the
index; for example an analyst might suggest the industrial sector is doing relatively
well by comparing the increase in the DJIA over the last 3 months with the relatively
sluggish performance in the technology sector over the same period as indicated by
the NASDAQ Composite index. Neither of these indices represent the performance
of the entire industrial or technology sector, but they do provide reasonable approx-
imations of these market sectors.

These indices raise some very interesting questions, both theoretical and prac-
tical, about the nature of market dynamics and how people choose to buy and sell
equities. To see this, imagine you are a trader and you want to know which equity
to buy. You are confronted with choosing between many thousands of different eq-
uities, each of which represents a company with unique product(s), performance
history, strategy, CEO management style, opportunities and risks associated with
it. Potentially you could go through each company’s annual reports, study its mar-
ket position and strategy, look at what the CEO plans to do and whether or not the
CEO’s experience is adequate, and base your buying decision on the equity that you
believe has the greatest financial opportunity given today’s price for the given eq-
uity. This is called fundamental analysis, and it can be time consuming and difficult.
On the other hand you could simply look at whether or not the market (or a particu-
lar market sector) is doing well by referring to an index and use that as a part of the
analysis that goes into making a decision, so-called technical analysis.

This raises an interesting question:1

1 Indeed, this question is evocative of the exploration of information flow from lower to higher
system levels, and viceversa, in an exploration of top-down causality by Walker et al. [342].
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Key Idea 32: In which direction does the net information in markets flow,
from the equity to the index or from the index to the equity?

This is theoretically interesting because there are multiple possible models for
random fluctuations that are well studied in the physics of particle systems. Each
individual particle’s behaviour fluctuates depending on how it is connected to the
other particles in the system. If none of the particles are connected to each other,
then if one particle changes its state then this does not influence any of its neigh-
bours, and so they do not interact with one another. Such systems behave in a very
stable fashion, and this might be a theoretical approximation to making your equity
purchase decisions based on fundamental analysis. If on the other hand particles
are linked to one another, say in a lattice-like fashion (for example imagine a two-
dimensional grid connecting many thousands of particles together, similar to the
Ising model in Chap. 5 (Sect. 5.2)), then changes in one particle’s state influence
their local neighbourhood through the connections between them.

Another possible arrangement is where each particle is actually connected to ev-
ery other particle in the system in such a way that each particle is influenced by the
average state of all of the particles in the system; this is referred to as a “mean field”
model of particle interactions, and it is analogous to making your equity purchase
decisions based on a market index (i.e. a weighted mean value of the market perfor-
mance). Each of these three models can be a very powerful approximation to real
physical systems, and there is considerable research into understanding the relation-
ship between such models and financial and economic systems in the nascent field
of econophysics [212].

6.4.1 Economics of Beauty Pageants

So with these ideas in mind consider that John Maynard Keynes introduced the
idea of financial markets as a beauty pageant in his book The General Theory of
Employment, Interest, and Money [1936] in order to explain price fluctuations in
financial markets. In Chapter 12 he writes [156]:

It is not a case of choosing those [photos of pageant contestants] that, to the best of one’s
judgement, are really the prettiest, nor even those that average opinion genuinely thinks the
prettiest. We have reached the third degree where we devote our intelligences to anticipating
what average opinion expects the average opinion to be. And there are some, I believe, who
practice the fourth, fifth and higher degrees.

Such a view of the financial markets opens us up to the possibility that a great
deal of buying and selling (i.e. market price formation) is based on what each trader
believes the average buyer or seller thinks everyone else thinks an equity is worth,
and that everyone else is doing the same thing. However it seems most unlikely that
all traders are following this strategy; only an unknown and perhaps unknowable
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portion of market traders follow such a strategy, with the remainder of the traders
basing their decisions on the underlying financial and economic fundamentals of the
businesses they are trading in.

So could we, in principle, discover the degree to which traders base their de-
cisions on average market sentiment, i.e. the ratio of fundamentalists to techni-
cal traders (opinion followers)? The answer is implicitly yes, and Kwon and Oh
have done so across nine different market indices covering developing and devel-
oped markets in Europe, the UK, North America and the Asia–Pacific region [171].
Across all nine indices there was an unequivocal net information flow from the in-
dex to the individual equities with a ratio of Tidx→eq:Teq→idx ranging from approxi-
mately 3:2 to nearly 3:1. Curiously, while the effective transfer entropy was not cal-
culated, the shuffled transfer entropies were plotted, showing that the shuffled values
for Teq→idx were very similar to the unshuffled values, implying that there was lit-
tle to no transfer of information from the individual equities to the index across all
indices. The strongest Tidx→eq signals appeared in the mature markets (S&P 500,
FTSE (UK), NASDAQ, Canada, Italy and Australia), and they were weaker but still
significant in developing markets (Thailand, Korea and China).2 Such studies pro-
vide considerable empirical insight into market dynamics that will allow researchers
to distinguish between the different candidate models that can be used as alterna-
tives to previous, weaker models that need to be revised in light of recent market
catastrophes.

6.5 The Internal Economy and Its Place in the Global Economy

It has been said many times and in many different contexts that we live in a world of
unprecedented interconnectivity and the long-term effects of this interconnectivity
are not yet well understood. In the previous section the different interconnectivities
between individual equities and market indices were considered, showing a degree
of synergistic interaction between equities based on market signals communicated
through market indices.

Given the broad range of measures, both across countries and within countries,
which have been constructed using transfer entropy, a final but more complex ques-
tion is: To what extent can transfer entropy be used to measure economic and fi-
nancial signals both between and within countries? This is an important question
and it is similar to many of the most difficult questions research in complex systems
addresses [159]. In this study transfer entropy is used to look at economic time se-
ries both within (using five macro-economic variables) and between 15 countries in
order to establish an international economic influence network.

2 In a previous paper, Information flow between composite stock index and individual stocks [2008],
these same researchers looked at the net information flow from the DJIA, the S&P 500 to 125
individual equities between June 1983 and May 2007. They showed that the net information flow
is from the index to the equities.
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Fig. 6.1 Each country is connected to a number of other countries through a global network of
economic relationships. Internally a country is governed by social, political, economic and geo-
logical constraints and relationships such as transport networks, natural resources, manufacturing
centres as well as less obvious networks of social and political influence. These in turn are recipro-
cally coupled to the internal dynamics of other countries through trade, foreign exchange markets,
political relationships and geographical considerations. Understanding how these factors influence
one another, in particular the strength and direction of the connections, is of key importance for
our understanding of how stable and sustainable our socio-economic systems are

One way in which we can understand the interconnectivities both within and
between countries is to look at variables that reflect a country’s internal economic
changes and those variables that reflect a country’s external economic and financial
changes, i.e. changes in economic indicators between different countries. Kim et al.
[159] took data from 18 different countries, encompassing Europe, North and South
America, Asia and Africa; this included most of the G20 countries plus Spain and
Portugal. They then collected five micro-economic indicators of economic perfor-
mance, i.e.consumer price index [CPI], industrial production index [IPI], exchange
rate [XR], stock market index [SMI] and trade balance [TB], in order to build a net-
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work of relationships between a country’s different economic time-series data and
between different countries economic time-series data.

The result is an intriguing examination of the network of macro-economic re-
lationships that make up our ever more interconnected economic world (Fig. 6.1).
What the authors were able to show is:

Key Idea 33: Western countries are globally the most influential, and Japan
has become less influential following the Asian financial crisis in 1997.

The Asian financial crisis, as a phase transition, has previously been studied using
information theory in a different form [132], but what this work contributes beyond
this earlier work is that the Asian crisis had a significant, long-term impact on the
macro-economic relationships around the world, not just on the short-term financial
market dynamics. This significantly extends the general reach of these information-
based techniques to include short-term financial fluctuations in the order of days
or weeks to extensive changes in economic performance over the range of years or
even decades.

Kim et al. [159] also showed that influence is transferred more significantly be-
tween countries in Europe than in Asia or the Americas. This indicates that Europe
is a much more tightly coupled economic system than other regions of the world.
For example they showed that the German stock market index is a net information
receiver from countries such as France, Italy and Portugal while on the other hand
Portugal’s stock index is a net information source for countries such as Germany
and Italy. Similarly, Italy receives considerable information from France, Portugal,
Spain and the UK. The significance of understanding these information transfers
within Europe is highlighted by the recent economic turmoil in the region; Portu-
gal and Spain have gone through significant economic difficulties as reflected in
their broad macro-economic indictors such as unemployment rates, stock market
performance and gross domestic product. Perhaps the most important result that is
emerging from this collective work is:

Key Idea 34: Understanding both the strength and the direction of macro-
economic indicators provides an important insight into the knock-on effects
that other countries feel as a result of a country’s internal economic distress.

The financial and economic relationships that make up a significant component
of our individual wellbeing, whether it is our retirement funds, our mortgages or our
holiday savings, are a vast interconnected network that influences nearly every facet
of our lives. In this chapter we have shown that transfer entropy as a measure of
the inter-relatedness between financial indicators has the potential to elucidate the
everyday dynamics of the world’s economies, from the moment-by-moment trades
of the stock markets to the connectivities of modern global networks of trade and
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economic health and prosperity. What this type of micro-to-macro economic anal-
ysis will tell us in the future is uncertain, but the promise it holds for analysis and
diagnosis is extremely great and hints at the potential “model-free” tool that will
help frame the next evolution in economic theory, analysis and modelling.



Chapter 7

Miscellaneous Applications of Transfer Entropy

The previous chapters have outlined the use of transfer entropy in some of its major
application domains: providing insights into canonical complex systems and finan-
cial markets. Here, we complete the book by providing a high-level view of the
wide-ranging use of transfer entropy in a suite of other fields. Our survey here high-
lights the importance of the measure and its ability to provide new insights about
information flow across an impressive breadth of application domains.

