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Abstract—In this paper, we first discuss the definition of modu-
larity ( ) used as a metric for community quality and then we
review the modularity maximization approaches which were used
for community detection in the last decade. Then, we discuss two
opposite yet coexisting problems of modularity optimization; in
some cases, it tends to favor small communities over large oneswhile
in others, large communities over small ones (so-called the resolu-
tion limit problem). Next, we overview several community quality
metrics proposed to solve the resolution limit problem and discuss
Modularity Density ( ), which simultaneously avoids the two
problems of modularity. Finally, we introduce two novel fine-tuned
community detection algorithms that iteratively attempt to improve
the community quality measurements by splitting and merging the
given network community structure. The first one, referred to as
Fine-tuned , is based onmodularity ( ), while the second is based
onModularity Density ( ) and denoted as Fine-tuned . Then,
we compare the greedy algorithm of modularity maximization
(denoted as Greedy ), Fine-tuned , and Fine-tuned on four
real networks, and also on the classical clique network and the LFR
benchmark networks, each of which is instantiated by a wide range
of parameters. The results indicate that Fine-tuned is the most
effective among the three algorithms discussed. Moreover, we show
that Fine-tuned can be applied to the communities detected by
other algorithms to significantly improve their results.

Index Terms—Community detection, fine-tuned, maximization,
modularity.

I. INTRODUCTION

M ANY networks, including Internet, citation networks,
transportation networks, email networks, and social and

biochemical networks, display community structure which con-
sists of groups of nodeswithinwhich connections are denser than
between them [1]. Detecting and characterizing such community
structure, which is known as community detection, is one of the
fundamental issues in the study of network systems. Community
detection has been shown to reveal latent yet meaningful struc-
ture in networks such as groups in online and contact-based
social networks, functional modules in protein–protein interac-
tion networks, groups of customers with similar interests in
online retailer user networks, groups of scientists in interdisci-
plinary collaboration networks, etc. [2].

In the last decade, the most popular community detection
methods have been to maximize the quality metric known as
modularity [1], [3]–[5] over all possible partitions of a network.
Such modularity optimization algorithms include greedy algo-
rithms [6]–[9], spectral methods [3], [10]–[15], extremal optimi-
zation (EO) [16], simulated annealing (SA) [17]–[20], sampling
technique [21], andmathematical programming [22].Modularity
measures the difference between the actual fraction of edges
within the community and such fraction expected ina randomized
graph with the same number of nodes and the same degree
sequence. It is widely used as a measurement of strength of the
community structures detected by the community detection algo-
rithms. However, modularity maximization has two opposite yet
coexisting problems. In some cases, it tends to split large com-
munities into two or more small communities [23], [24]. In other
cases, it tends to formlargecommunitiesbymergingcommunities
that are smaller than acertain thresholdwhichdependson the total
number of edges in the network and on the degree of inter-
connectivity between the communities. The latter problem is also
known as the resolution limit problem [23]–[25].

To solve these two issues of modularity, several community
quality metrics were introduced, including Modularity Density

[23], [24] which simultaneously avoids both of them. We
then propose two novel fine-tuned community detection algo-
rithms that repeatedly attempt to improve the quality measure-
ments by splitting and merging the given community structure.
We denote the corresponding algorithm based onmodularity ( )
as Fine-tuned , while the one based on Modularity Density
( ) is referred to as Fine-tuned . Finally, we evaluate the
greedy algorithm of modularity maximization (denoted asGree-
dy ), Fine-tuned , and Fine-tuned by using seven
community quality metrics based on ground truth communities.
These evaluations are conducted on four real networks, and also
on the classical clique network and the LFR benchmark net-
works, each of which is instantiated by a wide range of para-
meters. The results indicate that Fine-tuned is the most
effective method and can also dramatically improve the commu-
nity detection results of other algorithms. Further, all seven
quality measurements based on ground truth communities are
consistent with , but not consistent with , which implies the
superiority of Modularity Density over the original modularity.

II. REVIEW OF MODULARITY RELATED LITERATURE

In this section, we first review the definition of modularity and
the corresponding optimization approaches. Then, we discuss
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the two opposite yet coexisting problems of modularity maxi-
mization. Finally, we overview several community quality mea-
surements proposed to solve the resolution limit problem
and then discuss Modularity Density ( ) [23], [24] which
simultaneously avoids these two problems.

A. Definition of Modularity

Comparing results of different network partitioning algorithms
canbechallenging, especiallywhennetwork structure is notknown
beforehand. A concept of modularity defined in [1] provides a
measure of the quality of a particular partitioning of a network.
Modularity ( ) quantifies the community strength by comparing
the fractionof edgeswithin thecommunitywith such fractionwhen
random connections between the nodes are made. The justification
is that a community should have more links between themselves
than a random gathering of people. Thus, the value close to 0
means that the fraction of edges inside communities is no better
than the random case, and the value of 1 means that a network
community structure has the highest possible strength.

Formally, modularity ( ) can be defined as [1]

where is the set of all the communities, is a specific
community in , is the number of edges between nodes
within community , is the number of edges from the
nodes in community to the nodes outside , and is the total
number of edges in the network.

Modularity can also be expressed in the following form [3]:

where is the degree of node , is an element of the
adjacency matrix, is the Kronecker delta symbol, and
is the label of the community to which node is assigned.

Since larger means a stronger community structure, several
algorithms, which we will discuss in Section II-B, are based on
modularity optimization.

The modularity measure defined above is suitable only for
undirected and unweighted networks. However, this definition
can be naturally extended to apply to directed networks aswell as
to weighted networks. Weighted and directed networks contain
more information than undirected and unweighted ones. While
this additional information makes such networks more valuable,
it also makes them more difficult to analyze.

The revised definition of modularity that works for directed
networks is as follows [4]:

where and are the in- and out-degrees.
Although many networks can be regarded as binary, i.e., as

either having an edge between a pair of nodes or not having it,

there are many other networks for which it would be natural to
treat edges as having a certain degree of strength or weight.

The same general techniques that have been developed for
unweighted networks are applied to itsweightedcounterparts in [5]
by mapping weighted networks onto multigraphs. For non-
negative integer weights, an edge with weight in a weighted
graph corresponds to parallel edges in a corresponding multi-
graph. Although negative weights can arise in some applications,
they are rarely useful in social networks, so for the sake of brevity
we will not discuss them here. It turns out that an adjacencymatrix
of a weighted graph is equivalent to that of a multigraph with
unweighted edges. Since the structure of adjacency matrix is
independent of the edge weights, it is possible to adjust all the
methodsdeveloped for unweightednetworks to theweightedones.

It is necessary to point out that the notion of degree of a node
should also be extended for the weighted graphs. In this case,
degree of a node is defined as the sum of weights of all edges
incident to this node.

It is shown in [5] that the same definitions of modularity that
were given above hold for the weighted networks as well, if we
treat as the value that represents weight of the connection and
set .

B. Modularity Optimization Approaches

In the literature, a high value of modularity ( ) indicates a
good community structure and the partition corresponding to the
maximum value of modularity on a given graph is supposed to
have the highest quality, or at least a very good one. Therefore, it
is natural to discover communities by maximizing modularity
over all possible partitions of a network. However, it is compu-
tationally prohibitively expensive to exhaustively search all such
partitions for the optimal value of modularity since modularity
optimization is known to be NP-hard (i.e., it belongs to non-
deterministic polynomial-time hard class of problems) [26].
However, many heuristic methods were introduced to find
high-modularity partitions in a reasonable time. Those ap-
proaches include greedy algorithms [6]–[9], spectral methods
[3], [10]–[15], EO [16], SA [17]–[20], sampling technique [21],
and mathematical programming [22]. In this section, we will
review those modularity optimization heuristics.

