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Accepted 5 December 2006
Abstract

Objective: Neuronal networks with a so-called ‘small-world’ topography (characterized by strong clustering in combination with short
path lengths) are known to facilitate synchronization, and possibly seizure generation. We tested the hypothesis that real functional brain
networks during seizures display small-world features, using intracerebral recordings of mesial temporal lobe seizures.
Methods: We used synchronization likelihood (SL) to characterize synchronization patterns in intracerebral EEG recordings of 7
patients for 5 periods of interest: interictal, before-, during- and after rapid discharges (in which the last two periods are ictal) and post-
ictal. For each period, graphs (abstract network representations) were reconstructed from the synchronization matrix and characterized
by a clustering coefficient C (measure of local connectedness) and a shortest path length L (measure of overall network integration).
Results were also compared with those obtained from random networks.
Results: The neuronal network changed during seizure activity, with an increase of C and L most prominent in the alpha, theta and delta
frequency bands during and after the seizure.
Conclusions: During seizures, the neuronal network moves in the direction of a more ordered configuration (higher C combined with a
slightly, but significantly, higher L) compared to the more randomly organized interictal network, even after correcting for changes in
synchronization strength.
Significance: Analysis of neuronal networks during seizures may provide insight into seizure genesis and development.
� 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Epilepsy is a common neurological disorder, character-
ized by sudden occurrence of unprovoked seizures (Hauser
et al., 1993). The unforeseen and unpredictable way in
which seizures occur is one of the most disabling aspects
of epilepsy. The underlying pathophysiology of epileptic
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seizures is still poorly understood (Timofeev and Steriade,
2004). How and when the transition from an interictal to
an ictal state takes place is not known. However, it is wide-
ly accepted that an abnormal synchronization of neurons is
a part of seizure generation. Several findings indicate that
the transition may not always occur abruptly, but may
show a predisposing state called ‘preictal’ which can be
characterized by either desynchronization or hypersyn-
chronization (Mormann et al., 2003; Lopes da Silva
et al., 2003; Le Van Quyen et al., 2005; Wendling et al.,
2005).

Apart from changes in overall levels of synchronization
the interictal–ictal transition may also be characterized by
changes in the spatial organization of the involved net-
works. This can be studied with the use of ‘graph theory’
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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Fig. 2. Example of the clustering coefficient (C) and characteristic path
length (L) as a function of the rewiring probability p. The rewiring
probability is the probability that an edge between two vertices is
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(see Fig. 1) (Strogatz, 2001; Wang and Chen, 2003; Bocca-
letti et al., 2006). Graphs are abstract representations of
networks which can be characterized by a clustering coeffi-
cient (C) a measure for local connectedness and a charac-
teristic path length (L) an indicator of overall integration.
Watts and Strogatz (1998) showed that graphs with many
local connections and a few random long distance connec-
tions (characterized by a high C and a short L) are near
optimal networks, called ‘small-world networks’, which
are intermediate between ordered (high C and long L)
and random networks (low C and short L) (see Fig. 2). It
has been shown that neuronal networks, like many other
networks (e.g. the internet, the social network), show char-
acteristic ‘small-world’ features (Strogatz, 2001). It is sug-
gested that a small-world-like network may be optimal
for synchronizing neuronal activity between different brain
Fig. 1. This figure is based upon Stam et al. (2007). Schematic explanation
of a graph and the graph theoretical measures. A graph consists of
vertices, denoted by black dots. If two vertices are connected a line is
drawn between them. This connection is called an edge. The size of the
graph is the total number of vertices, in our study the EEG channels:
N = 21. The degree k of a graph is the average number of edges per vertex.
In a graph all vertices need to be connected. The smallest number of edges
that have to be traveled to get from one vertex to the other expresses the
distance between two vertices. For instance the shortest path from vertex
A to vertex E has a length of 3 edges. The characteristic path length L of a
graph is the mean of all shortest paths connecting all pairs of vertices. L is
a measure of how well connected a graph is. To avoid the problem of the
disconnected graphs we used an alternative approach based on the global
efficiency (Latora and Marchiori, 2001) where L is calculated as the
reciprocal of the average of the reciprocals. Infinite values of L (when two
edges are not connected in the graph) contribute nothing to the sum
(Newman, 2003). The clustering coefficient C is a measure of local
structure. For example: to compute the clustering coefficient of vertex B,
first determine the other vertices directly connected to vertex B (with path
length 1). These neighbors are A,C,D and F. Then determine how many
edges exist between this set of neighbors, in this example only 1 (the
connection between C and F). Node B has 4 neighbors, which leads to 6
possible connections between these neighbors (k neighbors: k* (k�1)/2
potential undirected edges). The clustering coefficient of B is the ratio of
these two numbers: 1/6. In a similar way, the clustering coefficient can be
determined of all vertices. This results in an average clustering coefficient
C of the graph. Disconnected points are assigned a value of 0. The
clustering coefficient is a measure of the existence of local clustering within
a network.

