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Abstract. There is an exact one-to-one correspondence between the numbggr-ofl)-
dimensional partitions of an integer and the number of directed compact lattice animals in
dimensions. Using enumeration techniques, we obtain upper and lower bounds for the number of
multidimensional partitions (both restricted and unrestricted). We show that asymptotically the
number of unrestrictedd — 1)-dimensional partitions of an integergoes as ex@n@-1/4),

We also show that for restricted partitions d — 1) dimensions (with; dimensions finite,

0 < j < d — 1), this number goes as eign@—/=9/@=D(]]_, Ly¥@=)), whereLy is the

extent of the lattice along theth axis.

Partitioning of integers is a problem which has been extensively studied in number theory
[1-4]. A linear or one-dimensional partitiprof a positive integer is given by

n=ny+nz+---+ng 1)

where alln;’s are positive integers arnei, > n; 1. The partition is called an unrestricted
partition if there are no other restrictions on the value:oind ofk. The number of such
unrestricted partitiong () is given by the Hardy—Ramanujam [5] result

1 2n
pn) ~ 13 exp(n 3) . (2

In a similar manner, one can write a planar or two-dimensional partition as

ki ko
i=1 j=1

Again then;;'s are positive integers and we have the restrictign, ; > n;; andn; j_1 > n;;.

One may, in a straightforward manner, extend these definitions for partitions into dimensions
greater than two. Moment generating functions as well as the total number of restricted
as well as unrestricted partitions are known for dimensions 1 and 2 [5,6]. However, the
problem of the number of partitions in dimensions greater than two is an unsolved problem
in number theory [4-8].

T Some authors (see for example [4]) call this a two-dimensional partition.

0305-4470/97/072281+05$19.5@C) 1997 IOP Publishing Ltd 2281



2282 D P Bhatia et al

In a recent paper, Wat al [5] proposed a new kind of lattice animal called the directed
compact lattice animal (DCLA) which is constructed as follows. Consider a lattice point
k = (k1, ko, ..., kq) in d dimensions. This point can only be occupied if each of the lattice
pointsk —é;,i = 1,2, ...,d, is occupied wherg; are unit vectors along th¢ axes. The
construction of the DCLA begun by assuming that all the points (in the positive quadrant)
along thed hyperplanes ofd — 1) dimensions perpendicular to the axes are occupied. It is
easy to see that there is an exact one-to-one correspondence between the number of DCLAs
of n points ind dimensions and the number @f — 1)-dimensional partitions of. Based
on the results for one- and two-dimensional partitions, &l [5] conjectured that the
numberA,(n; L1, Lo, ..., Ly) of d-dimensional DCLAs with(d > 2) of n points goes
asymptotically as

Aq(n; Ly, Lo, ..., Ly) ~ exp(cn=D/?) (4)

whereL; is the extent of the lattice along tlith axis, provided
d

[]Li ~n/2 (5)
i=1
In this paper, we establish upper and lower boundd gio prove the following two results.
(i) For infinite lattices and: sufficiently large
logA;(n
1x H?Ti)(/d) X L2 (6)
where C; and C, (throughout this paper) are general symbols for positive finite constants
independent of: but dependent owd.
(ii) For lattices which are infinite in extent in at least two dimensions and finite in extent
in j dimensions
1< logA,;(n; Ly, 172’ . Ly <
n(d—.i—l)/(d—j)(l‘[]{,:l Lj)Y/d=p

@)

for n sufficiently large and.; < n¥/?, j’=1,2,...,j,and O< j <d — 1.

The first result is similar to the conjecture of Vit al [5]. However, the condition
given by equation (5) is not sufficient. We need to impose a stronger condition namely all
the L’s are greater than equal #&/¢ (as shown by the second result).

We now prove the first result by obtaining bounds for infinite lattices.

1. Lower bound

Consider all DCLAs formed as follows. Let = (k1, ko, ..., k) be a lattice point ind
dimensions. Let all the lattice poinkssuch that

O<ki<m fori=12...,d-1
0 < ks < mg (8)
be occupied.

Herem, = o — Zf;ll k;+ ;. Here,o = (d —1)m andWg's take on values 0 or 1 and
m is given by the equation

d-1
m (Zi +1) . ©)

All other lattice points are unoccupied. Clearly all such constructions are DCLAs.
Furthermore, the value af has been so chosen that if 8l}’s are equal to 1, the number

m?t+d-1)
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of lattice points occupied is equal to This equation, in general, does not have a solution
in integers, but the truncation involved in takingas an integer is of no significance for
the present study. In fact, it suffices for our purpose to consider only the leading term on
the left-hand side of equation (9) and takeas (2n/(d — 1))*?. However, the number of
points occupied for different combinations ¥{'s is, in general, different. This numbef
satisfies the inequality; < n’ < n, with ny =n —m“@=b,

The total number of DCLAs formed by this procedure is clear'lg‘/d’ﬁ. Since this
procedure does not count all possible DCLAs, we have the inequality

> Aay = 2" (10)
n'=n1
But A,(n) is a monotonically increasing function af We, therefore, have the inequality

d-1

(n—np)Asn) = 2" . (11)
Using the fact thatn = O(n*?), we obtain, for large enough the asymptotic inequality
log[Aq(m)]/n“~ P > Cy. (12)