1)Greedy Algorithms:Thefirst greedy algorithmwas proposed
by Newman [6]. It is a agglomerative hierarchical clustering
method. Initially, every node belongs to its own community,
creating altogether communities. Then, at each step, the
algorithm repeatedly merges pairs of communities together and
chooses themerger forwhich the resultingmodularity is the largest.
The change in upon joining two communities and is

where is the number of edges from community to
community and is the total degrees
of nodes in community . can be calculated in constant
time. The algorithm stopswhen all the nodes in the network are in a
single community after steps ofmerging. Then, there are
totally partitions, the first one defined by the initial step and
each subsequent one resulting from each of the subsequent
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merging steps. The partition with the largest value of
modularity, approximating the modularity maximum best, is the
result of the algorithm.At eachmergingstep, the algorithmneeds to
compute the change of modularity resulting from joining
any two currently existing communities and in order to choose
the bestmerger. Sincemerging twodisconnected communitieswill
not increase the value of modularity, the algorithm checks only the
merging of connected pairs of communities and thenumber of such
pairs is at most limiting the complexity of this part to .
However, the rows and columns of adjacent matrix corresponding
to the two merged communities must be updated, which takes

. Since there are iterations, thefinal complexity of
the algorithm is , or for sparse
networks.

Although Newman’s algorithm [6] is much faster than the
algorithm of Newman and Girvan [1] whose complexity is

, Clauset et al. [7] pointed out that the update of the
adjacent matrix at each step contains a large number of unnec-
essary operations when the network is sparse and therefore its
matrix has a lot of zero entries. They introduced data structures
for sparse matrices to perform the updating operation more
efficiently. In their algorithm, instead ofmaintaining the adjacent
matrix and computing , they maintained and updated the
matrix with entries being for the pairs of connected
communities and . The authors introduced three data struc-
tures to represent sparse matrices efficiently: 1) each row of the
matrix is stored as a balanced binary tree in order to search and
insert elements in time and also as amax-heap so as to
locate the largest element of each row in constant time; 2) another
max-heap stores the largest element of each row of the matrix so
as to locate the largest in constant time; 3) a vector is used
to save for each community . Then, in each step, the
largest can be found in constant time and the update of the
adjacent matrix after merging two communities and takes

, where and are the numbers of
neighboring communities of communities and , respectively.
Thus, the total running time is at most times the sum
of the degrees of nodes in the communities along the dendrogram
created by merging steps. This sum is in the worst case the depth
of the dendrogram times the sum of the degrees of nodes in the
network. Suppose the dendrogram has depth , then the running
time is or , when the network is
sparse and the dendrogram is almost balanced ( ).

However, Wakita and Tsurumi [8] observed that the greedy
algorithmproposedbyClauset et al. is not scalable tonetworkswith
sizes larger than 500 000 nodes. They found that the computational
inefficiency arises from merging communities in an unbalanced
manner, which yields very unbalanced dendrograms. In such cases,
the relation does not hold any more, causing the
algorithm to run at its worst-case complexity. To balance the
merging of communities, the authors introduced three types of
consolidation ratios tomeasure the balance of the community pairs
and used it with modularity to perform the joining process of
communities without bias. This modification enables the algorithm
to scale to networks with sizes up to 10 000 000. It also approx-
imates the modularity maximum better than the original algorithm.

Another type of greedy modularity optimization algorithm
different from those above was proposed by Blondel et al., and it

is usually referred to as Louvain [9]. It is divided into two phases
that are repeated iteratively. Initially, every node belongs to the
community of itself, so there are communities. In this first
phase, every node, in a certain order, is considered for merging
into its neighboring communities and the merger with the largest
positive gain is selected. If all possible gains associated with the
merging of this node are negative, then it stays in its original
community. Thismerging procedure repeats iteratively and stops
when no increase of can be achieved.

After the first phase, Louvain reaches a local maximum of .
Then, the second phase of Louvain builds a community network
based on the communities discovered in the first phase. The
nodes in the new network are the communities from the first
phase and there is a edge between two new nodes if there are
edges between nodes in the corresponding two communities. The
weights of those edges are the sum of the weights of the edges
between nodes in the corresponding two communities. The edges
between nodes of the same community of the first phase result in
a self-loop for this community node in the new network. After the
community network is generated, the algorithm applies the first
phase again on this new network. The two phases repeat itera-
tively and stop when there is no more change and consequently a
maximum modularity is obtained. The number of iterations of
this algorithm is usually very small and most of computational
time is spent in the first iteration. Thus, the complexity of the
algorithm grows like . Consequently, it is scalable to large
networks with the number of nodes up to a billion. However, the
results of Louvain are impacted by the order inwhich the nodes in
the first phase are considered for merging [27].

2) Spectral Methods: There are two categories of spectral
algorithms for maximizing modularity: 1) based on the
modularity matrix [3], [10], [11]; and 2) based on the
Laplacian matrix of a network [12]–[14].

a) Modularity optimization using the eigenvalues and
eigenvectors of the modularity matrix [3], [10], [11]:
Modularity ( ) can be expressed as [3]

where are the elements of adjacentmatrix and is the column
vector representing any division of the network into two groups. Its
elements are defined as if node belongs to the first group
and if it belongs to the second group. is the modularity
matrix with elements

Representing as a linear combination of the normalized
eigenvectors of : with , and
then plugging the result into (5) yields

where is the eigenvalue of corresponding to eigenvector .
Tomaximize above, Newman [3] proposed a spectral approach
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to choose proportional to the leading eigenvector
corresponding to the largest (most positive) eigenvalue . The
choice assumes that the eigenvalues are labeled in decreasing
order . Nodes are then divided into two
communities according to the signs of the elements in with nodes
corresponding to positive elements in assigned to one group and
all remaining nodes to another. Since the row and column sums of

are zero, it always has an eigenvector with
eigenvalue zero. Therefore, if it has no positive eigenvalue,
then the leading eigenvector is , which means that
the network is indivisible. Moreover, Newman [3] proposed to
divide network into more than two communities by repeatedly
dividing each of the communities obtained so far into two until the
additional contribution to the modularity made by the
subdivision of a community

is equal to or less than 0. in the formula above is the
generalized modularity matrix. Its elements, indexed by the
labels and of nodes within community , are

Then, the same spectral method can be applied to to
maximize . The recursive subdivision process stops when

, which means that there is no positive eigenvalue of the
matrix . The overall complexity of this algorithm is

.
However, the spectral algorithm described above has two

drawbacks. First, it divides a network into more than two com-
munities by repeated division instead of getting all the communi-
ties directly in a single step. Second, it only uses the leading
eigenvector of the modularity matrix and ignores all the others,
losing all the useful information contained in those eigenvectors.
Newman later proposed to divide a network into a set of commu-
nities with directly usingmultiple leading eigenvectors
[10]. Let be an “community-assignment”
matrix with one column for each community defined as

then the modularity ( ) for this direct division of the network is
given by

where is the trace of matrix . Defining
, where is the matrix of eigen-

vectors of and is the diagonalmatrix of eigenvalues ,
yields

Then, obtaining communities is equivalent to selecting
independent,mutually orthogonal columns .Moreover,

would be maximized by choosing the columns proportional
to the leading eigenvectors of . However, only the eigenvectors
corresponding to the positive eigenvalues will contribute posi-
tively to themodularity. Thus, the number of positive eigenvalues,
plus 1, is the upper bound of . More general modularity
maximization is to keep the leading eigenvectors.

can be rewritten as

where is a constant related to the approximation for
obtained by only adopting the first leading eigenvectors.
By selecting node vectors of dimension whose th
component is

modularity can be approximated as

where , , are the community vectors

Thus, the community detection problem is equivalent to choos-
ing such a division of nodes into groups that maximizes the
magnitudes of the community vectors while requiring that

> if node is assigned to community . Problems of this
type are called vector partitioning problems.

Although [10] explored usingmultiple leading eigenvectors of
the modularity matrix, it did not pursue it in detail beyond a two-
eigenvector approach for bipartitioning [3], [10]. Richardson
et al. [11] provided a extension of these recursive bipartitioning
methods by considering the best two-way or three-way division
at each recursive step to more thoroughly explore the promising
partitions. To reduce the number of partitions considered for the
eigenvector-pair tripartitioning, the authors adopted a divide-
and-conquer method and as a result yielded an efficient approach
whose computational complexity is competitive with the two-
eigenvector bipartitioning method.

b) Modularity optimization using the eigenvalues and
eigenvectors of the Laplacian matrix [12]–[14]: Given a
partition (a set of communities) and the corresponding
“community-assignment” matrix , White and Smyth
[12] rewrote modularity ( ) as follows:

where and the elements of are . The
matrix is called the “Q-Laplacian.” Finding the
“community-assignment” matrix that maximizes above is
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NP-complete, but a good approximation can be obtained by
relaxing the discreteness constraints of the elements of and
allowing them to assume real values. Then, becomes a
continuous function of and its extremes can be found by
equating its first derivative with respect to to zero. This leads
to the eigenvalue equation

�

where� is the diagonal matrix of Lagrangian multipliers. Thus,
the modularity optimization problem is transformed into the
standard spectral graph partitioning problem. When the network
is not too small, can be approximated well, up to constant
factors, by the transition matrix obtained by
normalizing so that all rows sum to one. Here, is the
diagonal degreematrix of . It can be shown that the eigenvalues
and eigenvectors of are precisely and�, where and�
are the solutions to the generalized eigenvalue problem
� �, where is the Laplacian matrix.