In the following sections, we describe applications of transfer entropy in physio-
logical data, inferring effective networks from multivariate time-series data, compu-
tational neuroscience data sets, biochemical networks, embodied cognitive systems
and social media.

7.1 Information Transfer in Physiological Data

We begin here by considering large-scale physiology as one of the earliest applica-
tion areas of transfer entropy. Indeed, Schreiber included an application to heart–
breath rate interaction in the original presentation of the transfer entropy [298]. TE
analysis is attractive for physiological data, due to the increasing level of automa-
tion in this domain, as well as the apparent complexity—coupled with uncertainty
of causes—of the non-linear interactions in such data sets. In this section, we first
review Schreiber’s application of TE to heart–breath rate data, as well as subsequent
investigations of the same data set. These analyses serve to highlight that:

Key Idea 35: TE can give quite complex answers, even for apparently simple
questions, and remind us of the care required in selection of estimators and
parameters in order to achieve robust and reliable results.

Afterwards, we also review the application of TE to other physiological data sets.

�
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As stated above, Schreiber [298] included a TE analysis of heart and breath
rate time series in the original presentation of the transfer entropy. The data were
recorded from a sleep apnoea patient,1 made available via the Santa Fe Institute time
series contest held in 1991 [284] (shown in Fig. 7.1). Schreiber normalised each time
series to zero mean and unit variance, then computed TE using box-kernel estima-
tion (see Sect. 3.4.1.4) with history lengths (or embedding dimensions) k = l = 1,
while varying the common kernel width applied to the two normalised time series
over a range of values. That study found TE in both directions between heart and
breath rate, indicating a complex interaction between heart and breath. With that
said, there was greater transfer from heart to breath (over a wide range of kernel
widths), which seemed to be in alignment with the observation of apnoea events
occurring when the heart rate crosses some threshold.

Kaiser and Schreiber [149] soon revisited this analysis, suggesting that incorpo-
rating a common kernel bandwidth for both normalised series was unsatisfactory
“since the two signals are of different physical nature and cannot be easily com-
pared”. They re-analysed the data, again with k = 1, by applying pairs of different
kernel widths for the two time series, to examine the trends in TE as a function of
these different scales. They interpreted their results to suggest that, since the TE
values do not converge, and since different directions (heart → breath and breath →
heart) dominate in different bandwidth regimes, one could not conclude on which
signal was the driver and which the responder. In Schreiber’s words from the origi-
nal study: “Reducing the analysis to the identification of a ‘drive’ and a ‘response’
may not be useful and could even be misleading” [298].

Later analyses continue to suggest a complex two-way interaction here. An-
cona et al. [3] used a related non-linear Granger causality measurement (using fixed-
width radial basis functions) to search for an appropriate embedding dimension (or
history length) for this data set, settling on k = 5, which also corresponded to the
periodic respiratory rhythm. Ancona et al. then demonstrated consistently larger
transfer from heart → breath, though they did find strong transfer in the opposite
direction as well. An important aspect of their findings is the use of a proper embed-
ding of the data (which rules out the mistaking of storage as transfer—see Sect. 4.2.2
and the CA example in Sect. 5.1).

In addition to proper embedding of the data, we note that it would be useful to
add bias correction to this analysis, and remove the arbitrariness of selecting kernel
widths. As such, we describe an application of the KSG TE estimator [168, 110]
(see Sect. 4.3.1) to this data set. Since this estimator automatically scales the ker-
nel width for each observation in the marginal dimensions (while keeping a fixed
neighbour count in the full joint space), and is quite stable with respect to parameter
selection, it may be more suited to addressing Kaiser and Schreiber’s concerns [149]
regarding comparing two signals of different natures. This demonstration is dis-
tributed with the open-source Java Information Dynamics Toolkit (JIDT) [183] (i.e.
the Matlab/Octave script runHeartBreathRateKraskov.m in the demos/-
octave/SchreiberTransferEntropyExamples example of the distribu-

1 Sleep apnoea is a disorder characterised by pauses and bursts of breathing during sleep—see the
bursts and fluctuations of heart and breath rate in Fig. 7.1.
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Fig. 7.1 Transfer entropy in heart and breath data, using a KSG estimator, as a function
of the K nearest neighbours parameter of the estimator (using embedding lengths k = 2 and
l = 2 as determined in the demonstration). Note the stability of the results for K ≥ 4, in
particular for the heart → breath measurement, which is well above the noise floor for sta-
tistical significance (not indicated on the figure; see Sect. 4.5.1 for details on how to com-
pute this). For K < 4 the results are affected by under-sampling. Estimations are produced by
the MATLAB/Octave script runHeartBreathRateKraskov.m in the demos/octave/-
SchreiberTransferEntropyExamples example distributed with the Java Information
Dynamics Toolkit [183]. Fig. 7.1a and (b) were first published in [182]

tion). The demonstration reveals more consistent TE measurements on the heart–
breath data set with this estimator (with respect to parameter changes) than with
the aforementioned kernel estimators – see Fig. 7.1. These measurements again find
significant TE in both directions, albeit with a consistently stronger transfer in the
breath → heart direction in contrast to Schreiber’s original results with kernel esti-
mation.

A clear conclusion from the above is that:
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Key Result 11: TE analysis is difficult to get right, and is best performed using
estimators which are stable with respect to parameter changes (in particular
the KSG estimator). One should take care with such parameters, as well as
ensuring that data is embedded correctly.

Another clear conclusion from the collection of analyses above is that we have
a complex two-way interaction occurring between the heart and breath rate, which
cannot be simplified to drive and response dynamics. In such situations—and even
where we do have simple drive–response systems—more subtle approaches can be
particularly revealing. For example, Lungarella et al. [205] study a different heart–
breath sleep apnoea data set using transfer entropy applied to wavelet-transformed
states. Their study again reports strong transfer in both directions, with heart →
breath transfer being larger in most frequency bands involving bidirectional trans-
fer, but with breath → heart transfer almost uniquely present at low frequencies.
Other specific insights into the original heart–breath data set have been generated by
using local TE-style approaches (see Sect. 4.2.5). Lizier [182, section 8.1] reported
a preliminary study of local TE values at each time point in the time series, using
kernel estimation with a single kernel width, and embedded history length k = 4.
The time series of local TE values indicated significant bidirectional information
exchanges coinciding with the apnoea events, with little transfer taking place in be-
tween them. Crucially, during typical apnoea events, the information exchange was
started by a significant transfer from heart rate to breath rate; it was suggested that
this precedence in time is more indicative of dominance in the dynamics than the
relative average TE values. Williams and Beer [359] provide a more in-depth anal-
ysis, focussing on a partial information decomposition (see Sect. 3.2.3.1 and [358]
for details) of the transfer entropy measurements (kernel estimation, with k = 1).
Their key insight was to determine the transfer entropy in a partially localised man-
ner: as a function of the target’s past state. This revealed for example that transfer
from heart to breath was largest when chest volume was low, and to a lesser extent
when it was high, but was minimal when chest volume was near its mean. The re-
sults held over a wide range of kernel widths, and again provide far deeper insight
into the dynamics here than average TE values.

The aforementioned studies on this data set demonstrate not only the breadth of
ways that TE can be used to investigate a system, but also the complexity that it can
reveal.

Of course, applications of TE in physiology have not been confined to this one
data set. In particular, Faes and colleagues have utilised the TE to provide insights
into a number of physiological processes [85, 86, 87]. For example, Faes et al. [87]
investigated cerebrovascular and cardiovascular regulation in patients exhibiting or-
thostatic syncope a transient loss of consciousness and postural tone with sponta-
neous recovery. They sought to characterise the methods of such regulation from an
information processing perspective, seeking to provide new insights and possibly
early detection of syncope events.
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Faes et al. analysed three sets of time-series measurements (300 samples, 1 per
heart beat) per patient (10 patients), derived from ECG signals, recorded: (i) during
a preceding lying position, (ii) just after a transition to a tilted position intended
to evoke a syncope event and (iii) just before the syncope event occurs. Transfer
entropy was measured (in addition to other measures of information dynamics) be-
tween heart period (HP) and systolic arterial pressure (SAP) to study cardiovascu-
lar regulation, and between cerebral blood flow velocity (CBFV) and mean arterial
pressure (AP) to study cerebral regulation. A novel non-uniform embedding was
used to represent the past history of the target variable (see details in [87]). Entropy
estimation for the TE was performed using a uniform six-bin quantisation or dis-
cretisation, as well as a bias correction term (described in [265]). The TE results
revealed that in the lead-up to a syncope event, TE from SAP to HP decreased sig-
nificantly, while TE from AP to CBFV increased significantly. Faes et al. conclude
that these insights identified deficiencies in the regulation mechanisms, and impor-
tantly characterised the impairment of the mechanism in a manner that differentiated
between conflicting earlier hypotheses.

7.2 Effective Network Inference

A key objective of multivariate data analysis in many domains is to infer a network
which underpins the observed activity levels between individual variables in the
data. That is: given only time series for each of a set of variables, can we describe a
network which represents the relationships between these variables? This line of in-
quiry is particularly popular in computational neuroscience (see [351] and chapters
therein), but has also been addressed in other domains, including financial markets,
gene regulatory networks and social media.

