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Abstract. There is an exact one-to-one correspondence between the number of(d − 1)-
dimensional partitions of an integer and the number of directed compact lattice animals ind

dimensions. Using enumeration techniques, we obtain upper and lower bounds for the number of
multidimensional partitions (both restricted and unrestricted). We show that asymptotically the
number of unrestricted(d − 1)-dimensional partitions of an integern goes as exp(Cn(d−1)/d ).
We also show that for restricted partitions in(d − 1) dimensions (withj dimensions finite,
0 < j < d − 1), this number goes as exp(Cn(d−j−1)/(d−j)(

∏j

k=1Lk)
1/(d−j)), whereLk is the

extent of the lattice along thekth axis.

Partitioning of integers is a problem which has been extensively studied in number theory
[1–4]. A linear or one-dimensional partition† of a positive integern is given by

n = n1+ n2+ · · · + nk (1)

where allni ’s are positive integers andni > ni+1. The partition is called an unrestricted
partition if there are no other restrictions on the value ofni and ofk. The number of such
unrestricted partitionsp(n) is given by the Hardy–Ramanujam [5] result

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
. (2)

In a similar manner, one can write a planar or two-dimensional partition as

n =
k1∑
i=1

k2∑
j=1

nij . (3)

Again thenij ’s are positive integers and we have the restrictionni−1,j > nij andni,j−1 > nij .
One may, in a straightforward manner, extend these definitions for partitions into dimensions
greater than two. Moment generating functions as well as the total number of restricted
as well as unrestricted partitions are known for dimensions 1 and 2 [5, 6]. However, the
problem of the number of partitions in dimensions greater than two is an unsolved problem
in number theory [4–8].

† Some authors (see for example [4]) call this a two-dimensional partition.
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In a recent paper, Wuet al [5] proposed a new kind of lattice animal called the directed
compact lattice animal (DCLA) which is constructed as follows. Consider a lattice point
k̄ = (k1, k2, . . . , kd) in d dimensions. This point can only be occupied if each of the lattice
points k̄ − ēi , i = 1, 2, . . . , d, is occupied wherēei are unit vectors along thed axes. The
construction of the DCLA begun by assuming that all the points (in the positive quadrant)
along thed hyperplanes of(d −1) dimensions perpendicular to the axes are occupied. It is
easy to see that there is an exact one-to-one correspondence between the number of DCLAs
of n points ind dimensions and the number of(d − 1)-dimensional partitions ofn. Based
on the results for one- and two-dimensional partitions, Wuet al [5] conjectured that the
numberAd(n;L1, L2, . . . , Ld) of d-dimensional DCLAs with(d > 2) of n points goes
asymptotically as

Ad(n;L1, L2, . . . , Ld) ∼ exp(cn(d−1)/d) (4)

whereLi is the extent of the lattice along theith axis, provided
d∏
i=1

Li ∼ n/2. (5)

In this paper, we establish upper and lower bounds onAd to prove the following two results.
(i) For infinite lattices andn sufficiently large

C1 6
logAd(n)

n(d−1)/d
6 C2 (6)

whereC1 andC2 (throughout this paper) are general symbols for positive finite constants
independent ofn but dependent ond.

(ii) For lattices which are infinite in extent in at least two dimensions and finite in extent
in j dimensions

C1 6
logAd(n;L1, L2, . . . , Lj )

n(d−j−1)/(d−j)(
∏j

j
′=1
Lj ′)1/(d−j)

6 C2 (7)

for n sufficiently large andLj ′ 6 n1/d , j ′ = 1, 2, . . . , j , and 0< j < d − 1.
The first result is similar to the conjecture of Wuet al [5]. However, the condition

given by equation (5) is not sufficient. We need to impose a stronger condition namely all
theL′js are greater than equal ton1/d (as shown by the second result).

We now prove the first result by obtaining bounds for infinite lattices.