Thus, the underlying spectral algorithm here is equivalent to
the standard spectral graph partitioning problem which uses the
eigenvalues and eigenvectors of the Laplacian matrix.

Based on the above analysis, White and Smyth proposed two
clustering algorithms, named “Algorithm Spectral-1” and “Al-
gorithm Spectral-2,” to search for a partition with size up to
predefined by an input parameter. Both algorithms take the
eigenvector matrix with the leading

eigenvectors (excluding the trivial all-ones eigenvector)
of the transition matrix as input. Those eigenvectors
can be efficiently computed with the implicitly restarted Lanczos
method (IRLM) [28]. “Algorithm Spectral-1” uses the first
( ) columns of , denoted as , and clusters the
row vectors of using -means to find a -way partition,
denoted as . Then, the with size that achieves the largest
value of is the final community structure.

“Algorithm Spectral-2” starts with a single community ( )
and recursively splits each community into two smaller ones if the
subdivision produces a higher value of . The split is done by
running -meanswith two clusters on thematrix formed from

by keeping only rows corresponding to nodes in . The
recursive procedure stops when no more splits are possible or
when communities have been found and then the final
community structure with the highest value of is the detection
result.

However, the two algorithms described above, especially
“Algorithm Spectral-1,” scale poorly to large networks because
of running -means partitioning up to times. Both approaches
have a worst-case complexity . In order to
speed up the calculation while retaining effectiveness in approx-
imating the maximum of , Ruan and Zhang [13] proposed the
Kcut algorithm which recursively partitions the network to
optimize . At each recursive step,Kcut adopts a -way partition
( ) to the subnetwork induced by the nodes and
edges in each community using “Algorithm Spectral-1” ofWhite
and Smyth [12]. Then, it selects the that achieves the highest .
Empirically, Kcut with as small as 3 or 4 can significantly
improve over the standard bipartitioning method and it also
reduces the computational cost to for a
final partition with communities.

Ruan and Zhang later [14] proposed QCUT algorithm whose
name is derived from modularity ( ) partitioning (CUT), that
combines Kcut and local search to optimize . The QCUT
algorithm consists of two alternating stages: 1) partitioning and
2) refinement. In the partitioning stage, Kcut is used to recur-
sively partition the network until cannot be further improved.
In the refinement stage, a local search strategy repeatedly considers
two operations. The first one is migration that moves a node from
its current community to another one and the second one is the
mergeof two communities into one.Both are applied to improve
as much as possible. The partitioning stage and refinement stage
are alternating until cannot be increased further. In order to solve
the resolution limit problem of modularity, the authors proposed
stading for hierarchical QCUT (HQCUT ) which recursively
appliesQCUT to divide the subnetwork, generated with the nodes
and edges in each community, into subcommunities. Further, to
avoid overpartitioning, they use a statistical test to determine
whether a community indeed has intrinsic subcommunities.

c) Equivalence of two categories of spectral algorithms for
maximizing modularity [15]: Newman [15] showed that with
hyperellipsoid relaxation, the spectral modularity maximization
method using the eigenvalues and eigenvectors of themodularity
matrix can be formulated as the spectral algorithm that relies on
the eigenvalues and eigenvectors of Laplacian matrix. This
formulation indicates that the above two kinds of modularity
optimization approaches are equivalent. Starting with (5) for the
division of a network into two groups, first the discreteness of
is relaxed onto a hyperellipsoid with the constraint

Then, the relaxed modularity maximization problem can be
easily solved by setting thefirst derivative of (5) with respect to
to zero. This leads to

or in matrix notation

where is the eigenvalue. Plugging (20) into (5) yields

Therefore, to achieve the highest value of , one should chose
to be the largest (most positive) eigenvalue of (21). Using (6),

(20) can be rewritten as

or in matrix notion as

where is the vector with element and .
Then, multiplying (24) by results in . If there
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is a nontrivial eigenvalue > , then the above equation
simplifies to

Again, should be themost positive eigenvalue. However, the
eigenvector corresponding to this eigenvalue is the uniform
vector which fails to satisfy . Thus, in this case,
one can do the best by choosing to be the second largest
eigenvalue and having proportional to the corresponding
eigenvector. In fact, this eigenvector is precisely equal to the
leading eigenvector of (21). Then, after defining a rescaled vector

and plugging it into (25), we get

The matrix is called the normalized
Laplacian matrix. (The normalized Laplacian is sometimes
defined as , but those two differ only
by a trivial transformation of their eigenvalues and eigenvectors.)

3) Extremal Optimization: Duch and Arenas [16] proposed a
modularity optimization algorithm based on the EO [29]. EO
optimizes a global variable by improving extremal local
variables. Here, the global variable is modularity ( ). The
contribution of an individual node to of the whole
network with a certain community structure is given by

where is the number of edges that connect node to the nodes
in its own community . Note that and can be
normalized into the interval by dividing it by

where , calledfitness, is the relative contribution of node to .
Then, the fitness of each node is adopted as the local variable.

The algorithm starts by randomly splitting the network into
two partitions of equal number of nodes, where communities are
the connected components in each partition. Then, at each
iteration, it moves the node with the lowest fitness from its own
community to another community. The shift changes the com-
munity structure, so the fitness of many other nodes needs to be
recomputed. The process repeats until it cannot increase . After
that, it generates sub-community networks by deleting the inter-
community edges and proceeds recursively on each sub-com-
munity network until cannot be improved. Although the
procedure is deterministic when given the initialization, its final
result in fact depends on the initialization and it is likely to get
trapped in local maxima. Thus, a probabilistic selection called
-EO [29] in which nodes are ranked according to their fitness

and a node of rank is selectedwith the probability is
used to improve the result. The computational complexity of this
algorithm is .

4) Simulated Annealing: SA [30] is a probabilistic procedure
for the global optimization problem of locating a good
approximation to the global optimum of a given function in a
large search space. This technique was adopted in [17]–[20] to
maximize modularity ( ). The initial point for all those

approaches can be arbitrary partitioning of nodes into
communities, even including communities in which each
node belongs to its own community. At each iteration, a node
and a community are chosen randomly. This community could
be a currently existing community or an empty community
introduced to increase the number of communities. Then,
node is moved from its original community to this new
community , which would change by . If is
greater than zero, this update is accepted, otherwise it is
accepted with probability where in [17]–[19]
represents the inverse of temperature and in [20] is the
reciprocal of pseudo temperature . In addition in [20], there is
one more condition for the move of a node when is not empty,
shifting node to is considered only if there are some edges
between node and the nodes in . To improve the performance
and to avoid getting trapped in local minima, collective
movements which involve moving multiple nodes at a time
[19], [20], merging two communities [17]–[19], and splitting
a community [17]–[19] are employed. Splits can be carried out in
a number of different schemes. The best performance is achieved
by treating a community as an isolated subnetwork and
partitioning it into two and then performing a nested SA on
these partitions [17], [18]. Those methods stop when no new
update is accepted within a fixed number of iterations.

5) Sampling Techniques: Sales-Pardo et al. [21] proposed a
“box-clustering”method to extract the hierarchical organization
of networks. This approach consists of two steps: 1) estimating
the similarity, called “node affinity,” between nodes and forming
the node affinity matrix; and 2) deriving hierarchical community
structure from the affinitymatrix. The affinity between two nodes
is the probability that they are classified into the same community
in the local maxima partitions of modularity. The set of local
maxima partitions, called , includes those partitions for
which neither the moving of a node from its original community
to another, nor the merging of two communities will increase the
value ofmodularity. The sample is found by performing the
SA-based modularity optimization algorithm of Guimerá and
Amaral [17], [18]. More specifically, the algorithm first
randomly divides the nodes into communities and then
performs the hill-climbing search until a sample with local
maximum of modularity is reached. Then, the affinity matrix
is updated based on the obtained sample.