randomly rewired. A totally ordered network has p = 0 and a random
network p = 1 (all vertices are randomly connected). As shown in the
figure for a small probability of rewiring (p close to zero) the local
properties of the network are still the same as in the ordered network with
an almost unchanged clustering coefficient C, whereas the path length L

drops rapidly to the same order as random networks. Networks with this
configuration (a high C and relative low L) are so called small-world
networks. Note the logarithmic scale in the p-values at the x-axis. This
figure is not based on real data.
regions (Lago-Fernandez et al., 2000; Barahona and Pec-
ora, 2002). Graph-analysis of anatomical and functional
data such as fMRI, EEG and MEG showed a small-world
configuration (Sporns et al., 2000; Stam, 2004; Salvador
et al., 2005; Achard et al., 2006; Stam et al., 2007; Michelo-
yannis et al., 2006a; Micheloyannis et al., 2006b).

Recently, a relationship between the small-world phe-
nomenon and epilepsy was suggested by two model studies.
Netoff et al. (2004) simulated a small-world network model
of excitatory neurons to explain seizure dynamics in a hip-
pocampal slice. They found that seizure activity corre-
sponded with a small-world regimen of the neurons.
Moreover, the start of the bursting phase corresponded
with a drop of C, and thus a random instead of small-world
architecture. Percha et al. (2005) showed a potential mech-
anism underlying seizure generation. They used a model
with a two dimensional lattice of coupled neurons to show
that properties of phase synchronization change radically
depending on the connectivity structure of the network.
In particular, a small-world configuration was associated
with a low threshold for seizure generation.

Finally, both studies showed that a small-world and
even more a random structure in models are associated
with an increase in synchronization and probably with sei-
zures. However, this has never been tested in seizure
recordings in patients. We investigated the hypothesis that
functional neuronal networks during temporal lobe sei-
zures change in configuration before and during seizures,
by applying synchronization and graph analysis to intrace-
rebral EEG recordings. We studied graph configuration in
5 periods of interest: interictal, preceding, during (two) and
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after the seizure. The characteristics of the periods around
the seizure were compared with interictal EEG to investi-
gate whether the neuronal network changes during the sei-
zure and what the initial configuration is of the interictal
network.
2. Materials and methods

2.1. Patient selection

Seven patients were selected from a group undergoing
pre-surgical evaluation of drug-resistant mesial temporal
lobe epilepsy (MTLE) (see Table 1 for patient characteris-
tics). Data from these patients were previously reported in
several studies (Bartolomei et al., 2001; Bartolomei et al.,
2004; Bartolomei et al., 2005; Wendling et al., 2005). The
patients we selected had seizures that involved the medial
temporal lobe at onset and had comparable seizure pat-
terns. All patients had a comprehensive evaluation includ-
ing detailed history and neurological examination,
neuropsychological testing, routine magnetic resonance
imaging (MRI), surface electroencephalography (EEG)
and stereoelectroencephalography (SEEG, depth elec-
trodes). The latter was performed during long-term vid-
eo-EEG monitoring in the Epilepsy Unit at Timone
Hospital (Marseille, France). SEEG was carried out as part
of our patients’ normal clinical care. Informed consent was
obtained from all patients.
2.2. EEG recording

SEEG recordings were performed using intracerebral
multiple contact electrodes (10–15 contacts, length: 2 mm,
diameter: 0.8 mm, 1.5 mm apart) placed intracranially
according to Talairach’s stereotactic method (Talairach
et al., 1992). The original reference electrode is a scalp ref-
erence Pz. We used a scalp reference because the intracere-
bral signal is largely of higher amplitude than the surface
one. Positioning of electrodes was established in each
patient based upon available non-invasive information
and hypotheses about the localization of the epileptogenic
Table 1
Patient characteristics

Patients 1 2 3

Age (y) 30 35 14
Gender M M F
Age at onset (y) 22 32 11
Etiology HS HS H
MRI Right HS left frontal

arachnoidal cyst
Right HS Le

Type of TLE R-MTLE R-MTLE L-
Type of surgery ATL ATL AT
Follow-up (years) 4 3 3
Post-surgical outcome (ILAE)a 1 1 1