2. Upper bound

We get the upper bound by induction @n The result is true fod = 3 [5]. To use the
method of induction, we try to express tielimensional DCLA of: points as a combination
of (d — 1)-dimensional DCLAs whose total number isi¥4). It is not possible to do this
in all cases using only parallel hyperplanes, sinegdmensional DCLA ofn points can
occupy points greater thart/’? in every one of thel dimensions. We, therefore, use a more
elaborate procedure. From thHedimensional DCLA, we first delete th@ — 1)-dimensional
hyperplane (perpendicular to any one of the axes) containing the largest number of points.
Clearly, this will be one of the outermost hyperplanes, that is, one of the hyperplare$
orx; =1or... x; = 1. The configuration left out after this deletion is still a DCLA and
we repeat the procedure until all points of the original DCLA are deleted. Clearly, the
number of steps for the whole process is less than equaéh¥d (:= m,). This is because,
if any point is left out aftem, steps the coordinates of the point must satisfy the inequalities
x; > mq for each ofi = 1,2, ..., d, wherem, = n'/?. By the definition of a DCLA, this
implies that all the points inside the hypercubecQ; < m1,i =1,2,...,d, are occupied
which, in turn implies that the DCLA contains more thapoints.

Now, we construct a st of lattice animals (not all of them DCLAS) using the following
procedure. First, we write down all possible one-dimensional partitions of the number
into k partitions withk < mo, wherem, = d.n*?. Let one such partition be

n=ni+nz+---+ny (13)
withn; >n;pafori=21,2,...,k—1.
We set all the numbers, =0 fork’ =k+1,k+2,...,mo. Now, we construct DCLAS
of nq, no, ..., n,, points respectively along the, hyperplanes(@—1)-dimensionaly; = 1,
X1=2,....,x1=m1,x2=1x2=2,....,xp0=m1q,...,xg=1,x3=2,...,x5 =mq Such

that the number of points on the DCLA iy = /1 is greater than or equal to that in the
hyperplanex; =1 if I; < I.

Clearly, this setS contains all the/-dimensional DCLAs of: points (and many other
configurations which are not DCLAs). Thereforg,(n), the number ofd-dimensional
DCLAs of n points is less than the cardinality| of S:

Aq(n) < |S]. (14)
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Now, we can obtain a bound fo§|, as a product of three factors.

(i) The number of one-dimensional partitions mfwith the number of partitions not
exceedingn,. This is less than the total number of unrestricted partitions. of

(ii) [T, Ay—1(n;) which is the product of the number of DCLAs id — 1) dimensions
for each of the numbers;.

(iii) The number of ways the:, hyperplanes are chosen. This number is less #ian
since at each step there are at mosthoices of choosing a hyperplane. Therefore,

Agn) <Y [ ] Aa-amiam. (15)
i=1

The sum extends over all positive integral valuesngfsuch thatn; > n;.; and
> "2 n; = n. The largest value of the product in (15) occurs when allrtfie are equal
to n/m, = n“=Y/4 /4. We note that the number of terms in the sum is less than or equal
to explc4/(n)) and also that/ is of a lower order. Using the induction hypothesis, that
is log(Ag_1(n))/n?=2/@=D < C,, we have the following asymptotic inequality for large
enoughn:

log (A4(n))

nd—1yd S G (16)

3. Finite lattices

The proof for equation (7) for finite lattices is very similar to that for infinite lattices. We
consider a lattice which hag sides of lengthd.; < n'/?,i = 1,2, ..., j, and the others
are infinite in extent.j, here, must be less thad — 1). To get a lower bound, as before,
we construct DCLAs satisfying the conditions given in equations (8—10) except that now

ki < L; i=12...,] (17)
ki <p fori=j+1...,d-1 (18)
ka < (19)

and u is given by

4 1, L+ D) | Ld—j - Dpd e+ )
Lpd=it g i 3 =n. 20
m +u 21: o+ 5 n (20)
Here,L =[]} L; andug = o/ — Y471 k; with 3] L; + (d — j — 1)'m. From equation (20),
we see thaj = O((n/L)Y@=7).
Following a procedure similar to that used for the derivation of equation (12), we get,
for n large enough, the inequality

|Og [Ad(n, Lq,..., Lj)]
(n@=j=D/@=) [1/d=)) > Cu. (21)

To obtain an upper bound faft — 2 > j > 1 we note that we have, for = 0,d > 2, the
inequality (equation (16))

log (Aq(n))

L d-D/d < Ca (22)
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Now, for j = 1 the lattice is infinite in all directions except one in which itZig(< n'/¢).
We can, therefore, express thedimensional DCLA as a combination @f; unrestricted
DCLAs each of(d — 1) dimensions. We can then write an equation similar to (15):

Ly
Agn, L) < YT [ Aaa(no). (23)
i=1

Using equation (23) and noting that the maximum occurs when each dfitRECLAs
containsni (= n/L1) points, we get the inequality for large enough ang = 1:

log (As(n; L1)) <Cy 24
n(d—Z)/(d—l)Li/(d—l)

The procedure can be extended in a straightforward manner to higher valyjés obtain
log[A4(n, Ly, ..., Lj)]
nd—j—n/d—Hijd—j -2
Combining equations (21) and (25) we obtain equation (7).
Because the starting value ds= 2, j = 0, the inequality is valid only for values of
J <d—2. From equations (9) and (10) of [5], we see that for the dase2, j =1, if L,
is less tham'/¢, (25) is not directly applicable; the denominator has to be multiplied by an
additional log factor.

(25)
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