The sample generation procedure is repeated until the affinity
matrix has converged to its asymptotic value. Empirically, the
total number of samples needed is proportional to the size of the
network. Before proceeding to the second step, the algorithm
assesses whether the network has a significant community
structure or not. It is done by computing the -score of the
average modularity of the partitions in with respect to the
average modularity of the partitions with the local modularity
maxima of the equivalent ensemble of null model networks. The
equivalent null model is obtained by randomly rewiring the
edges of the original network while retaining the degree se-
quence. Large -score indicates that the network has a meaning-
ful internal community structure. If the network indeed has a
significant community structure, the algorithm advances to the
second step to group nodes with large affinity close to each other.
The goal is to bring the form of the affinity matrix as close as
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possible to block-diagonal structure by minimizing the cost
function representing the average distance of matrix elements
to the diagonal. Then, the communities corresponds to the “best”
set of boxes obtained by least-squares fitting of the block-
diagonal structure to the affinitymatrix. The procedure described
above can be recursively performed to subnetworks induced by
communities to identify the low level structure of each commu-
nity until no subnetwork is found to have significant intrinsic
structure.

6) Mathematical Programming: Agarwal and Kempe [22]
formulated the modularity maximization problem as a linear
program and vector program which has the advantage of
providing a posteriori performance guarantees. First, modularity
maximization can be transformed into the integer program

where is the modularity matrix and the objective function is
linear in the variable .When , and belong to the same
community and indicates that they are in different
communities. The restriction requires that and
are in the samecommunity if and only if , , and are in the same

community. Solving the above integer program is NP-hard, but
relaxing the last constraint that is a integer from to allow

be a real number in the interval [0, 1] reduces the integer
program to a linear program which can be solved in polynomial
time [31]. However, the solution does not correspond to a partition
when any of is fractional. To get the communities from , a
rounding step is needed. The value of is treated as the distance
between and and these distances are used repeatedly to form
communities of “nearby” nodes. Moreover, optimizing modu-
larity by dividing a network into two communities can be
considered as a strict quadratic program

where the objective function is the same as (5) defined byNewman
[3]. Note that the constraint ensures that which
implies that node belongs either to the first or the second
community. Quadratic programming is NP-complete, but it
could be relaxed to a vector program by replacing each variable
with -dimensional vector and replacing the scalar product

with the innervector product. The solution to vector program isone
location per node on the surface of a -dimensional hypersphere.
To obtain a bipartition from these node locations, a rounding step is
needed which chooses any random -dimensional
hyperplane passing through the origin and uses this hyperplane
to cut the hypersphere into two halves and as a result, separate the
node vectors into two parts. Multiple random hyperplanes can be
chosen and the one that gets the community structure with the
highest modularity provides a solution. The same vector program
is then recursively applied to subnetworks generated with nodes
and edges in discovered communities to get hierarchical

communities until cannot be increased. Following the linear
program and vector program, Agarwal and Kempe also adopted a
post-processing step similar to the local search strategy proposed
by Newman [3] to further improve the results.

C. Resolution Limit

Since its inception, the modularity has been used extensively
as the measure of the quality of partitions produced by commu-
nity detection algorithms. In fact, if we adopt modularity as a
quality measure of communities, the task of discovering com-
munities is essentially turned into the task of finding the network
partitioning with an optimal value of modularity.

However as properties of the modularity were studied, it was
discovered that in some cases it fails to detect small communities.
There is a certain threshold [25], such that a community of the
size below it will not be detected even if it is a complete subgraph
connected to the rest of the graph with a single edge. This
property of modularity has been known as the resolution limit.

Although the resolution limit prevents detection of small com-
munities, the actual value of the threshold depends on the total
number of edges in the network and on the degree of interconnec-
tedness between communities. In fact, the resolution limit can reach
the values comparable to the size of the entire network causing
formation of a fewgiant communities (or even a single community)
and failing to detect smaller communities within them. It makes
interpreting the results of community detection very difficult
because it is impossible to tell beforehand whether a community
is well-formed or if it can be further split into subcommunities.

Considering modularity as a function of the total number of
edges and the number of communities makes it possible to
find the values of and whichmaximize this function. It turns

out that setting yields the absolute maximal value of
modularity. Consequently, modularity has a resolution limit of

order which bounds the number and size of communities
[25]. In fact, if for a certain community, the number of edges inside

it is smaller than , such community cannot be resolved

through the modularity optimization. It is also possible for mod-
ularity optimization to fail to detect communities of larger size if
they have more edges in common with the rest of the network.
Therefore, by finding the optimal value of the modularity, we are
generally not obtaining the best possible structure of communities.

The above arguments can also be applied toweightednetworks.
In this case, is the sum of the weights of all the edges in the
network, is the sum of the weights of the edges between
nodeswithin community , and is the sumof theweights of
the edges from the nodes in community to the nodes outside .

By introducing an additional parameter , which represents the
weight of inter-community edges, Berry et al. showed in [32] that
the number of communities in the optimal solution is

Correspondingly, any community for which its size

<

may not be resolved.
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Introduction of brings some interesting opportunities. If we
can make arbitrarily small, then we can expect maximum
weighted modularity to produce any desired number of commu-
nities. In other words, given a proper weighting, a much better
modularity resolution can be achieved than without weighting.
However, in practice, finding a way to set edgeweights to achieve
small values of can be challenging. An algorithm for lowering
proposed by Berry et al. requires time.

D. Resolving the Resolution Limit Problem

There have been extensive studies done on how tomitigate the
consequences of the modularity resolution limit. The main
approaches followed are described below.

Localized modularity measure ( ) [33] is based on the
observation that the resolution limit problem is caused by
modularity being a global measure since it assumes that edges
between any pairs of nodes are equally likely, including con-
nectivity between the communities. However, inmany networks,
the majority of communities have edges to only a few other
communities, i.e., exhibit a local community connectivity.

Thus, a local version of the modularity measure for a directed
network is defined as

where is the total number of edges in the neighboring
communities of , i.e., in the communities towhich all neighbors
of belong.

Unlike traditional modularity ( ), the local version of modu-
larity (LQ) is not bounded above by 1. The more locally
connected communities a network has, the bigger its LQ can
grow. In a network, where all communities are connected to each
other, LQ yields the same value as . LQ considers individual
communities and their neighbors, and therefore provides a
measure of community quality that is not dependent on other
parts of the network. The local connectivity approach can be
applied not only to the nearest neighboring communities, but also
to the second or higher neighbors as well.

Arenas et al. proposed a multiple resolution method [34]
which is based on the idea that it might be possible to look at
the detected community structure at different scales. From this
perspective, themodularity resolution limit is not a problem but a
feature. It allows choosing a desired resolution level to achieve
the required granularity of the output community structure using
the original definition of modularity.

The multiple resolution method is based on the definition of
modularity given by (1). Themodularity resolution limit depends
on the total weight . By varying the totalweight, it is possible
to control the resolution limit, effectively performing community
detection at different granularity levels. Changing the sum of
weights of edges adjacent to every node by some value results
in rescaling topology by a factor of . Since the resolution limit is
proportional to , the growth of the resolution limit is slower
than that of . Consequently, it would be possible to achieve a
scale at which all required communities would be visible to the
modularity optimization problem.

Caution should be exercised when altering the weights of
edges in the network to avoid changing its topological char-
acteristics. To ensure this, a rescaled adjacency matrix can be
defined as

where is the adjacency matrix and is the identity matrix.
Since the original edge weights are not altered, preserves all
common features of the network: distribution of sum of weights,
weighted clustering coefficient, eigenvectors, etc. Essentially,
introducing results in a self-loop of weight being added to
every node in the network.

Optimizing the modularity for the rescaled topology is
performed by using the modularity at scale as the new quality
function

where is the number of nodes in community and
. It yields larger communities for smaller

values of and smaller communities for larger values of . By
performingmodularity optimization for different values of , it is
possible to analyze the community structure at different scales.

Parameter can also be thought as representing resistance of a
node to become part of a community. If is positive, we can
obtain a network community structure that is more granular than
what was possible to achieve with the original definition of
modularity ( ) which corresponds to being zero. Making
negative zooms out of the network and provides a view of super
communities.