Abbreviations. L, left; R, right; HS, hippocampal sclerosis; MTLE, mesial tempo
Taylor’s cortical dysplasia.

a Post-surgical outcome according to the International league against epilep
zone. Implantation accuracy was per-operatively con-
trolled by telemetric X-ray imaging. A post-operative com-
puterized tomography (CT) scan without contrast was used
to verify absence of bleeding and precise location of each
recording lead. Intracerebral electrodes were removed after
the registration and a magnetic resonance imaging (MRI)
was performed, permitting visualization of the trajectory
of each electrode. Finally, CT-scan/MRI data fusion was
performed to anatomically locate each contact along the
electrode trajectory. Fig. 3a shows a typical scheme of
SEEG orthogonal implantation of depth electrodes. All
patients had electrodes that spatially sampled mesial/limbic
regions (amygdala, entorhinal cortex and hippocampus)
and lateral/neocortical regions of the temporal lobe. In
addition, all selected patients had a varying number of elec-
trodes that sampled the parietal cortex and the frontal lobe.
In the present analysis we used 21 leads. Seven regions
(amygdala, anterior, medial and posterior part of neocor-
tex of the medial temporal gyrus, anterior and posterior
hippocampus and the occipito-temporal sulcus) were
represented in all recordings; the other regions were used
variably. Signals were recorded on a 128 channels
Deltamed� system. They were sampled at 256 Hz and
recorded on a hard disk (16 bits/sample) using no digital
filter. The filters present in the acquisition procedure were
a hardware analog high-pass filter (cut-off frequency
equal to 0.16 Hz) used to remove very slow variations that
sometimes contaminate the baseline and a first order low-
pass filter (cut-off frequency equal to 97 Hz) to avoid
aliasing.
2.3. EEG signal analysis

The signals recorded in each patient were first visually
analyzed, and a typical seizure was selected. Besides a rep-
resentative artifact free interictal epoch of 16 s, four epochs
of interest were selected around the seizure. The selection
criteria were also used in previous studies with the same
population: before rapid discharge (BRD or before seizure
onset), during rapid discharges (DRD, or early ictal),
directly after rapid discharges, during seizure spreading
4 5 6 7

38 36 36 35
F F M F
14 20 18 32

S HS HS Unk CD
ft HS Left HS Right HS normal CD right MTL and

thalamus
MTLE L-MTLE R-MTLE L-MTLE R-MTLE
L ATL ATL NO ATL

3 2 – 2
1 1 – 1

ral lobe epilepsy; ATL, anterior temporal lobectomy; Unk, unknown; CD,

sy (ILAE) classification (Wieser et al., 2001).



Fig. 3. (a) A schematic diagram of SEEG electrode placement on a lateral view of the Talairach’s basic referential system (Talairach et al., 1992). (1)
Electrode exploring the amygdala (internal leads, 1a) and the neocortical anterior part of the medial temporal gyrus (MTG) (external leads, 1b). (2)
Electrode exploring the anterior hippocampus (internal leads, 2a), the occipito-temporal sulcus (middle leads, 2b) and the neocortical middle part of MTG
(external leads, 2c). (3) Electrode exploring the internal part of the temporal pole (internal leads, 3a) and the external part of the temporal pole (external
leads, 3b). (4) Electrode exploring the posterior parahippocampal region (internal leads, 4a), the fusiform gyrus (middle leads, 4b) and the posterior part of
the temporobasal cortex (lateral contacts, 4c). (5) Electrode exploring the thalamus (internal leads, 5a), the insular lobe (middle leads, 5b) and the superior
temporal gyrus (external leads, 5c). (6) Electrode exploring the posterior hippocampus (internal leads, 6a) and the posterior part of MTG (external leads,
6b). (7) Electrode exploring the entorhinal cortex (internal leads, 7a), the perirhinal cortex (middle leads, 7b) and the lateral temporobasal cortex (external
leads, 7c). (9) Electrode exploring the posterior cingulate gyrus (internal leads, 9a) and the supramarginalis gyrus (middle leads, 9b). (10) Electrode
exploring the orbitofrontal cortex (internal leads, 10a). Signals recorded by these electrodes were used in this study. We did not use electrode 8 in our
calculations. (b) Example of intracerebral recording performed during SEEG and the corresponding studied periods. Five periods of 16 s each are chosen
during interictal period, before the appearance of the rapid discharges within the medial structures (BRD), during the period of appearance of the rapid
discharges (DRD), during the phase following the rapid discharges (ARD), corresponding to the spreading of the discharges beyond the mesial temporal
structures and the postictal period.
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(ARD, or late ictal) and postictal (Bartolomei et al., 2004;
Wendling et al., 2005). An explanation about the epoch-se-
lection is described elsewhere in detail (Bartolomei et al.,
2004). Fig. 3b gives a clear example of different epochs
selected in one of the patients (patient 3).