1. Lower bound

Consider all DCLAs formed as follows. Let̄k = (k1, k2, . . . , kd) be a lattice point ind
dimensions. Let all the lattice points̄k such that

0< ki 6 m for i = 1, 2, . . . , d − 1
0< kd 6 mk̄ (8)

be occupied.
Heremk = α−

∑d−1
l=1 kl +9k̄. Here,α = (d − 1)m and9k̄ ’s take on values 0 or 1 and

m is given by the equation

md−1+ (d − 1)
md−1(m+ 1)

2
= n. (9)

All other lattice points are unoccupied. Clearly all such constructions are DCLAs.
Furthermore, the value ofm has been so chosen that if all9k̄ ’s are equal to 1, the number
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of lattice points occupied is equal ton. This equation, in general, does not have a solution
in integers, but the truncation involved in takingm as an integer is of no significance for
the present study. In fact, it suffices for our purpose to consider only the leading term on
the left-hand side of equation (9) and takem as (2n/(d − 1))1/d . However, the number of
points occupied for different combinations of9k̄ ’s is, in general, different. This numbern′

satisfies the inequalityn1 6 n′ 6 n, with n1 = n−m(d−1).
The total number of DCLAs formed by this procedure is clearly 2m(d−1)

. Since this
procedure does not count all possible DCLAs, we have the inequality

n∑
n′=n1

Ad(n
′) > 2m

d−1
. (10)

But Ad(n) is a monotonically increasing function ofn. We, therefore, have the inequality

(n− n1)Ad(n) > 2m
d−1
. (11)

Using the fact thatm = O(n1/d), we obtain, for large enoughn the asymptotic inequality

log[Ad(n)]/n
(d−1)/d > C1. (12)

2. Upper bound

We get the upper bound by induction ond. The result is true ford = 3 [5]. To use the
method of induction, we try to express thed-dimensional DCLA ofn points as a combination
of (d − 1)-dimensional DCLAs whose total number is O(n1/d). It is not possible to do this
in all cases using only parallel hyperplanes, since ad-dimensional DCLA ofn points can
occupy points greater thann1/d in every one of thed dimensions. We, therefore, use a more
elaborate procedure. From thed-dimensional DCLA, we first delete the(d−1)-dimensional
hyperplane (perpendicular to any one of the axes) containing the largest number of points.
Clearly, this will be one of the outermost hyperplanes, that is, one of the hyperplanesx1 = 1
or x2 = 1 or . . . xd = 1. The configuration left out after this deletion is still a DCLA and
we repeat the procedure until all points of the original DCLA are deleted. Clearly, the
number of steps for the whole process is less than equal todn1/d(:= m2). This is because,
if any point is left out afterm2 steps the coordinates of the point must satisfy the inequalities
xi > m1 for each ofi = 1, 2, . . . , d, wherem1 = n1/d . By the definition of a DCLA, this
implies that all the points inside the hypercube 06 xi 6 m1, i = 1, 2, . . . , d, are occupied
which, in turn implies that the DCLA contains more thann points.

Now, we construct a setS of lattice animals (not all of them DCLAs) using the following
procedure. First, we write down all possible one-dimensional partitions of the numbern

into k partitions withk 6 m2, wherem2 = d.n1/d . Let one such partition be

n = n1+ n2+ · · · + nk (13)

with ni > ni+1 for i = 1, 2, . . . , k − 1.
We set all the numbersnk′ = 0 for k′ = k+1, k+2, . . . , m2. Now, we construct DCLAs

of n1, n2, . . . , nm2 points respectively along them2 hyperplanes ((d−1)-dimensional)x1 = 1,
x1 = 2, . . . , x1 = m1, x2 = 1, x2 = 2, . . . , x2 = m1, . . . , xd = 1, xd = 2, . . . , xd = m1 such
that the number of points on the DCLA inxj = l1 is greater than or equal to that in the
hyperplanexj = l2 if l1 < l2.