There are three fundamentally different notions of the type of network one may
try to infer functional, structural and effective networks. Functional network
inference constructs undirected networks using a measure of correlation between
nodes to infer connectivity [95]; while this infers relationships between nodes with
similar dynamics, it provides no explanation for how the relationship manifests.
Structural network inference seeks to reveal the physical, directed (causal) connec-
tions in the system, though this is generally only possible via interventional tech-
niques but not directly from large (observational) multivariate time-series sets alone
[11, 261, 191, 60].2 Structural networks also do not tell us about time or experimen-
tally modulated changes in how the variables are interacting [95]. Effective network
inference is something of a middle ground between these:3

2 It can be done under certain circumstances from observational data, e.g. using the “back-door”
approach [191, 11], though this typically requires a priori knowledge of where all other causal
links are to the given node, defeating the purpose of general inference.
3 “Model” here has several interpretations. Friston generally uses the term for a specific type of
model (as in dynamic causal modelling) [96]; others use the term to refer simply to models with
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Key Idea 36: Effective network analysis examines directed (time-lagged) re-
lationships between nodes from their time-series data, and seeks to infer the
“minimal neuronal circuit model” which can replicate and indeed explain the
time series of the nodes [311, 95].

An effective network should reflect the underlying structural network, however it is
not intended to give a unique solution to structural network inference from a time
series, since it should be experimentally dependent and time-dependent (to capture
the result of external modulations) [95].

Key Idea 37: Transfer entropy has been recognised by the research commu-
nity as a natural fit for effective connectivity inference, since it measures the
directed relationship between nodes in terms of the predictivity (or explana-
tion) added by the source node about the target.

As we will describe in the following, transfer entropy has been used to a very large
extent for effective network analysis in computational neuroscience, financial mar-
ket analysis, gene regulatory networks, social media and multi-agent systems. In
comparison with the related Granger causality, which has also often been used for
this purpose, transfer entropy is of course model free and captures non-linear inter-
actions.

7.2.1 Standard Pairwise TE Approach for Effective Network
Inference

Early approaches to using transfer entropy for effective network inference used the
following basic algorithm [139, 189, 73, 142, 32, 334, 296]:

1. Measure pairwise TE between all pairs of variables in the system;
2. Threshold the TE values to select connections for the network.

Standard approaches to using (pairwise) transfer entropy for effective connec-
tivity analysis now however use approaches of statistical significance testing to de-
termine whether links should exist. That is, the above basic approach is changed to
[350, 336]:

1. Measure pairwise TE between all pairs of variables in the system;

directed connections; whilst we use the term to mean a model that is capable of producing the same
computations.
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2. For each source–target pair, generate the null distribution for TE (under a null
hypothesis of no source–target temporal relationship, as described in Sect. 4.5.1),
and obtain the p-value for measuring the observed TE under the null distribu-
tion;

3. Threshold these p-values to select connections for the network (i.e. selecting
those with low p-values).

The generation of such p-values for TE was originally described in [335, 56] (as per
Sect. 4.5.1), and first used for effective network analysis in this way in [337, 349,
187].4 Since inaccuracies in TE estimation are unavoidable, the shift to statistical
significance adds robustness to the approach and makes it more suitable for small
data sets [337, 187]. The choice of p-value threshold is also more principled than a
fixed TE threshold, since it can be meaningfully applied simultaneously to variables
with very different statistical properties (which may impact their raw TE values),
and allows a very specific statistical interpretation of the meaning of an inferred
connection.

Correction for multiple comparisons using family-wise error rates (e.g. Bonfer-
roni correction) or false discovery rates becomes particularly important when one
is testing the statistical significance (with respect to a given p-value) of a large
number of pairs in the potential network here [337, 187]. To further avoid false pos-
itives, the importance of proper embedding for the source and target variable was
emphasised in [337], as well as measuring TE at the appropriate source–target delay
[348, 337, 142]. Usefully, it has been established in this context that TE is some-
what robust to being measured at a smaller interaction delay [337] (with adequate
embedding or when the source has memory), as well as for under-sampled data sets
[187].

Sample networks output by these techniques are shown in Fig. 7.2 for interaction
diagrams between players in robotic soccer and between brain regions from fMRI
data.

Whilst effective network analysis is not strictly intended to replicate underly-
ing structural networks, one generally expects results to closely match underlying
structure when inferred over a large amount of data, sampling large ensembles of
dynamics and experimental or input conditions. Under these conditions, receiver
operating characteristic (ROC) curves are used to evaluate performance in terms of
true positive versus false positive rate in comparison with an underlying structure,
as a function of (p-value) threshold, e.g. see [142, 32, 201].

7.2.2 Addressing Redundancy and Synergy in the Data

It is widely acknowledged that the standard approach on its own is susceptible to
inferring false positives A →C due to cascade effects where we actually have A →

4 Tung et al. [329] used a similar technique, but generated surrogates with the target variable
perturbed, which is not recommended since it destroys the past-next state relationship for the target.
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(a) Network of Robocup interactions (b) Inter-regional structure in fMRI data

Fig. 7.2 Sample effective network diagrams generated using TE-based algorithms. (a) A (sim-
plified) network inferred from interactions between player movements in simulated football
(Robocup) in [62]; the network reveals the central midfielders as information hubs. (b) An inter-
regional effective network inferred from fMRI data recorded during a visuo-motor task in [187]
(see definition of acronyms for regions in this paper); the network reveals a three-tier structure
with a premotor-motor cortical sub-network (movement planning) at the top sending information
to the superior colliculi (guiding eye position and attention) at the middle tier, and both then send-
ing information onto the cerebellum (motor control) at the bottom. Fig. 7.2a is reprinted with
kind permission from Springer Science+Business Media ( c© holder) from [62]: O. M. Cliff, J. T.
Lizier, X. R. Wang, P. Wang, O. Obst, and M. Prokopenko, “Towards quantifying interaction net-
works in a football match”, in S. Behnke, M. Veloso, A. Visser, and R. Xiong, editors, “RoboCup
2013: Robot World Cup XVII”, volume 8371 of Lecture Notes in Computer Science, pages 1–12.
Springer, Berlin/Heidelberg, 2014. Fig. 7.2b is after [187]

B→C, or common driver effects where we actually have B→A, B→C. These false
positives are due to redundancies between A and the true source B (see Sect. 4.2.3
and Sect. 3.2.3.1).

Early enhancements to the standard technique above to address these situations
relied on heuristic post-processing of the inferred effective network. For example,
Tung et al. [329] suggested the removal of the edge with smallest TE from an ini-
tially inferred triangle motif. Wibral et al. [349, 352, 348] introduced more sophisti-
cated methods using the reconstructed source–target interaction delays on the edges
of triangles in order to remove suspected cascade and common-driver effects. On a
related note, Wibral, Vicente and co-authors [337, 349] also introduced a “shift test”
to eliminate false positives due to instantaneous linear mixing.

Beyond heuristic techniques, it is known that multivariate conditioning ap-
proaches with the TE can be used to directly eliminate redundancies [195, 335];
e.g. a conditional TE T A→C |B would not make a false inference in the cascade ef-
fect scenario A → B → C since the redundant information in A and B about C is
conditioned out. Not only that, but such conditioning (or even the multivariate col-
lective TE, see Eqn. 4.20 [187]) will additionally capture any synergistic effects on
the target produced by the source in combination with the conditional variable(s)
[195, 187]; e.g. a conditional TE T A→C |B would be able to make a correct inference
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in the scenario {A,B}→C where C = A XOR B (see Sect. 3.2.3.1), when pairwise
measurements could not detect either source.

The importance of including such conditioning for inference of effective connec-
tions was emphasised in [332, 316], yet it is not immediately clear how this should
appropriately be done for large data sets. For example, Quinn et al. [277] suggest
conditioning on all of the remaining variables at once (i.e. using complete transfer
entropies); however this may eliminate too many links if there is a large amount
of redundancy in the network, and typically results in significant under-sampling
for realistic data set lengths—even for multivariate Gaussian data [201, 213, 4].
Stetter et al. [314] find that conditioning on the mean field (as a summary of the re-
maining variables) works reasonably well for calcium imaging data at intermediate
activity levels, perhaps because such intermediate activity levels are large enough to
see coherent source–target effects but not large enough to corrupt the data with too
many redundancies. Alternatively, one can perform a standard pairwise approach
and then pruning based on survival of conditional testing on every other variable
(Wu et al. [365]) or groups of pre-selected parents (Runge et al. [291]), yet these
approaches may over-eliminate connections due to redundancy in the network and,
crucially, contain no mechanism to capture synergistic contributions.

In contrast to these approaches focussed on redundancy only:

Key Idea 38: Iterative or greedy approaches with conditional transfer entropy
can both capture synergies and eliminate (only non-required) redundancies
[200, 85, 315, 213].

These iterative approaches gradually build up the set of parents for a given target,
whilst only conditioning the TE for new candidate sources on the set of previously
selected parents. There are subtle differences between the techniques presented in
[200, 85, 315, 213]. Lizier and Rubinov [200] and Stramaglia et al. [315] employ
statistical significance calculations to determine stopping conditions (as described
above5), in contrast to selecting a fixed-size set of parents. The use of statistical
significance testing becomes even more important for such multivariate measures
than for simple pairwise TE, since it provides an automatic brake on the increasing
dimensionality (as more sources are included in the set of parents) as this gradually
exhausts the limited statistical power of a given finite data set. Additionally, Faes at
el. [85] add the use of non-uniform embeddings for the variables in the TE calcula-
tion; Stramaglia et al. [315] use interaction-information-based measures rather than
conditional transfer entropies directly, which treat redundancies and synergies in a
different manner from that described above; and Lizier and Rubinov [200] also add
other optimisation steps including pruning.

5 Although shuffling the target is used to create surrogates in [315], which is not recommended as
per footnote 4.
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Open Research Question 8: Which of the above techniques, a mix of them,
or additions to them will prove most convincing for inferring effective connec-
tions, whilst eliminating redundancies, capturing synergies, and adapting to
the size of available data sets?

Finally, we note the subtle point that:

Key Idea 39: Iterative or greedy approaches with conditional transfer entropy
infer an effective network in which a directed link indicates that the source is
a parent of the target, in conjunction with the other parent nodes.