Bipolar signals from adjacent contacts of electrodes
were selected in order to obtain the signals from 21 brain
regions in each patient (see Fig. 3a). Besides the broad sig-
nal band (1–48 Hz), we analyzed digital, zero-phase shift
filtered signals. The signal was digitally filtered in different
frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz) and gamma (30–48 Hz).

2.4. Computation of the synchronization likelihood (SL)

To calculate the characteristics of the network we used
the synchronization likelihood (SL), a measure for statisti-
cal interdependencies between a time series (such as an
EEG channel) and one or more other time series, within
a dynamical system, introduced by Stam and van Dijk
(2002). This measure has already been used in several stud-
ies of healthy subjects and patients (Stam et al., 2003; Post-
huma et al., 2005; Stam et al., 2007; Bartolomei et al.,
2006b). For a detailed explanation, see Appendix A. Here
we give a brief description based upon Stam et al. (2007).
The SL is sensitive to linear as well as to nonlinear interde-
pendencies. Basic principle of the SL is to divide each time
series into a series of ‘patterns’ and to search for a recur-
rence of these patterns. The SL is the chance that pattern
recurrence in time series X coincides with pattern recur-
rence in time series Y. SL ranges between 1 in case of max-
imally synchronous signals and Pref (a small number close
to zero) in case of independent time series. Pref is the small
but non-zero likelihood of coincident pattern recurrence in
case of independent time series. The end result of comput-
ing SL for all pair-wise combinations of channels is a



Fig. 4. Mean synchronization likelihood (SL) curves for all filtered
frequency bands (delta 1–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, beta 13–
30 Hz and gamma 30–48 Hz) and the broad filtered signal (1–48 Hz). Each
curve shows the changes in the different EEG epochs through seizure
activity.
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square N · N matrix of size 21 (21 is the number of EEG
channels used in this study), where each entry Ni,j contains
the value of the SL for the channels i and j. We computed
also the average synchronization by taking the mean of
these values. This resulted in a single overall SL value for
each epoch (16 s) studied.

2.5. Computation of the clustering coefficient C and the path

length L

To compute the clustering coefficient C and characteris-
tic path length L from the EEG data, we used the method
described by Stam et al. (2007). The first step is to convert
the synchronization N · N matrices into a binary graph,
with N the number of EEG channels, using an individually
adapted threshold T which resulted for all graphs in a value
of k = 6. We start with a threshold of zero, and then count
the number of connections (pairwise SL values) higher than
the threshold. The degree k is the number of suprathresh-
old connections divided by the total number of connec-
tions. Then the threshold is increased (in very small
steps) and the procedure is repeated. With increasing
threshold the degree will decrease. The procedure is repeat-
ed until the required degree is reached. Only those SL val-
ues higher than the threshold will be considered edges; in
the case of subthreshold SL there is no edge between the
corresponding vertices. This procedure is repeated for each
individual-analyzed epoch. To counteract the influence of
synchronization differences among the epochs on C and
L, we computed C and L as a function of a fixed k, which
is the average number of edges per vertex. In this way,
graphs in all epochs are guaranteed to have the same num-
ber of edges, so that any differences in C and L among the
stages reflect differences in graph organization and will not
be influenced by epoch differences in the mean strength of
synchronization.

Once the graph has been made, the next step is to
characterize this graph in terms of its clustering coefficient
(C) and its characteristic path length (L). An explanation
of these measures is given in Fig. 1. We choose not to
use the conventional calculation of L, because this method
does not deal properly with disconnected edges. Because
this takes place in our data during and after the seizure,
we found an alternative approach. Newman (2003)
proposed to define L to be the ‘harmonic mean’ distance
between pairs, or the reciprocal of the average of the
reciprocals. In this way, calculation of L resembles the
global efficiency introduced by Latora and Marchiori
(2001). Afterwards the values of C and L were compared
to theoretical values of random networks generated
following the procedure described by Sporns and Zwi
(2004) which preserve the degree distribution exactly. For
a k value of 6 for each epoch 20 random networks were
generated and the mean C-s and L-s of all these networks
were calculated as reference value for C and L (C/C-s
and L/L-s). These scaled values were used in further
analysis.
Computation of the synchronization likelihood and of
the two graph theoretical measures C and L was done with
the DIGEEGXP software written by one of the authors
(CS).