Further studies of themultiple resolution approach revealed that
it suffers from two major issues outlined in [35]. First, when the
value of the resolution parameter is low it tends to group together
small communities. Second, when the resolution is high, it splits
large communities. These trends are opposite for networks with a
large variation of community sizes.Hence, it is impossible to select
a value of the resolution parameter, such that neither smaller nor
larger communities are adversely affected by the resolution limit.A
network can be tested for susceptibility to the resolution problem
by examining its clustering coefficient, i.e., a degree to which
nodes tend to form communities. If the clustering coefficient has
sharp changes, it indicates that communities of substantially
different scales exist in this network. The result is that when the
value of is sufficiently large, bigger communities get broken up
before smaller communities are found. This applies also to other
multiple resolution methods and seems to be a general problem of
the methods that are trying to optimize some global measure.

The hierarchical multiresolution method proposed by Granell
et al. in [36] overcomes the limitations of the multiple resolution
method on networks with very different scales of communities. It
achieves that by introducing a new hierarchical multiresolution
scheme that works even in cases of community detection near the
modularity resolution limit. The main idea underlying this
method is based on performing multiple resolution community
detection on essential parts of the network, thus analyzing each
part independently.
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The method operates iteratively by first placing all nodes in a
single community. Then, it finds the minimum value of the
resistance parameter which produces a community structure
with the optimal value of modularity. Finally, it runs the same
algorithm on each community that was found. The method
terminates when no more split of communities is necessary,
which usually takes just a few steps.

Another approach to leveraging the results of modularity
optimization has been introduced by Chakraborty et al. in [27].
It is based on the observation that a simple change to the order
of nodes in a network can significantly affect the community
structure. However, a closer examination of the communities
produced in different runs of a certain community detection
algorithm reveals that for many networks the same invariant
groups of nodes are consistently assigned to the same communi-
ties. Such groups of nodes are called constant communities. The
percentage of constant communities varies depending on the
network. Constant communities are detected by trying different
node permutations while preserving the degree sequence of the
nodes. For networks that have strong community structure, the
constant communities detected can be adopted as a pre-processing
step before performing modularity optimization. This can lead to
higher modularity values and lower variability in results, thus
improving the overall quality of community detection.

In the study [37] by Li et al., a new quantitative measure for
community detection is introduced. It offers several improve-
ments over the modularity ( ), including elimination of the
resolution limit and ability to detect the number of communities.
The new measure called modularity density ( ) is based on the
average degree of the community structure. It is given by

The quality of the communities found is then described by the
value of the modularity density ( ). The larger the value of ,
the stronger the community structure is.

The modularity density ( ) does not divide a clique into two
parts, and it can resolve most modular networks correctly. It can
also detect communities of different sizes. This second property
can be used to quantitatively determine the number of commu-
nities, since themaximum value is achieved when the network
is supposed to correctly partitioned. Although as mentioned in
[37] finding an optimal value of modularity density ( ) is NP-
hard (i.e., it belongs to Non-deterministic Polynomial-time hard
class of problems) but, it is equivalent to an objective function of
the kernel means clustering problem for which efficient
computational algorithms are known.

Traag et al. in [38] introduce a rigorous definition of the
resolution-limit-free method for which considering any induced
subgraph of the original graph does not cause the detected
community structure to change. In other words, if there is an
optimal partitioning of a network (with respect to some objective
function), and for each subgraph induced by the partitioning it is
also optimal, then such objective function is called resolution-
limit-free. An objective function is called additive for a certain
partitioning if it is equal to the sum of the values of this objective
function for each of the subgraphs induced by the partitioning.

Based on these two definitions, it is proved that if an objective
function is additive and there are two optimal partitions, then any
combination of these partitions is also optimal. In case of a
complete graph, if an objective function is resolution-limit-free,
then an optimal partitioning either contains all the nodes (i.e.,
there is only one community which includes all nodes) or
consists of communities of size 1 (i.e., each node forms a
community of its own). A more general statement for arbitrary
objective functions is also true: if an objective function has local
weights (i.e., weights that do not change when considering
subgraphs), then it is resolution-limit-free. Although the con-
verse is not true, there is only a relatively small number of special
cases when methods with nonlocal weights are resolution-limit-
free.

The authors then analyze resolution-limit-free within the
framework of the first principle Potts model [39]

H

where , are some weights. The intuition behind this
formula is that a community should have more edges inside it
than edges which connect it to other communities. Thus, it is
necessary to reward existing links inside a community and
penalize links that are missing from a community. The smaller
the value ofH is, the more desirable the community structure is.
However, the minimal value might not be unique.

Given the definition of H, it is possible to describe various
existing community detection methods with an appropriate
choice of parameters, as well as propose alternative methods.
The following models are shown to fit into H: Reichardt
and Bornholdt (RB), Arenas, Fernándes, and Gómez (AFG),
Ronhovde and Nussinov (RN) as well as the label propagation
method. RB approach with a configuration null model also
covers the original definition of modularity. The authors also
propose a new method called constant Potts model (CPM) by
choosing and , where is the weight of
the edge between nodes and , and is a constant. CPM is
similar to RB and RN models, but is simpler and more intuitive.
CPM and RN have local weights and are consequently resolution-
limit-free, while RB, AFG, and modularity are not.

However, all of the above approaches are aimed at solving
only the resolution limit problem. Work done by Chen et al. in
[23] and [24] adopts a different definition of modularity density
which simultaneously addresses two problems of modularity. It
is done bymixing two additional components, Split Penalty (SP)
and the community density, into the well-known definition of
modularity. Community density includes internal community
density and pair-wise community density. is the fraction of
edges that connect nodes of different communities

The value of SP is subtracted frommodularity, while the value
of the community density is added to modularity and SP.
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Introducing SP resolves the issue of favoring small communities.
Community density eliminates the problem of favoring large
communities (also known as the resolution limit problem). The
Modularity Density ( ) is then given by

where is the internal density of community and is the
pair-wise density between community and community .

Modularity Density ( ) avoids falling into the trap of
merging two or more consecutive cliques in the ring of cliques
network or dividing a clique into two or more parts. It can also
discover communities of different sizes. Thus, using solves
both the resolution limit problem of modularity and the problem
of splitting larger communities into smaller ones. Hence, is a
very effective alternative to .

III. MAXIMIZING MODULARITY DENSITY

In our previous papers [23], [24], we have given the definition
of Modularity Density ( ). With formal proofs and experi-
ments on two real dynamic datasets (Senate dataset [40] and
Reality Mining Bluetooth Scan data [41]), we demonstrated that

solves the two opposite yet coexisting problems of modu-
larity: 1) the problem of favoring small communities; and 2) the
problem of favoring large communities (also called the resolu-
tion limit problem). Moreover, for a given community in
defined by (39), its internal and pair-wise densities and its split
penalty are local components, which are related to the resolution-
limit-free definition in [38]. Therefore, it is reasonable to expect
that maximizing would discover more meaningful commu-
nity structure than maximizing . In this section, we first
illustrate why the greedy agglomerative algorithm for increasing

cannot be adopted for optimizing . Then, we propose a
fine-tuned community detection algorithm that repeatedly at-
tempts to improve the community quality measurements by
splitting and merging the given network community structure
to maximize .

A. Greedy Algorithm Fails to Optimize

In this section, we show why the greedy agglomerative
algorithm increasing fails to optimize it. At the first step
of the greedy algorithm for increasing , each node is treated as
a single community. Then, of each node or community is

. Therefore, in order to increase the most, the
greedy algorithm would first merge the connected pair of nodes
with the sum of their degrees being the largest among all

connected pairs. However, it is very likely that those two nodes
belong to two different communities, which would finally result
in merging those two communities instead of keeping them
separate. This will result in a much lower value of for such
a merged community compared to for its components,
demonstrating the reason for greedy algorithm failure in
optimizing .

For example, in the network example in Fig. 1, the initial
values of for nodes 1,2,4,6,7, and 8 with degree 3 are

, while the initial values of for nodes
3 and 5 with degree 4 are . Then, greedy
algorithm would first merge nodes 3 and 5, which would finally
lead to a single community of the whole eight nodes. However,
the true community structure contains two clique communities.
Accordingly, the of the community structure with two clique
communities 0.4183 is larger than that of the community struc-
ture with one single large community 0.2487. So, maximizing

properly should have the ability to discover the true com-
munity structure.