It does not necessarily imply that a parent source provides any unique directed pair-
wise information to the target. The exact nature of that parental relationship, be
it a unique or redundant direct pairwise influence or otherwise mediated with other
parents, can be interpreted by examining various pairwise and conditional or higher-
order transfer entropies.

7.2.3 Applications of Effective Network Inference

As previously noted, these various TE-based techniques for effective network infer-
ence have been widely used in the computational neuroscience domain, as described
in [351], having been applied for example to MEG [349, 337], fMRI [187, 211],
EEG [315, 213, 85] and spiking neuronal data [142, 323].

Such analysis is not restricted to this domain however, having also been applied
to financial market time series [296], supply-chain networks [287], interactions be-
tween agents in robotic soccer [62], gene regulatory networks (see Sect. 7.4) and
networks in social media dynamics (see Sect. 7.6). We defer detailed description of
examples to these subsequent sections.

The crucial output of such effective network inference is an understanding of
the directed relationships between the variables, as captured in the sample networks
visualised in Fig. 7.2. Further analysis of the resulting network is quite common,
for example in looking at how the effective network changes as a function of ex-
perimental condition, e.g. how cortical effective networks change: between differ-
ent (auditory) working memory tasks [349], or with increased difficulty of a visuo-
motor tracking task [187], or in differing levels of consciousness [211]. Algorithms
also exist to decipher effective connections not only between variables, but between
groups or regions of them [187], e.g. between regions of voxels in fMRI data sets.

Finally, we note that the TRENTOOL software [180, 363] is built from the
ground up to provide standard effective network inference via TE for neural data,
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including some of the graph algorithms described above to address redundancies.
Enhancements using conditional TE (as available in JIDT [183]) are planned.

7.3 Applications in Neuroscience

Neuroscience is a fertile ground for innovation in information theory and complex
systems. New algorithms for calculating entropy and mutual information come from
the efforts to estimate these quantities from sparse data sets. The ever elusive no-
tion of what constitutes complexity has got a little closer to definite capture with
Bialek et al.’s idea of predictive information [37].

Not surprisingly the neuroscientists have led the way in the applications of trans-
fer entropy. Indeed, computational neuroscience has arguably been the most impor-
tant application domain for the transfer entropy. For an in-depth summary of recent
research in this area, in particular including exploring effective network inference
(see Sect. 7.2) in neuroscience, the reader is referred to the book Directed infor-
mation measures in neuroscience [351]. In this section, rather than canvassing the
whole field, we provide a selective summary of certain relevant areas.

Neurons in the mammalian brain communicate by sending voltage spikes to each
other, which we can approximate as an irregular series of pulses of fixed height and
width. But it turns out that there are serious theoretical issues with calculating the
transfer entropy of pulse sequences. Section 7.3.1 takes a look at these deep issues.

It may be advantageous to smooth a pulse sequence in some way or average a
number of such sequences and resample. Again, these theoretical issues are only
partially resolved. Thus Sect. 7.3.1 delves into the theory without attention to spe-
cific applications.

The remaining sections look at neuroscience, which we split into three categories
of decreasing temporal or spatial resolution: pulse trains, voxels comparison and
EEG (electroencephalography):

Pulse trains (Sect. 7.3.2) may show transfer entropy. We would often like to
know if neuron x causes the action of neuron y. Although simple to express,
this is a difficult mathematical challenge.

Voxels (Sect. 7.3.3) are the 3D equivalent of pixels. They are obtained with imag-
ing techniques, such as fMRI, PET, MEG.

EEG (Sect. 7.3.3.1) is the lowest spatial resolution, although intermediate in tem-
poral resolution.

7.3.1 TE for Pulse Sequences

Neurons communicate via a continuously variable output voltage or by firing a se-
ries of voltage spikes. The first case is easily handled with the methods already



150 7 Miscellaneous Applications of Transfer Entropy

discussed in this book, but most neurons in the vertebrate brain communicate via
spike sequences.

A neuron’s spike train is a semi-random process, akin to a Poisson point process,
with one proviso—there is a refractory period between any two spikes. This presents
a real challenge for the TE measures described in Chap. 4. If the pulses do not occur
at regular intervals, the concept of previous equally spaced time intervals does not
exist. But there clearly is mutual information and transfer entropy between such
sequences. Otherwise our brains would not work!

Open Research Question 9: How can transfer entropy be formulated for
irregular pulse sequences or spike trains?

The most straightforward approach is to interpolate between the spikes, a method
which we consider in Sect. 7.3.1.1. The much bigger challenge is to deal with the
spikes directly, discussed, albeit briefly, in Sect. 7.3.2.

7.3.1.1 Filtering the Pulses

We can take our series of pulses and extract a range of parameters from it. For sev-
eral decades, the neuroscience world used the average firing rate of neurons as a
measure of their activity. The firing rate as a function of time can thus be consid-
ered a continuous variable, and we can use the existing machinery to calculate the
information-theoretic quantities.

Unfortunately, it is now recognised that firing rate does not capture all the in-
formation in the spike train. At the individual level we know that single spikes are
significant. For example, Simon Thorpe and colleagues showed that human rapid
discrimination of pictures containing or not containing an animal would have to be
based on a single spike travelling from layer to layer through the visual cortex to the
infero-temporal cortex where object identification takes place [324, 84].

Bialek et al. [38] found that interpolation by a linear filter could work well. They
studied the H1 (motion) neuron in the fly. With a continuous input stimulus, it is
possible to measure how much error occurs in the spike representation. If the spike
output of the neuron is processed by the correct linear filter, a very high proportion
of the information in the input signal can be extracted.

Thus for the H1 neuron at least, we can convert the irregular sequence of spikes
to a continuous signal with very little loss of information. We can then study in-
formation flow based on continuous signals. However, the fly neurons may not be
representative of all neurons, particularly the smaller unmyelinated neurons of the
cerebral cortex.
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7.3.2 Direct TE Estimation Between Spiking Neurons

Spike trains produced by spiking neurons are naturally represented as (multi-
variate, jointly distributed) point processes [71], continuous-time stochastic pro-
cesses (Sect. 4.7) where discrete events occur at randomly distributed time intervals
[46, 49].

Estimation—and, indeed, a definition—of TE for point processes requires some
special treatment. A point process may be specified by a counting process N(t),
where N(t) denotes the number of events that have occurred in the time interval
(0, t]. A simple approximation is simply to construct a discrete-time process by
counting events in time segments of fixed length Δ t. Transfer entropies may then
be estimated as for discrete processes in general (e.g. Ito et al. [142] estimate TE
from spiking neural processes by constructing binary time series for whether spikes
were observed or not for each process within 1 ms bins). Improvements may some-
times be obtained by convolving the discretised process with a smoothing kernel,
often taken to be Gaussian or half-Gaussian [295, 237, 305]. However, if Δ t is too
small, so that the number of events in segments is frequently low (or zero), then the
resulting discrete time series will be irregular and transfer entropy estimation will
likely not be amenable to the various discrete-time techniques; to exacerbate this
problem, long history lengths will be required. If, on the other hand, Δ t is larger
than the typical time scale of lagged feedback within the processes, it will fail to
reflect information transfer accurately. Thus the technique may work more or less
well in practice, depending on the nature of the processes.

A promising and more principled approach has appeared in recent years (mostly
by Brown and colleagues [48, 49, 248, 328, 238, 157]) which deploys parametric
Granger causality-like methods in a ML framework (cf. Theorem 4.2) to infer di-
rectional coupling in spiking neural systems. The starting point for the theory is
that a (jointly continuous multivariate) point process is completely specified by its
conditional intensity function (CIF), a history-dependent generalisation of the rate
function for a Poisson process, defined for the ith process as

λi(t|h(t)) ≡ lim
dt→0

1
dt

P(Ni(t +dt) = Ni(t)+1 | h(t)) , (7.1)

where Ni(t) is the ith counting process and h(t) = {hi(t)}, where hi(t) = {0 < ti,1 <
ti,2 < .. . < ti,Ji ≤ t}, denotes the history of the ith process (comprising Ji events) up
to time t; that is, ti,k is the timestamp of the kth event for the ith process. The ith CIF
thus denotes the limiting probability that an event occurs for the ith process in the
next time increment, given a prior history for all processes.

It may then be shown [71, 46], that the log-probability of a realisation on (0,T ]
for a (univariate) counting process N(t) is given by

ln p =
∫ T

0
lnλ (t|h(t))dN(t)−

∫ T

0
λ (t|h(t))dt. (7.2)
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This may be extended for multivariate counting processes Ni(t) [143, 331]. Given
a parametrised model λi(t|h(t);θθθ) for the CIFs, we thus obtain the log-likelihood
function for the model, which is frequently taken to be a generalised linear model
(GLM) [46, 328, 248]. In [157] this framework is engaged, with a null hypothesis
which excludes source process j from the historical dependencies of target pro-
cess i, to define a log-likelihood ratio measure described by the author explicitly
as Granger causality. Regarding non-parametric transfer entropy, we may simply
apply Definition 4.10 to the counting processes Ni(t). Then, since the continuous-
time transfer entropy defined there is just a (scaled) limit of discrete-time transfer
entropies, Theorem 4.2 should (under some regularity conditions) apply in the limit,
and again we obtain an asymptotic equivalence for point processes, between para-
metric ML-based Granger causality and non-parametric transfer entropy.6.

7.3.3 TE in Brain Imaging

A particularly strong application of TE in neuroscience has been in analysing in-
formation flows in brain imaging data sets. As previously pointed out, the reader
is referred to the book Directed information measures in neuroscience [351] for a
detailed overview of such applications. Here, we briefly discuss one application of
TE to analysing EEG recordings.