Clearly, this setS contains all thed-dimensional DCLAs ofn points (and many other
configurations which are not DCLAs). Therefore,Ad(n), the number ofd-dimensional
DCLAs of n points is less than the cardinality|S| of S:

Ad(n) 6 |S|. (14)
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Now, we can obtain a bound for|S|, as a product of three factors.

(i) The number of one-dimensional partitions ofn with the number of partitions not
exceedingm2. This is less than the total number of unrestricted partitions ofn.

(ii)
∏m2
i=1Ad−1(ni) which is the product of the number of DCLAs in(d−1) dimensions

for each of the numbersni .
(iii) The number of ways them2 hyperplanes are chosen. This number is less thandm2,

since at each step there are at mostd choices of choosing a hyperplane. Therefore,

Ad(n) 6
∑ m2∏

i=1

Ad−1(ni)d
m2. (15)

The sum extends over all positive integral values ofni such thatni > ni+1 and∑m2
i=1 ni = n. The largest value of the product in (15) occurs when all theni ’s are equal

to n/m2 = n(d−1)/d/d. We note that the number of terms in the sum is less than or equal
to exp(c

√
(n)) and also thatdm2 is of a lower order. Using the induction hypothesis, that

is log(Ad−1(n))/n
(d−2)/(d−1) 6 C2, we have the following asymptotic inequality for large

enoughn:

log(Ad(n))

n(d−1)/d
6 C2. (16)

3. Finite lattices

The proof for equation (7) for finite lattices is very similar to that for infinite lattices. We
consider a lattice which hasj sides of lengthsLi 6 n1/d , i = 1, 2, . . . , j , and the others
are infinite in extent.j , here, must be less than(d − 1). To get a lower bound, as before,
we construct DCLAs satisfying the conditions given in equations (8–10) except that now

ki 6 Li i = 1, 2, . . . , j (17)

ki 6 µ for i = j + 1, . . . , d − 1 (18)

kd 6 µk′ (19)

andµ is given by

Lµd−j−1+ µd−j−1L

j∑
1

(Li + 1)

2
+ L(d − j − 1)µd−j−1(µ+ 1)

2
= n. (20)

Here,L =∏j

1Li andµk̄ = α′ −
∑d−1

1 kl with
∑j

1Li + (d− j −1)′m. From equation (20),
we see thatµ = O((n/L)1/(d−j)).

Following a procedure similar to that used for the derivation of equation (12), we get,
for n large enough, the inequality

log [Ad(n, L1, . . . , Lj )]

(n(d−j−1)/(d−j)L1/(d−j))
> C1. (21)

To obtain an upper bound ford − 2 > j > 1 we note that we have, forj = 0, d > 2, the
inequality (equation (16))

log(Ad(n))

n(d−1)/d
6 C2. (22)
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Now, for j = 1 the lattice is infinite in all directions except one in which it isL1(6 n1/d).
We can, therefore, express thed-dimensional DCLA as a combination ofL1 unrestricted
DCLAs each of(d − 1) dimensions. We can then write an equation similar to (15):

Ad(n, L1) 6
∑ L1∏

i=1

Ad−1(ni). (23)

Using equation (23) and noting that the maximum occurs when each of theL1 DCLAs
containsn1(= n/L1) points, we get the inequality forn large enough andj = 1:

log(Ad(n;L1))

n(d−2)/(d−1)L
1/(d−1)
1

6 C2. (24)

The procedure can be extended in a straightforward manner to higher values ofj to obtain

log [Ad(n, L1, . . . , Lj )]

n(d−j−1)/(d−j)L1/(d−j) 6 C2. (25)

Combining equations (21) and (25) we obtain equation (7).
Because the starting value isd = 2, j = 0, the inequality is valid only for values of

j 6 d − 2. From equations (9) and (10) of [5], we see that for the cased = 2, j = 1, if L1

is less thann1/d , (25) is not directly applicable; the denominator has to be multiplied by an
additional log factor.
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