B. Fine-Tuned Algorithm

In this part, we describe a fine-tuned community detection
algorithm that iteratively improves a community quality metric

by splitting and merging the given network community
structure. We denote the corresponding algorithm based on
modularity ( ) asFine-tuned and the one based onModularity
Density ( ) as Fine-tuned . It consists of two alternating
stages: 1) split stage and 2) merging stage.

Algorithm 1 Split_Communities ( , )

1: Initialize comWeights , comEdges , and
comDensities which respectively contain #weights,
#edges, and the density inside the communities and between
two communities by using the network and the community
list ;

2: //Get the metric value for each community.

3: ( , comWeights, comDensities);

4: for to do

5: ;

Fig. 1. A simple network with two clique communities. Each clique has four
nodes and the two clique communities are connected to each other with one single
edge.
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6: ;

7: ;

8: (fiedlerVector, ‘descend’);

9: //Form divisions and record the best one.

10: splitTwoCom.addAll(nodeIds);

11: for to do

12: splitOneCom.add(nodeIds );

13: splitTwoCom.remove(nodeIds );

14: Calculate for the split at ;

15: ;

16: if < (or > ) then

17: ;

18: ;

19: end if

20: end for

21: if > (or < ) then

22: Clear splitOneCom and splitTwoCom;

23: splitOneCom.addAll(nodeIds );

24: splitTwoCom.addAll(nodeIds );

25: newC.add(splitOneCom);

26: newC.add(splitTwoCom);

27: else

28: newC.add( );

29: end if

30: end for

31: return newC

In the split stage, the algorithm will split a community into
two subcommunities and based on the ratio-cut method if
the split improves the value of the quality metric. The ratio-cut

method [42] finds the bisection that minimizes the ratio ,

where is the cut size (namely, the number of edges
between communities and ), while and are sizes
of the two communities. This ratio penalizes situations in which
either of the two communities is small and thus favors balanced
divisions over unbalanced ones. However, graph partitioning
based on the ratio-cut method is a NP-complete problem. Thus,
we approximate it by using the Laplacian spectral bisection
method for graph partitioning introduced by Fiedler [43], [44].

First, we calculate the Fiedler vector which is the eigenvector
of the network Laplacian matrix corresponding to
the second smallest eigenvalue. Then, we put the nodes corre-
sponding to the positive values of the Fiedler vector into one
group and the nodes corresponding to the negative values into the
other group. The subnetwork of each community is generated

with the nodes and edges in that community. Although the ratio-
cut approximated with spectral bisection method does allow
some deviation for the sizes and to vary around the
middle value, the right partitioning may not actually divide the
community into two balanced or nearly balanced ones. Thus, it is
to some extent inappropriate and unrealistic for community
detection problems. We overcome this problem by using the
following strategies. First, we sort the elements of the Fiedler
vector in descending order, then cut them into two communities
in each of the possible ways and calculate the correspond-
ing change of the metric values of all the divisions.
Then, the one with the best value (largest or smallest depending
on the measurement) of the quality metric among all
the divisions is recorded. We adopt this best division to
the community only when > (or <
depending on the metric). For instance, we split the community
only when is larger than zero.

The outline of the split stage is shown in Algorithm 1. The
input is a network and a community list, and the output is a list of
communities after splitting. The initialization part has
complexity. Computing Fiedler vector using Lanczos method
[28] needs steps, where is the
number of eigenvectors needed and is the number of iterations
required for the Lanczos method to converge. Here, is 2 and
is typically very small although the exact number is not generally
known. So, the complexity for calculating Fiedler vector is

. Sorting the Fiedler vector has the cost

. The search of the best division from all the
possible ones (per community ) for all the communities

is achieved in time. For the possible divisions of a
community , each one differs from the previous one by the
movement of just a single node fromone group to the other. Thus,
the update of the total weights, the total number of edges, and the
densities inside those two split communities and between those
two communities to other communities can be calculated in time
proportional to the degree of that node. Thus, all nodes can be
moved in time proportional to the sum of their degrees which is
equal to . Moreover, for Fine-tuned , computing

costs because all the communities are
traversed to update the SP for each of the divisions of
each community . All the other parts have complexity less than
or at most . Thus, the computational complexity for the
split stage of Fine-tuned is , while for
Fine-tuned it is .

Algorithm 2 Merge_Communities ( , )

1: Initialize comWeights , comEdges , and
comDensities ;

2: //Get the metric value for each community.

3: ;

4: for to do

5: for to do

6: //Doesn’t consider disconnected communities.
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7: if &&
then

8: continue;

9: end if

10: Calculate for merging and ;

11: ;

12: //Record the merging information with descend-
ing in a red-black tree

13: if > (or < ) then

14: mergedInfos.put([ , , ]);

15: end if

16: end for

17: end for

18: //Merge the community with the one that improves the value
of the quality metric the most

19: while mergedInfos.hasNext() do

20: ;

21: if !mergedComs.containsKey(comId1) &&
!mergedComs.containsKey(comId2) then

22: mergedComs.put(comId1,comId2);

23: mergedComs.put(comId2,comId1);

24: end if

25: end while

26: for to do

27: ;

28: if mergedComs.containsKey( ) then

29: ;

30: if < then

31: .addAll( .get(comId2));

32: end if

33: end if

34: newC.add( );

35: end for

36: return newC;

In the merging stage, the algorithmwill merge a community to
its connected communities if the merging improves the value of
the quality metric. If there are many mergers possible for a
community, the one, unmerged so far, which improves the
quality metric the most is chosen. Hence, each community will
only be merged at most once in each stage. The outline of the
merging stage is shown in Algorithm 2. The input is a network
and a community list, and the output is a list of communities after

merging. The initialization part has the complexity . For
Fine-tuned , the two “for loops” for merging any two commu-

nities have the complexity because calculating
is and inserting an element into the red-black

tree is since the maxi-

mum number of elements in the tree is . For
Fine-tuned , the two “for loops” for merging any two

communities have the complexity because calculating
needs steps to traverse all the communities

to update the SP and inserting an element into the red-black tree is
as well. All other parts have complexity at most

. Thus, the computational complexity for the merging

stage of Fine-tuned is and for the

merging stage of Fine-tuned is .

Algorithm 3 Fine-tuned_Algorithm ( , )

1: ;

2: ;

3: ;

4: while

5: ;

6: ;

7: ;

8: ;

9: ;

10: end while

11: return

The fine-tuned algorithm repeatedly carries out those two
alternating stages until neither splitting nor merging can improve
the value of the quality metric or until the total number of
communities discovered does not change after one full iteration.
Algorithm 3 shows the outline of the fine-tuned algorithm. It can
detect the community structure of a network by taking a listwith a
single community of all the nodes in the network as the input. It
can also improve the community detection results of other
algorithms by taking a list with their communities as the input.
Let the number of iteration of thefine-tuned algorithmbe denoted
as . Then, the total complexity for Fine-tuned is

, while for Fine-tuned
it is . Assuming

that and are constants, the complexity of the fine-tuned
algorithms reduces to . The only part of the
algorithm that would generate a nondeterministic result is the
Lanczos method of calculating the Fiedler vector. The reason is
that Lanczos method adopts a randomly generated vector as its
starting vector. We solve this issue by choosing a normalized
vector of the size equal to the number of nodes in the community
as the starting vector for the Lanczos method. Then, community
detection results will stay the same for different runs as long as
the input remains the same.
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IV. EXPERIMENTAL RESULTS

In this section, we first introduce several popular measure-
ments for evaluating the quality of the results of community
detection algorithms. Denoting the greedy algorithm of modu-
larity maximization proposed by Newman [7] as Greedy , we
then use the above-mentioned metrics to compare Greedy ,
Fine-tuned , and Fine-tuned . The comparison uses four
real networks, the classical clique network and the LFR bench-
mark networks, each instance of which is defined with para-
meters each selected from a wide range of possible values. The
results indicate that Fine-tuned is the most effective method
among the three, followed by Fine-tuned . Moreover, we show
that Fine-tuned can be applied to significantly improve the
detection results of other algorithms.