7.3.3.1 TE in EEG

EEG is an old brain imaging method, but it is continuing to grow in importance. It
consists of attaching electrodes to the scalp and recording electrical activity there-
from. It might seem quite remarkable that 100 million neurons should produces
any sort of interesting or usable behaviour on the scalp. What makes EEG of con-
tinuing interest, now stretching for example into the computer games arena, is the
advancement of both technological and analysis techniques. From the technology
perspective, electrodes have been getting better, picking up stronger signals with
less and less effort and pre-preparation of the scalp. Improved electronics has facil-
itated increased size of the arrays and therefore spatial resolution.

EEG has always had good temporal resolution, but its spatial resolution is dread-
ful. However, powerful signal processing techniques are improving it all the time.
Transfer entropy is the latest technique to come into play. One can distinguish three
application areas:

1. Information flow from sensory modalities and external stimuli into the EEG
signal (Sect. 7.3.3.2);

6 In fact we suspect that the equivalence may be exact in this case, rather than asymptotic, but we
do not as yet have a rigorous proof.
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2. Information flow between the components (or electrodes) of the EEG, or beam-
formed sources within the brain.

3. Phase transitions in the signal. This is a quite different application, relevant, for
example, to the onset of an epileptic fit.

We briefly discuss an example of the first application area in the following.

7.3.3.2 Information Flow to EEG from External Stimuli

A relevant example here is the work of Madulara et al. [210] in studying informa-
tion flow from vision to EEG signals. They test two conditions, eyes open and eyes
closed. Not unsurprisingly a large transfer entropy is found between electrodes as-
sociated with the occipital lobe (where visual information enters the brain from the
eye) and the frontal areas of the brain. The information flow is two way: the net
information flow (subtracting one direction from the other) occurs from the frontal
areas out to other areas. The value of this net information measure is debatable.
Since the brain is highly recurrent, the information flow in both directions is signif-
icant. Although an important methodological paper, the results are not surprising.
One omission, though, is the conditioning out of other variables (as pointed out in
the neuroscience domain by [335, 195, 332, 316]). What effect this would have in
this particular experiment is an open question, and indeed as pointed out in Sect. 7.2,
conditioning out all other electrodes is generally numerically implausible for realis-
tically sized data sets.

Open Research Question 10: What happens to EEG transfer entropy after
conditioning out other electrodes for each electrode pair?

7.4 Information Transfer in Biochemical Networks

Fernández and Solé [89] observe that “biological entities perform computations”,
and the key difference between biological and physical systems is the evolutionary
payoff associated with information processing in biological systems, e.g. a better
ability to “cope with environmental uncertainty”. These authors refer in particular
to computation taking place in cellular networks within an organism, comprising:
“the genome, in which genes can affect each other’s level of expression”, “the pro-
teome, defined by the set of proteins and their interactions by physical contact”, and
“the metabolic network (or the metabolome), integrated by all metabolites and the
pathways that link each other”. While these networks are intertwined, they can be
considered and modelled separately—for example, one can view genes as nodes in
gene regulatory networks (GRNs), with expression levels of the genes associated
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with each node, directed edges representing the manner in which expression levels
of one gene affect another, and other inputs being from environmental factors or
other cellular networks. Indeed, the use of Boolean networks7 to model GRNs is
a classic example here [154], where expression levels are binned or discretised as
simply on or off, updating as Boolean functions of the parent genes, and attractors
of the network are interpreted to represent cell types.

The aforementioned interpretation of the networks as computing a response to
their environment has driven interest in information transfer in cellular networks,
with such transfer seen as key to understanding the gene interactions underpinning
the emergent time-series behaviour of the network as a whole [89, 329, 252, 73,
220]. At an abstract level, this is embodied in suggestions that genetic networks
occur more naturally near the edge of chaos [174] with a balance of ordered and
chaotic dynamics optimising computational capabilities near second-order phase
transitions [174, 154].8 More concretely, a key role of information transfer or sig-
nalling in biological networks is surmised by Fernández and Solé [89] as non-
linearly generating coherent structures, similar to those we previously described
in cellular automata (Sect. 5.1) and swarms (Sect. 5.5), i.e.: “local events involving
a few molecules can produce a propagating cascade of signals through the whole
system to yield a global response”. Clearly:

Key Idea 40: There is significant potential for transfer entropy to produce
key insights regarding the time-series dynamics on biochemical networks—
measuring predictive effects of one gene on another, modulation of such effects
over time, and indeed inferring effective networks.

While it is clear that information theory “is the theoretical framework that pro-
vides the necessary mathematical tools for the analysis of biological information
processing” [220], there are significant issues preventing wide-ranging application
of transfer entropy in this domain. Time series of genetic activity levels can be ob-
tained using microarrays (e.g. see [329]), yet it is difficult to obtain time series of
adequate length for TE estimation. These difficulties are compounded if one at-
tempts to adequately sample the past state of a target (using standard embedding
of k previous samples) or condition on other variables (as discussed by Tung et
al. [329] regarding multivariate extensions of TE; i.e. see Sect. 4.2.3). Furthermore,
the utility of many microarray data sets for transfer entropy analysis is further com-
promised in that the time-series observations are irregularly sampled (meaning the
{yyy(l)

n ,xn+1,xxx
(k)
n } tuples are not properly comparable), or taken from periodic attrac-

tor states (where TE, if past states are properly embedded, would be trivially zero).

7 Or indeed random Boolean networks (RBNs), as a class—see the application of transfer entropy
to RBNs in Sect. 5.3.
8 See Sect. 5.3 and Sect. 5.2 for quantitative studies of TE during such phase transitions.
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Open Research Question 11: How can transfer entropy be computed for
irregularly sampled time series? For example, using kernel methods and re-
sampling techniques to pre-process the data [38].

Despite these difficulties, Tung et al. [329] have performed a TE analysis on a hu-
man cell cycle microarray time-series data set, consisting of 74 samples. This is
certainly at the lower end of the amount of data one would require for transfer en-
tropy analysis. TE calculations are made on maximum-entropy binning of the data,
with embedding dimension or history length k = 1. Tung et al. describe their ap-
plication as drawing a causal network, though it should properly be understood
as effective connectivity analysis. Their approach is almost the same as standard
pairwise effective connectivity approaches for brain imaging data as described in
Sect. 7.2, however Tung et al. assess statistical significance of TE measurements
against surrogates obtained by perturbations of the target rather than source time
series.9 They also added a heuristic method to differentiate between direct and in-
direct connections, by pruning weakest links in potential common driver scenarios
(see other approaches discussed in Sect. 7.2). Tung et al. report encouraging results
from the experiment, with support found in the scientific literature for around half
of the identified directed links.10

The use of models of biological networks is an approach with the potential to gen-
erate a large enough amount of data for practical TE studies. Pahle et al. [252] take a
mixed approach, by stochastically coupling experimentally-measured calcium sig-
nals to simulated target proteins. Calcium signalling pathways are of interest since a
variety of different stimuli (e.g. hormones or nucleotides such as adenosine triphos-
phate [ATP]) trigger calcium responses while a variety of targets (e.g. proteins and
transcription factors) depend in turn on calcium signals. This implies that “specific
information is likely to be encoded in the calcium signal”, with proposals that it may
be encoded in amplitude, frequency, duration, waveforms or timing of oscillations,
and that such information is likely to be “decoded again later on” [252]. Pahle et al.
generated bivariate time series of calcium and a calcium-dependent enzyme using
their mixed-mode modelling, and analysed these with transfer entropy in order to
generate new insights into calcium signalling under different conditions. The cal-
culations were made on time series of 10 000 samples, using (box) kernel density
estimation, with embedded history length k = l = 1. Pahle et al. found that mini-
mum numbers of calcium particles were required to generate significant flows of
information, and then the information transfer increased with such numbers (over
some range). They also reported that information transfer increased with the (qual-
itative) complexity of the dynamic mode of the calcium signal, suggesting further

9 Perturbing the target time series instead of the source is not advisable, since it destroys the
relationship between the past state and next value of the target time series (which a null hypothesis
test should preserve).
10 The unvalidated remainder may be as yet unknown interactions, perhaps too weak or unimpor-
tant to be identified by previous studies, or could indeed be false identifications.
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investigation regarding whether this information is carried in specific properties of
the signal (i.e. amplitude, frequency and duration as suggested above). There are in-
teresting parallels here to the work of Laughlin et al. [177] in determining the cost
per bit of information, in terms of numbers of ATP molecules in the blowfly visual
system. This prompts the question:

Open Research Question 12: Can we determine direct relationships between
transfer entropies in biochemical networks and metabolic costs in the system?

Similarly, Damiani and Lecca [73] use transfer entropy to infer the effective net-
work underpinning the metabolic reaction network of gemcitabine (an oncological
drug), using model-generated data. They use embedded history lengths k = l = 1
for the pairwise TE computations, and while considering the use of statistical sig-
nificance calculations to infer the edges in the network, they in fact use comparison
of the TE values against a fixed threshold. Damiani and Lecca evaluate the results
against expected and unexpected interactions. They report that thresholded, pair-
wise TE used alone was overly sensitive—we should not be too surprised by this
result given the use of threshold rather than statistical significance tests here, and no
use of conditional variables to remove redundancies between potential sources here
(see Sect. 7.2). Regardless, Damiani and Lecca suggest that apparent TE could be
useful as a “hypothesis generator, whose outcomes may suggest new experiments”.
Importantly, they subsequently add a step to prune edges from the network using a
(model-based) parameter-estimation method on the resulting network to detect non-
plausible links. Damiani and Lecca conclude that their model-based pruning step
resulted in large improvements to sensitivity and accuracy.

Furthermore, we note the transfer entropy based investigation by Banerji et al.
[17] on data from the human primary naive CD4+ T cell intracellular signalling
network of 11 proteins, as generated by Sachs et al. [293]. The measure introduced
and used by Banerji et al., network transfer entropy, is inspired by TE but is model
based (considering a stochastic flow type of dynamics). Furthermore it relies on
interventions or perturbations to infer causal effect, in a similar fashion to Ay and
Polani’s causal information measure [11] (as discussed in Sect. 4.2.2.1), but without
the foundation of Pearl’s formalisms [261]. This renders its meaning subtly differ-
ent from our interpretation of information transfer. With that said, their TE-related
analysis of this data set (where perturbations were produced using reagents to acti-
vate or inhibit particular proteins) provided novel insights into the network. These
included that inhibition of a source protein PIP2 leads to increased flow from other
sources to proteins that PIP2 normally activates, which was suggested to indicate
the existence of compensatory mechanisms in the network.

Finally, a view to the future here is provided by recent work from Walker et
al. [343, 158] who pose the question:
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Open Research Question 13: What informational features “distinguish bio-
logical networks from other classes of complex physical systems”?

From a study of Boolean models of two biological regulatory networks, the authors
report that the biological networks exhibit significantly higher levels of transfer en-
tropy as compared to (surrogate) random networks, and networks with in- and out-
degrees retained for each node but the network structure randomised (referred to
as “scale-free” networks). They also report that the biological networks are distin-
guished by a “control kernel” exhibiting higher information storage, as well as high
information transfer both to and from other nodes. These interesting first results will
pave the way for further work to address this crucial question.

In summary, as our data collection and model building capabilities for biochemi-
cal networks improve, these applications provide a solid proof of concept that trans-
fer entropy will be a key analysis tool in this domain. With that said, the examples
again demonstrate the importance of careful application of TE and its related algo-
rithms.

7.5 Information Transfer in Embodied Cognitive Systems

We use the term embodied cognitive systems to refer to Artificial Life, modular
robotic, swarm, sensorimotor or multi-agent systems, whose intelligent behaviour
emerges out of the interaction between the brain or controller, body and environ-
ment (i.e. the embodiment of that brain), where the environment often includes sim-
ilar embodied agents. It is apparent that transfer entropy could play a key role in
characterising such systems, in particular in examining information flows between
actuators and sensors through the environment, or between distributed agents in the
system (whose interaction network provides a key component of the system’s em-
bodiment).

Impetus for the study of the key role of information processing in general in this
area began with early studies of information-theoretic trends with respect to evolu-
tionary time in such systems, e.g. increases in complexity in Artificial Life systems
[1, 367], and increases in excess entropy [69] in modular robots [272]. Later, studies
turned to examine the role of information in driving the evolution or adaptation of
such systems—an approach referred to as guided self-organisation [268, 269]. For
example, Sporns and Lungarella [312] evolved hand–eye co-ordination to grab a
moving object using maximisation of a measure of neural complexity,11 and demon-

11 The measure of neural complexity used is known as Tononi–Sporns–Edelman (TSE) complexity
[326]. It is an information-theoretic measure which seeks to measure complexity as a balance
between integration and segregation of components in a multivariate time series. The measure
builds on sums and differences of multi-information or integration terms (see Sect. 3.2.2.2, taken
over collections of neural variables.
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strated that this solution contained more intrinsic diversity than solutions from task-
driven evolution; the increased diversity may afford greater flexibility to the system.
Prokopenko et al. [271] evolved fast-moving snakebots using maximisation of an
information-theoretic measure of co-ordination, while Martius et al. use the same
measure to drive adaptation of various modular robotic systems and observe high
behavioural variety [217]. Also, Sperati et al. [310] observed interesting periodic
behaviour and complex structure in groups of robots which were evolved to max-
imise their mutual information.

More specifically, Prokopenko et al. suggested a key role of information trans-
fer in modular systems in underpinning co-ordinated motion (i.e. communications
between modules keeping them co-ordinated) [271]. Further work implying the im-
portance of information transfer in embodied cognition includes the concept of em-
powerment [161, 162], which suggests that maximising self-perception of influence
over the environment (measured as channel capacity between an agent’s actuators
and sensors through the environment) is a useful intrinsic selection pressure. Several
related studies have sought to characterise causal information flows in the sensori-
motor loop of embodied agents [264, 10].

In this vein, we summarise several studies applying transfer entropy to study
information flows in such systems. A seminal application of TE in this area was by
Lungarella and Sporns [206]. They hypothesised that:

Key Idea 41: Sensorimotor interaction and morphological structure induce
information structure in the sensory input and neural system, promoting in-
formation processing and flow between sensory input and motor output [206]
which can be quantified by transfer entropy.

Lungarella and Sporns produced a comprehensive study, measuring transfer entropy
in both directions between visual sensors and movement actuators in a variety of
embodied systems (i.e. a visual system tracking a moving ball, a four-legged robot
moving amongst blocks, and a wheeled robot moving amongst spheres). Transfer
entropy was measured from experiments with on the order of 1000s of (discrete)
time steps, by binning the data in eight bins, with history embedding length k = 1.
Lungarella and Sporns demonstrated that in their systems:

1. Information flow is spatially and temporally specific, with different parts of the
visual field driving and experiencing different effects over different time lags.
This is revealed more explicitly by investigations with the local transfer entropy
discussed below [192], and aligns with many other studies, including studies of
the distribution of TE in neural networks [215, 321]. In particular, information
flow was found to increase with the amount of environmental changes causing
behavioural responses, as would be expected.

2. Information flow can be affected by learning. By inducing rewards and aversion
in their systems, they found for example that larger information flows resulted
from visual sensors responding to the colour being rewarded.
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3. Information flow can be affected by changes in body morphology. They demon-
strated larger information flows when receptive fields of visual sensors were
larger for more central receptors in the retina.

Lungarella and Sporns interpret their results as suggesting a fundamental link be-
tween physical embeddedness (embodiment) and information structure.

Lizier et al. [192] introduced two key innovations for the application of transfer
entropy in this domain. The first was to invert the usual use of transfer entropy, ap-
plying it for the first time as a fitness function in the evolution of adaptive behaviour,
as an example of guided self-organisation. The second was to switch focus to us-
ing the local transfer entropy [195] (as introduced in Sect. 4.2.5) to characterise the
dynamics in the system on a local scale in space and time. Lizier et al. focussed on
a snakebot—a snake-like robot with separately controlled modules along its body,
whose individual actuation was evolved via genetic programming (GP), whilst the
actual motion emerged from the interaction between the modules and their environ-
ment. The approach altered the GP to maximise transfer entropy between adjacent
modules, measuring TE using kernel estimation. While this approach did not result
in a particularly fast-moving snake (as had been hypothesised), it did result in co-
herent travelling information waves along the snake, which were revealed only by
local transfer entropy (as shown in Fig. 7.3). These waves are akin to gliders in CAs
[195] and cascades in swarms [345]—both in terms of raw dynamics and coherent
TE characteristics. Other natural systems (where TE has not yet been studied) ap-
pear to exhibit very similar coherent propagating structures (e.g. waves of opening
and closing of stomatal apertures in plants [260], and waves of huddling motion in
Emperor penguins [371] etc., as discussed in Sect. 5.5). The results suggest that:

Key Idea 42: Such coherent wave structures may emerge as a resonant mode
in evolution for information flow.

While it is possible that these wave structures may not transfer the most information
between individual units (in all such systems), they appear robust and optimal for
coherent communication over long distances, and may be simple to construct via
evolutionary steps. Revisiting Lungarella and Sporns’ finding above [206] that TE
can be affected by learning, the snakebot experiment explicitly shows that TE can
shape learning.

In a similar vein, Nakajima et al. [235] explored the use of local TE [195] to
characterise dynamics in robotic platforms. They investigated a soft robotic arm
platform (both a simulator and physical platform) using local TE and local complete
TE (see Sect. 4.2.3). The local TE values are estimated using symbolic transfer en-
tropy [313] (see Sect. 4.3.2), with a history embedding length of k = 3 past values
used in the symbols. Nakajima et al. demonstrated that the local TE clearly reveals
the effect of external damage to the robotic arm, visualising waves of impact trav-
elling along the arm, followed by waves of corrective motion and their collision.
These local information waves are similar to those observed in [192] above. Naka-
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(a) (b) (c)

Fig. 7.3 Snakebot modules coloured to indicate incoming local transfer entropy (black is 0.0 bits,
red is 2.8 bits) from the neighbouring module toward the tail, for three consecutive time steps. The
information transfer wave from the tail appears to communicate a straightening behaviour here.
Videos of these coherent cascades of local transfer entropy in the evolved snakebot are available at
http://youtu.be/HmRI5hfaBQ8 (NB: This figure was first published in [192])

jima et al. also demonstrated a perhaps surprisingly large robustness of the local
TE measure to noise in the simulator dynamics. This robustness would be assisted
by the long time series available for analysis here (30,000 steps for the simulator),
though that effect was not quantified. The robustness is an important result because
of the noise inherent in physical robotic applications, and indeed the application to
the physical robot was upheld by results similar to the simulator.

Williams and Beer [357] also sought to characterise temporal behaviour or dy-
namics of embodied agents using transfer entropy. Their experiments involved an
agent moving along a horizontal line while observing circular objects which fall
toward it from above. The agent observes the objects with seven differently an-
gled distance-measuring rays, which are inputs to a five-node (three interneuron,
two motor neuron) recurrent neural network controlling the agent’s movement. The
parameters of the agent were evolved to observe two falling objects, and then to
minimise its distance to the second if it is smaller than the first, or to maximise that
distance if the second object is larger. Partially localised mutual information (i.e.
specific information, see Sect. 3.2.2) and transfer entropy, with k = l = 1, was mea-
sured between the specific size of the second object and the individual activation
levels of the sensors and three interneurons, as a function of time.12 The observa-
tions were discretised into 100 bins. The approach revealed the gradual appearance
and decay of information about the object size in each sensor (explained by the sen-
sor’s orientation). Furthermore, the measures revealed when, and on which neurons,
information about the object size appeared, and how this differed as a function of
the object size. Crucially,

Key Result 12: This approach using transfer entropy revealed how informa-
tion was distributed spatially and temporally in the system, allowing a precise
description of how the embodied computation took place in the agent.