In Section II-B-2, we have shown that the modularity maxi-
mization approach using the eigenvectors of the Laplacian
matrix is equivalent to the one using the eigenvectors of the
modularity matrix. This implies that the split stage of our Fine-
tuned is actually equivalent to the spectral methods. Therefore,
Fine-tuned with one additional merge operation at each
iteration unquestionably has better performance than the spectral
algorithms. Hence, we do not discuss them here.

A. Evaluation Metrics

The quality evaluation metrics we consider here can be
divided into three categories: 1) Variation of Information (VI)
[45] and Normalized Mutual Information (NMI) [46] based on
information theory; 2) F-measure [47] and Normalized Van
Dongen metric (NVD) [48] based on cluster matching; and
3) Rand Index (RI) [49], Adjusted Rand Index (ARI) [50], and
Jaccard Index (JI) [51] based on pair counting.

1) Information Theory-Based Metrics:Given partitions and
, VI [45] quantifies the “distance” between those two

partitions, while NMI [46] measures the similarity between
partitions and . VI is defined as

where is the entropy function and
is the Mutual Information. Then,

NMI is given by

Using the definitions

we can express VI and NMI as a function of counts only as
follows:

where is the number of nodes in community of and
is the number of nodes both in community of and in

community of .
2) Clustering Matching-Based Metrics: Measurements based

on clustering matching aim at finding the largest overlaps
between pairs of communities of two partitions and .
F-measure [47] measures the similarity between two partitions,
whileNormalized Van Dongen metric (NVD) [48] quantifies the
“distance” between partitions and . F-measure is defined as

NVD is given by

3) Pair Counting-Based Metrics: Metrics based on pair
counting count the number of pairs of nodes that are
classified (in the same community or in different
communities) in two partitions and . Let indicate the
number of pairs of nodes that are in the same community in both
partitions, denote the number of pairs of nodes that are in the
same community in partition but in different communities
in , be the number of pairs of nodes which are in
different communities in but in the same community in

, be the number of pairs of nodes which are in different
communities in both partitions. By definition,

is the total number of pairs of nodes in
the network. Then, [49] which is the ratio of the number
of node pairs placed in the same way in both partitions to the
total number of pairs is given by

Denote . Then, RI’s
corresponding adjusted version, [50], is expressed as

The JI [51] which is the ratio of the number of node pairs
placed in the same community in both partitions to the number of
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node pairs that are placed in the same group in at least one
partition is defined as

Each of these three metrics quantifies the similarity between
two partitions and .

B. Real Networks

In this section, we first evaluate the performance ofGreedy ,
Fine-tuned , and Fine-tuned on two small networks
(Zachary’s karate club network [52] and American college
football network [53]) with ground truth communities, and
then on two large networks [pretty-good-privacy (PGP) net-
work [54] and autonomous system (AS) level Internet] but
without ground truth communities.

1) Zachary’s Karate Club Network: We first compare the
performance ofGreedy , Fine-tuned , and Fine-tuned on
Zachary’s karate club network [52]. It represents the friendships
between 34 members of a karate club at the U.S. University over
a period of 2 years. During the observation period, the club split
into two clubs as a result of a conflict within the organization. The
resulting two new clubs can be treated as the ground truth
communities whose structure is shown in Fig. 2(a) visualized
with the opensource software Gephi [55].

Table I presents the metric values of the community structures
detected by the three algorithms on this network. It shows that
Fine-tuned and Fine-tuned achieve the highest value of
and , respectively. However, most of the seven metrics based

on ground truth communities imply that Greedy performs the
best with only NMI and NVD indicating that Fine-tuned has
the best performance among the three algorithms. Hence, it
seems that a large or may not necessarily mean a high
quality of community structure, especially for because Fine-
tuned achieves the highest but has the worst values of the
seven metrics described in Section IV-A. We argue that the
ground truth communities may not be so reasonable because
Fine-tuned and Fine-tuned in fact discover more mean-
ingful communities thanGreedy does. Fig. 2(a)–(d) shows the
community structure of ground truth communities and those
detected by Greedy , Fine-tuned , and Fine-tuned ,
respectively. For results of Greedy shown in Fig. 2(b), we
could observe that there are three communities located at the left,
the center, and the right side of the network. The ground truth
community located on the right is subdivided into the central and
right communities, but the node 10 is misclassified as belonging
to the central community, while in ground truth network it
belongs to community located on the left. Fig. 2(c) demonstrates
that Fine-tuned subdivides both the left and the right commu-
nities into two with six nodes separated from the left community
and five nodes separated from the right community. Moreover,
Fig. 2(c) shows that Fine-tuned discovers the same number of
communities for this network as algorithms presented in [9],
[16], [20], and [22]. In fact, the community structure it discovers is
identical to those detected in [16], [20], and [22]. Fig. 2(d) shows
that the community structure discovered byFine-tuned differs
from that of Fine-tuned only on node 24 which is placed in the
larger part of the left community. It is reasonable because node 24

Fig. 2. The community structures of the ground truth communities and those detected by Greedy , Fine-tuned , and Fine-tuned on Zachary’s karate club
network: (a) ground truth communities, (b) communities detectedwithGreedyQ, (c) communities detectedwithFine-tunedQ, and (d) communities detectedwithFine-
tuned .

TABLE I
METRIC VALUES OF THE COMMUNITY STRUCTURES DISCOVERED BY GREEDY , FINE-TUNED , AND FINE-TUNED ON ZACHARY’S KARATE CLUB NETWORK

(RED ITALIC FONT DENOTES THE BEST VALUE FOR EACH METRIC)
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has three connections to the larger part to which it has more
attraction than to the smaller part with which it only has two
connections.

In addition, analyzing the intermediate results ofFine-tuned
and Fine-tuned reveals that the communities at the first
iteration are exactly the ground truth communities, which in
another way implies their superiority over Greedy . Moreover,
NMI andNVD indicate thatFine-tuned is the best among the

three and all the metrics, except , show that Fine-tuned
performs better than Fine-tuned , supporting the claim that a
higher (but not ) implies a better quality of community
structure.

2) American College Football Network: We apply the three
algorithms also to the American college football network [53]
which represents the schedule of games between college
football teams in a single season. The teams are divided into

Fig. 3. The community structures of the ground truth communities and those detected byGreedy , Fine-tuned , and Fine-tuned on American college football
network: (a) ground truth communities, (b) communities detectedwithGreedyQ, (c) communities detectedwithFine-tunedQ, and (d) communities detectedwithFine-
tuned .
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12 “conferences” with intra-conference games being more
frequent than inter-conference games. Those conferences
could be treated as the ground truth communities whose
structure is shown in Fig. 3(a).

Table II presents the metric values of the community struc-
tures detected by the three algorithms. It shows that Fine-tuned

achieves the best values for all the nine metrics. It implies
that Fine-tuned performs best on this football network,
followed by Fine-tuned . Fig. 3(a)–(d) presents the commu-
nity structure of ground truth communities and those discov-
ered by Greedy , Fine-tuned , and Fine-tuned . Each
color in the figures represents a community. It can be seen that
there are twelve ground truth communities in total, seven
communities detected by Greedy , nine communities discov-
ered by Fine-tuned , and exactly twelve communities found
by Fine-tuned .

Moreover, we apply Fine-tuned on the community
detection results of Greedy and Fine-tuned . The metric
values of these two community structures after improvement
with Fine-tuned are shown in Table III. Compared with
those of Greedy and Fine-tuned in Table II, we could
observe that the metric values are significantly improved with
Fine-tuned . Further, both improved community structures
contain exactly 12 communities, the same number as the ground
truth communities.

3) PGP Network:We then apply the three algorithms on PGP
network [54]. It is the giant component of the network of users of
the PGP algorithm for secure information interchange. It has 10
680 nodes and 24 316 edges.

Table IV presents the metric values of the community
structures detected by the three algorithms. Since this network
does not have ground truth communities, we only calculate
and of these discovered community structures. The
table shows that Greedy and Fine-tuned achieve the
highest value of and , respectively. It is worth to mention
that the of Fine-tuned is much larger than that of
Greedy andFine-tuned , which implies thatFine-tuned
performs best on PGP network according to , followed by
Greedy .

4) AS Level Internet: The last real network dataset that is
adopted to evaluate the three algorithms is AS level Internet. It is
a symmetrized snapshot of the structure of the Internet at the level
of autonomous systems, reconstructed from Border Gateway
Protocol (BGP) tables posted by the University of Oregon Route
Views Project. This snapshot was created by Mark Newman
from data for July 22, 2006 and has not been previously
published. It has 22 963 nodes and 48 436 edges.