12 Note that this is subtly different from the local transfer entropy as described earlier, using an
ensemble approach to measure average transfer entropy on observations taken only at a given time
step over many repeat trials (similar to the ensemble approach described in Sect. 4.3.1.1.)
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These applications, and others still (e.g. application to a chaos-controlled robot
by Lungarella et al. [205], and to analyse evolution of neural networks in an Artifi-
cial Life simulator by Lizier et al. [189]), demonstrate the ability of TE to provide
deep insights into embodied cognitive systems, and suggest strong potential for it as
a tool in future development of emergent intelligent systems.

These investigations suggest several open research questions. While transfer en-
tropy has clearly provided useful insights in these systems, its application has been
rather specifically tailored to each situation:

Open Research Question 14: What are the more important information
channels to focus on regarding information flow in embodied cognitive
systems—between nodes in an agent’s neural network, from actuators to sen-
sors through the environment, or between distributed agents in the system?

We wonder whether any particular application types or recipes for applying trans-
fer entropy in this domain will emerge as a generally useful approach to delivering
insights here, for example:

Open Research Question 15: Are there characteristics in the dynamics of
transfer entropy that can be linked to key evolutionary or adaptive steps in an
embodied agent’s development?

And finally, there is the engineering question of whether transfer entropy can be
used for information-driven design of application-specific useful behaviours:13

Open Research Question 16: Can transfer entropy or other measures of in-
formation dynamics be utilised as an application-independent, intrinsic goal
to drive the guided self-organisation of embodied cognitive systems, via adap-
tation or evolution? For which types of behaviour would this provide a useful
template (e.g. top-down causation [342])? How could the intrinsic capabil-
ity conferred by guiding for high transfer entropy then be built on to produce
application-specific utility?

13 See also e.g. the use of transfer entropy to guide the adaptation of echo state neural networks
[245], and related work using active information storage to guide adaptation of recurrent neural
networks [74].
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7.6 Information Transfer in Social Media

Social media, including Facebook and Twitter, are transforming the manner in which
people interact in their daily lives. And interestingly for researchers, their digital
footprint allows unprecedented documentation of the structure and dynamics of such
interactions. Many studies are taking advantage of this opportunity (e.g. [90, 76]),
and this includes the use of transfer entropy of course. Its inherent ability to quan-
tify the predictive effect of one variable—i.e. the actions/comments of a person here
—on another means that it is an obvious candidate to explore, for example: how
different users respond to stimuli from others, which people have the strongest pre-
dictive effects on others in such social networks, how this relates to social network
structure, and how such interactions relate to real-world ties.

Ver Steeg and Galstyan [334] analyse transfer entropy between the contents of
status events (tweets) of various users’ accounts on the Twitter social network. They
analysed a data set of one month of tweets from 770 interacting users (with at least
100 tweets each), computing TE between each pair. The first step in their anal-
ysis was to pre-process the tweets into a lower-dimensional space than the orig-
inal 140-character strings. The processing involves learning a set of topics (topic
model), then each tweet is turned into a vector of scores on each topic (a topic vec-
tor). It is these multi-dimensional values that TE was computed on. Next, the usual
TE approach was altered to consider the point-process-like nature of tweets. For
a given source–target account pair, Ver Steeg and Galstyan constructed {source,
target, target past} tuples for estimating the PDFs by taking each tweet by
the target and combining these with the most recent previous tweets of the source
and by the target. TE was then computed on the processed data by way of a KSG
estimator (with three nearest neighbours, see Sect. 4.3.1). For faster computational
speed, calculation of TE was made over subsets of 100 tweet exchanges, then aver-
aged over available subsets of this size. Ver Steeg and Galstyan thresholded the TE
values in order to infer an effective network structure (Sect. 7.2), indicating social
interactions amongst users. They then compared these inferred links to the underly-
ing social network, demonstrating two perhaps surprising findings: (i) that many of
the most predictive links were simply not present in the social network (perhaps ex-
plained by unseen common drivers), while (ii) most of the social network links did
not have high transfer entropy. Ver Steeg and Galstyan then used a local transfer en-
tropy analysis ([195], see Sect. 4.2.5; using KSG estimators here) to explore which
tweet exchanges contribute most to TE for various pairs, using this to reveal some
unseen common drivers; for example various news site feeds were identified as com-
mon drivers of pairs of users. These common drivers could perhaps be handled using
conditional TE approaches (see Sect. 4.2.3 and Sect. 7.2) if their time series were
included in the analysis. Finally, Ver Steeg and Galstyan found that strong transfer
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entropy is a statistically significant predictor of mentions on Twitter14 adding further
interpretable meaning from the measure.

Oka and Ikegami also used transfer entropy to explore dynamics in social media
and web searches [246, 247], though in contrast to exploring the relationships be-
tween users, they explored the relationships between keywords via the time-series
dynamics of their Google search and Twitter mention volumes. Oka and Ikegami
manually selected 26 keywords in [246] and 300 keywords in [247] covering bursty,
bursty with chatter and chatter with rare burst dynamics, gathering time series of
daily Google search volumes and Twitter keyword volumes over 3 months [246]
and 11 months [247]. They also randomly selected 126 keywords in [246] and 1000
keywords in [247] to analyse TE in keyword volumes within Twitter only (per hour
data). Transfer entropy was calculated by computing each of the underlying joint
entropies using permutation entropy [16] (which appears to make this calculation
equivalent to a symbolic transfer entropy [313], see Sect. 4.3.2). The calculation
used k = 1 step of history, though suggests others may have been checked. Further-
more, the calculations in [246] used a sliding time window of 18 days, allowing
some interpretation of the temporal TE dynamics. Oka and Ikegami found generally
a larger transfer from Twitter to Google, perhaps suggesting precedence of infor-
mation about real events on the Twitter network. They then provided an interesting
interpretation of their results, following suggestions of default and reactive modes
in cognition. They reported that:

Key Result 13: Inner TE activity in Twitter becomes suppressed when transfer
from Google is high, then increases as such incoming flow reduces (suggesting
activation of default mode activity following reaction to stimulus).

Additionally, they reported that more frequent keywords typically have larger outgo-
ing transfer to less frequent keywords, suggesting the internal self-sustained driving
of such default mode activities.

Considering edits to the free online encyclopaedia Wikipedia, Bauer et al. [32]
examined whether the temporal behaviour of editors was predictive of whether such
editors were connected in a social network. They applied TE analysis to time series
of the number of edits made each day by each editor, with a binary discretisation or
binning applied at various thresholds. The analysis used k = 5 past history values
of the target time series. Bauer et al. selected editors for the analysis simply from
those who had edited sample Wikipedia pages (“Elvis Presley”—1963 users, and
“Anarchism”—1218 users). They then translated the pairwise TE measurements
into an undirected effective network (i.e. applying effective network analysis, see
Sect. 7.2), by taking the maximum TE in each direction for a pair of editors, then
using a variable threshold to determine presence of links in the network. The effec-

14 Mentions being where one user is explicitly named in the status or tweet of another. At first this
may seem a trivial result, however TE here was based on related content, not mentions; the result
is that mentions are correlated to strong predictive influence of content.
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tive networks were then compared with a social network, constructed from whether
editors directly interacted in their personal Wikipedia Talk pages (used for direct
discussion between editors). They point out that this method cannot capture the
entire social network between the editors, but provides a lower bound. To inter-
pret the results, they varied the threshold for inferring the effective connections in
the TE network, and evaluated precision and recall of the social network as a func-
tion of this threshold (creating an ROC—receiver operating characteristic—profile).
Bauer et al. reported that they obtained precision (proportion of inferences which are
correct) at approximately 20 times better than random guessing for a given level of
recall (proportion of true links which are inferred), and emphasised that this should
be seen as a lower bound on the performance of the algorithm (given that the under-
lying social network is only partially known). They concluded that:

Key Result 14: If the time series of edits of a source editor on Wikipedia is
predictive of edits by a target editor (as measured by TE), then this is a useful
implication of whether the two actually interact [32].

These early results are indicative of strong potential for the use of TE in data
mining here, as the volume of data produced by social networks continues to grow.
There is much scope for further investigation here (e.g. see also [45]), in terms of
both the community settling on analysis approaches, and further applications. We
have seen several types of pre-processing here, and several types of information
channels (between users’ content, their activity timings, and even between activity
volumes on different websites):

Open Research Question 17: On which information channels in social me-
dia networks will transfer entropy prove to be most revealing of underlying
structure?

Open Research Question 18: Given high dimensionality, and limited sam-
ples per user, how should one pre-process social media data in order to best
capture the relevant information and yield to transfer entropy analysis?

7.7 Summary

In this chapter we have canvassed the wide-ranging use of transfer entropy in a suite
of fields, focussing on biochemical networks, embodied cognitive systems, social
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media, neural and other physiological data, as well as general algorithms for infer-
ring effective network structures from multivariate time-series data. These examples
showed the flexibility of the measure in being subtly adjusted to accommodate the
needs of each application, while providing novel insights in each domain. It is clear
that transfer entropy will have a growing impact in each of these fields, and the man-
ner in which it is flourishing in those suggests its continued growth into other new
domains. It is also clear from these studies that exceptional care is needed in data
processing and TE estimators to achieve robust and reliable results.



Chapter 8

Concluding Remarks

This book has surveyed an important but still emerging field. We have noted some
open research questions along the way, but now will have a brief look into the fu-
ture. The first issue (Sect. 8.1) is estimation from real-world data sets. Progress in
this area is essential for wider application. The second is gaining a deeper under-
standing of the differences between different forms of transfer entropy, especially
the significance of the global measure found to be somewhat important in the Ising
model and possibly in other forms of phase transition (Sect. 8.2). But we end the
book with a deep theoretical issue—the link between energy and transfer entropy
(Sect. 8.3).

8.1 Estimation

Much of this book has been about theory and canonical systems. If we want to
empirically calculate the transfer entropy for a spin system, cellular automaton or
any of these other abstract systems, all we need is computer power. We can simply
gather as much data as necessary to get the required statistical robustness.

The situation is rather different for real-word systems. Data is often limited, and
we may have little control over its sampling. In stock markets, briefly mentioned in
Chap. 6, the data is defined by as and when sales occurred. Estimation may be either
parametric or non-parametric.

8.1.1 Non-parametric Estimation

We saw in the discussion of mutual information that there are numerous estima-
tors, and there is no one perfect estimator. Which one performs the best depends on
the data set. Thus some empirical investigation will be needed in any given case.
Transfer entropy is usually determined as a linear combination of entropies or mu-
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tual information terms: there is very little work we know of for estimating transfer
entropy directly, with the extension of the KSG estimator to conditional mutual in-
formation and therefore TE [93, 110, 337, 350] (and see Sect. 4.3.1) being one very
notable exception. The extensive discussion on direct mutual information estimation
needs to be replicated for TE. So a simple open question is:

Open Research Question 19: How do the entropy and mutual information
estimators perform on different known statistical distributions, especially in
cases where the theoretical distribution is known [124, 144]?

We can then ask whether there are other direct estimators for TE, potentially
extending other algorithms for MI, or some other approach as yet unknown.

Open Research Question 20: Are there additional good non-parametric es-
timators for transfer entropy which avoid summation of entropic quantities,
following the extension of [93, 110, 337, 350] for KSG-style TE estimation?

Of particular interest here will be extensions of Bayesian techniques for inferring
entropies, e.g. [240], to TE.

8.1.2 Parametric Estimation

Almost universal across diverse fields is the drive to find parametric models which
simulate observed data. The GARCH models (see Sect. 4.4.3) of economic time
series are a good case in point. If we can fit a parametric model, or, even better,
have good evidence that a particular model does underlie some system, then the
estimation problem is much easier.

At one extreme, we have the maximum-likelihood estimator from Barnett and
Bossomaier [23], which not only provides a TE estimate but also yields a statistical
test of its reliability. At the other, we have an increasing number of theoretical calcu-
lations of TE for different distributions. The recent work by Hahs and Pethel [124]
provides such theoretical values for autoregressive models, which should be of con-
siderable value for economic time series.

Somewhat related to parametric estimation is a new direction in causality taken
by Sugihara et al. [319]. They point out that the stochastic methods such as
Granger causality do not work for deterministic systems, as indeed acknowledged
by Granger himself [112]. They propose new methods, which work for coupled
chaotic systems, seemingly random, but actually deterministic.
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8.1.3 Non-stationary Systems

Many real-world systems are non-stationary, thus their estimation from time-series
data runs into difficulties. There is a trade-off between accuracy of estimation of the
underlying statistics (long time series) and the need for the series to be short so that
it is stationary over the series.

One approach, where multiple time-series samples or trials are available, is
an integrated estimator which fuses both time series and ensemble [110] (see
Sect. 4.3.1.1). Another possibility is to explore Nason’s new wavelet estimators for
stationarity [236].

8.2 Systems with Many Variables

When systems have many variables, non-parametric estimation of transfer en-
tropy from empirical data becomes very challenging. The Ising model discussed
in Chap. 5 was found to need global transfer entropy, where the information flow is
evaluated from all variables except one, collectively, to that excluded variable. One
current estimator for this uses a variant, I((X1,X2,X3, ...Xn−1) : Xn) (Eqn. 8.1), of
the multi-information (Eqn. 3.14):

I((X1,X2,X3, ...Xn−1) : Xn) = I(X1 : X2 : X3 : . . .Xn)−I(X1 : X2 : X3 : . . .Xn−1). (8.1)

But calculating this is hard work. Kraskov et al. [168] get good results for dimen-
sion up to 8, but using 50,000 points with 100 repetitions! Contrast this with stock
market data where, in the Dow Jones Index we have 30 variables, and we would
have only around 260 points per year for day-close prices.

The other issue with multivariable systems is avoiding inferring indirect interac-
tions. So, if A causes B and B causes C, A might appear to cause C (also known as
a cascade effect or pathway scenario—see Sect. 4.2.3 and Sect. 7.2.2).1 Several re-
cent proposals have been made in order to remove such redundancies from effective
network inference (as well as to incorporate synergies), using conditional TEs as
described in Sect. 7.2.2. This conditioning out process is also very computationally
and data demanding.

Open Research Question 21: How can non-parametric estimators for global
TE and pairwise conditioning be improved, in terms of efficiency as well as
robustness to small data sets?

1 Similar common driver effects leading to indirect inferences are also described in these sections.
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8.3 Touching the Void: the Link to Thermodynamics

Finally we return to a deep theoretical idea: the link between information and en-
ergy. Feynman, Landauer, Bennett and others [172, 173, 34, 275] have pursued an
understanding of the energetic costs of computation. For classical systems, the over-
arching result is that destroying information costs energy, a minimum of kT ln(2)
joules per bit, where k is Boltzmann’s constant and T is absolute temperature. kT
is like a quantum of energy in quantum physics, a sort of minimal quantity of en-
ergy in any system (but it is not indivisible in the manner of quantum mechanics).
This limit holds throughout the universe, and no computer anywhere could do better
(in classical terms). But we are a very long way from reaching this thermodynamic
limit of computation.

The human brain does rather better. When the IBM computer Watson recently
beat top human players in the sophisticated TV game, Jeopardy, one thing was
down-played. Watson is a supercomputer with several thousand cores and terabytes
of main memory. It is physically huge, and consumes a huge amount of energy. The
human brain is about 10,000 times more energy efficient at the time of writing.

The brain carries out computation by sending messages between neurons, via
voltage spikes in the cerebral cortex. Thus it fuses computation and communication.
Just as kT is the effective unit of energy in thermodynamics, in animal physiology
the unit is the energy released when a molecule of adenosine triphosphate (ATP)
is converted to adenosine diphosphate (ADP). This is the near universal, indivisible
energy quantity of much animal physiology, not just brains and neurons. This energy
is about 25kT at body temperature. Lauglin et al. [177] found that the energy cost
of transmitting a bit across a chemical synapse (i.e. between neurons) was around
104 ATP molecules. So, the energy cost is about 105 kT .

But if we could build a maximally efficient computer, what would its theoreti-
cal limit to information communication be, a limit, such as that for destroying in-
formation, valid across the entire universe? The recent work by Prokopenko and
Lizier [275, 273], referred to in the opening chapter, defines such a limit. One might
guess that transferring information from one system to another would cost kT per
bit as well. In principle any measure of information flow should thus generate this
value. And, indeed it does, as Prokopenko and Lizier have shown. Thus amongst all
statistics for this and that, TE links directly to the energetics of computation.

The big open research question with which we end the book asks for experimen-
tal tests in real systems:

Open Research Question 22: Can we relate the energy of communication, in
neurons or other systems, to the transfer entropy required of the communica-
tion?
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12. L. Bachelier. Théorie de la spéculation. Gauthier-Villars, 1900.
13. R. T. Baillie. Long memory processes and fractional integration in econometrics. J. Econo-

metrics, 73:5–59, 1996.
14. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of the 1/f

noise. Physical Review Letters, 59(4):381–384, 1987.
15. M. Baker and J. Wurgler. Investor sentiment in the stock market. National Bureau of Eco-

nomic Research Cambridge, Mass., USA, 2007.
16. C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure for time series.

Physical Review Letters, 88(17), 2002.
17. C. R. S. Banerji, S. Severini, and A. E. Teschendorff. Network transfer entropy and metric

space for causality inference. Physical Review E, 87(5):052814+, May 2013.
18. A.-L. Barabási. Scale-free networks: A decade and beyond. Science, 325(5939):412–413,

2009.
19. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
20. A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: The

topology of the world-wide web. Physica A, 281:69–77, 2000.

�
T. Bossomaier et al., An Introduction to Transfer Entropy,
DOI 10.1007/978-3-319-43222-9

Springer International Publishing Switzerland 2016 171



172 References

21. A.-L. Barabási and E. Bonabeau. Scale-free networks. Scientific American, 288:50–59, 2003.
22. L. Barnett, A. B. Barrett, and A. K. Seth. Granger causality and transfer entropy are equiva-

lent for Gaussian variables. Phys. Rev. Lett., 103(23):238701, 2009.
23. L. Barnett and T. Bossomaier. Transfer entropy as a log-likelihood ratio. Phys. Rev. Lett.,

109(13):138105, 2012.
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134. M. S. Harré and T. Bossomaier. Strategic islands in economic games: Isolating economies

from better outcomes. Entropy, 16(9):5102–5121, 2014.
135. I. Harvey and T. Bossomaier. Time out of joint: Attractors in asynchronous Boolean net-

works. In P. Husbands and I. Harvey, editors, Proceedings of the 4th European Conference
on Artificial Life, pages 67–75, 1997.

136. T. Helvik, K. Lindgren, and M. G. Nordahl. Local information in one-dimensional cellular
automata. In P. M. A. Sloot, B. Chopard, and A. G. Hoekstra, editors, Proceedings of the In-
ternational Conference on Cellular Automata for Research and Industry, Amsterdam, volume
3305 of Lecture Notes in Computer Science, pages 121–130. Springer, Berlin/Heidelberg,
2004.

137. T. Helvik, K. Lindgren, and M. G. Nordahl. Continuity of information transport in surjective
cellular automata. Communications in Mathematical Physics, 272(1):53–74, 2007.
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for Computing, Jülich, Germany, 2004.



178 References
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