Table V presents the metric values of the community struc-
tures detected by the three algorithms. Since this network does
not have ground truth communities either, we only calculate

and . It can be seen from the table that Fine-tuned and

TABLE II
METRIC VALUES OF THE COMMUNITY STRUCTURES DETECTED BY GREEDY , FINE-TUNED , AND FINE-TUNED ON AMERICAN COLLEGE FOOTBALL NETWORK

(RED ITALIC FONT DENOTES THE BEST VALUE FOR EACH METRIC)

TABLE III
METRIC VALUES OF THE COMMUNITY STRUCTURES OF GREEDY AND FINE-TUNED IMPROVED WITH FINE-TUNED ON AMERICAN COLLEGE FOOTBALL NETWORK

(BLUE ITALIC FONT INDICATES IMPROVED SCORE)

TABLE V
VALUES OF AND OF THE COMMUNITY STRUCTURES DETECTED BY

GREEDY , FINE-TUNED , AND FINE-TUNED ON AS LEVEL INTERNET
(RED ITALIC FONT DENOTES THE BEST VALUE FOR EACH METRIC)

TABLE IV
VALUES OF AND OF THE COMMUNITY STRUCTURES DETECTED BY

GREEDY , FINE-TUNED , AND FINE-TUNED ON PGP NETWORK

(RED ITALIC FONT DENOTES THE BEST VALUE FOR EACH METRIC)

Fig. 4. A ring network made out of 30 identical cliques, each having five nodes
and connected by single edges.
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Fine-tuned achieve the highest value of and , respec-
tively. Moreover, the of Fine-tuned is much larger than
that of Greedy and Fine-tuned , which indicates that Fine-
tuned performs best on AS level Internet according to ,
followed by Fine-tuned .

C. Synthetic Networks

1) Clique Network:We now apply the three algorithms to the
classical network example [23]–[25], displayed in Fig. 4, which
illustrates modularity ( ) has the resolution limit problem. It is a
ring network comprising 30 identical cliques, each of which has
five nodes and they are connected by single edges. It is intuitively
obvious that each clique forms a single community.

Table VI presents the metric values of the community
structures detected by the three algorithms. It shows thatGreedy

and Fine-tuned have the same performance. They both
achieve the highest value of but get about half of the value of

of what Fine-tuned achieves. In fact, Fine-tuned
finds exactly 30 communities with each clique being a single
community. In contrast, Greedy and Fine-tuned discover
only 16 communities with 14 communities having two cliques
and the other two communities having a single clique. Also, we
take the community detection results of Greedy and Fine-
tuned as the input to Fine-tuned to try to improve those
results. The metric values of the community structures after
improvement with Fine-tuned are recorded in Table VII.
This table shows that the community structures discovered are
identical to that of Fine-tuned , which means that the results

of Greedy and Fine-tuned are dramatically improved with
Fine-tuned . Therefore, it can be concluded from Tables VI
and VII that a larger value of (but not ) implies a higher
quality of the community structure. Moreover, solves the
resolution limit problem of . Finally, Fine-tuned is
effective in maximizing and in finding meaningful com-
munity structure.

2) LFR Benchmark Networks: To further compare the
performance of Greedy , Fine-tuned , and Fine-tuned ,
we choose the LFR benchmark networks [56]which have become
a standard in the evaluation of the performance of community
detection algorithms and also have known ground truth
communities. The LFR benchmark network that we used here
has 1000 nodes with average degree 15 and maximum degree 50.
The exponent for the degree sequence varies from 2 to 3.
The exponent for the community size distribution ranges
from 1 to 2. Then, four pairs of the exponents

are chosen in order to explore
thewidest spectrumofgraph structures. Themixingparameter is
varied from 0.05 to 0.5. It means that each node shares a fraction

of its edges with the other nodes in its community and
shares a fraction of its edges with the nodes outside its
community. Thus, low mixing parameters indicate strong
community structure. Also, we generate 10 network instances
for each .Hence, eachmetric value inTablesVIII–XII represents
the average metric values of all 10 instances. Since the
experimental results are similar for all four pairs of exponents

, for the sake of brevity, we
only present the results for here.

TABLE VIII
METRIC VALUES OF THE COMMUNITY STRUCTURES OF GREEDY ON THE LFR BENCHMARK NETWORKS WITH

TABLE VII
METRIC VALUES OF THE COMMUNITY STRUCTURES OF GREEDY AND FINE-TUNED IMPROVED WITH FINE-TUNED ON THE CLASSICAL CLIQUE

NETWORK (BLUE ITALIC FONT INDICATES IMPROVED SCORE)

TABLE VI
METRIC VALUES OF THE COMMUNITY STRUCTURES DETECTED BY GREEDY , FINE-TUNED , AND FINE-TUNED ON THE CLASSICAL CLIQUE NETWORK

(RED ITALIC FONT DENOTES THE BEST VALUE FOR EACH METRIC)
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Tables VIII–X show the metric values of the community
structures detected with Greedy , Fine-tuned , and Fine-
tuned , respectively, on the LFR benchmark networks with

and varying from 0.05 to 0.5. The red italic
font in the table denotes that the corresponding algorithm
achieves the best value for a certain quality metric among the
three algorithms. The results in these tables show thatGreedy
obtains the best values for all the nine measurements when

, while Fine-tuned achieves the highest values of
and the best values for almost all the sevenmetrics based on

ground truth communities when ranges from 0.1 to 0.5. Also,
Fine-tuned gets the second best values for and almost all
the seven metrics in the same range of . However, for the
best is Greedy , followed by Fine-tuned , and Fine-tuned

is the last.
In summary, the seven measurements based on ground truth

communities are all consistentwith , but not consistentwith .
This consistency indicates the superiority of over as a
community quality metric. In addition, Fine-tuned performs

best among the three algorithms for > , which demonstrates
that it is very effective and does a very good job in optimizing .

We then take the community detection results ofGreedy and
Fine-tuned as the input to Fine-tuned to improve those
results. The measurement values of the community structures
after improvement with Fine-tuned are displayed in
Tables XI and XII. The blue italic font in Tables XI and XII
implies that the metric value in these two tables is improved
compared to the one in Table VIII and that in Table IX, respec-
tively. Then, compared with those of Greedy shown in
Table VIII and those of Fine-tuned shown in Table IX, all
measurements, except in some cases for , are significantly
improved with Fine-tuned . This again indicates that all the
seven metrics described in Section IV-A are consistent with ,
but not consistent with . Interestingly, those results are even
better than those of Fine-tuned itself presented in
Table X. Thus, it can be concluded that Fine-tuned is very
powerful in improving the community detection results of other
algorithms.

TABLE IX
METRIC VALUES OF THE COMMUNITY STRUCTURES OF FINE-TUNED ON THE LFR BENCHMARK NETWORKS WITH

TABLE X
METRIC VALUES OF THE COMMUNITY STRUCTURES OF FINE-TUNED ON THE LFR BENCHMARK NETWORKS WITH

TABLE XI
METRIC VALUES OF THE COMMUNITY STRUCTURES OF GREEDY IMPROVED WITH FINE-TUNED ON THE LFR BENCHMARK NETWORKS WITH
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V. CONCLUSION

In this paper, we review the definition of modularity and its
corresponding maximization methods. Moreover, we show that
modularity optimization has two opposite but coexisting issues.
We also review several community quality metrics proposed to
solve the resolution limit problem. We then discuss our Modu-
larity Density ( ) metric which simultaneously avoids those
two problems. Finally, we propose an efficient and effective fine-
tuned algorithm to maximize . This new algorithm can
actually be used to optimize any community quality metric. We
evaluate the three algorithms, Greedy , Fine-tuned based on
, andFine-tuned based on ,with sevenmetrics based on

ground truth communities. These evaluations are done on four
real networks, and also on the classical clique network and the
LFR benchmark networks, each instance of the last is defined
with parameters selected from wide range of their values. The
results demonstrate thatFine-tuned performs best among the
three algorithms, followed by Fine-tuned . The experiments
also show that Fine-tuned can dramatically improve the
community detection results of other algorithms. In addition, all
the seven quality metrics based on ground truth communities are
consistent with , but not consistent with , which indicates
the superiority of over as a community quality metric.
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