2.6. Statistical analysis

Statistical analysis consisted of Wilcoxon matched pairs
tests to detect differences of synchronization likelihood,
scaled clustering coefficient C/C-s and path length L/L-s
among the interictal versus the other periods of interest
before, during and after rapid discharges and postictal.

3. Results

3.1. Synchronization likelihood

Fig. 4 shows the mean synchronization likelihood (SL)
for 5 epochs of interest (interictal, before rapid discharges
(BRD), during rapid discharges (DRD), after rapid dis-
charges (ARD) and postictal) through the seizure in broad
band filtered signal (1–48 Hz) and filtered signals in sepa-
rate frequency bands (1–4, 4–8, 8–13, 13–30 and 30–
48 Hz). As can be seen the mean synchronization likeli-
hood increased during the seizure in all frequency bands.
For statistical analysis, we compared SL from the epochs
of interest BRD, DRD, ARD and postictal with SL
obtained from the interictal epoch which was used as refer-
ence state. In the ARD phase, during spreading of seizure,
the increase of the SL was significant in all frequency bands
(p < 0.05). The SL increase in the BRD period was only sig-
nificant in the delta frequency filtered signal (1–4 Hz). The
DRD increase of SL was significant in alpha (8–13 Hz),
beta (13–30 Hz) and delta bands. The postictal increase
in the SL was significant in all frequency bands.



Fig. 5. Examples of graphs of patient 3, with the position of the electrodes indicated by small circles (see legend in Fig. 2). (a) is the interictal epoch. (b) is
the after rapid discharges (ARD) epoch. For the conversion of the synchronization matrices to the graphs, k = 3 was used to show the difference of the
configuration of the network. This means that the number of connections is guaranteed and that the strongest connections are counted and visualized in
this picture.
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3.2. Clustering coefficient C and characteristic path length L

The synchronization N · N matrices were converted to
graphs, using an individual-adapted threshold T which
resulted for all graphs in a value of k = 6. As an example
Fig. 5 shows the graph of patient 3 in interictal (Fig. 5a)
and ARD phase (Fig. 5b). To visualize differences between
both networks, we used k = 3. Otherwise, too many con-
nections were made and the differences disappear in lines.
As shown in this figure, the organization of the neuronal
network was different during seizure activity, compared
to the interictal state. In the ARD phase, the neuronal net-
work was more centered on the medial temporal gyrus
(anterior and posterior part) as the interictal network,
whereby more vertices (intracerebral electrodes) became
disconnected from the graph (‘missing connective points’)
(Bartolomei et al., 2006b). From this graphs C and L were
determined as described in the ‘Materials and methods’ sec-
tion. The values of C and L were compared with the values
for random graphs, using the procedure described by
Sporns and Zwi (2004) (C/C-s and L/L-s). In the random-
ization procedure, the degree distributions of the original
networks were preserved. The mean L/L-s ratio in the dif-
ferent epochs was slightly above 1 whereas the mean C/C-s
ratio was between 1.25 and 1.8 (see Fig. 6).

We compared the scaled values of C/C-s and L/Ls-s
from the BRD, DRD, ARD and postictal network config-
urations with parameters of the interictal network configu-
ration in the different frequency bands. In the broad
frequency signal (1–48 Hz) there were no statistically signif-
icant differences of C/C-s, L/L-s were significantly higher in
the ARD epoch compared to the interictal epoch. In the fil-
tered frequency bands there were more significant differenc-
es, suggesting changes in the neuronal network topology
during the seizure (see Table 2). In the delta band (1–
4 Hz) C/C-s was significantly higher during both seizure
epochs compared to the interictal period. L/L-s was signif-
icantly higher in the ARD period compared to the interic-
tal period. In the theta band (4–8 Hz) the ARD and
postictal epochs were significantly different from the inter-
ictal one: C/C-s was higher and L/L-s had increased in the
ARD period. In the alpha band (8–13 Hz) C/C-s and L/L-s
were significantly higher during both seizure epochs and
postictally. In the beta (13–30 Hz) and gamma (30–
48 Hz) bands, there were no significant differences among
the characteristics of the network, interictal versus the
other periods of interest. As in the other frequency bands,
in beta and gamma bands C/C-s and L/L-s tended to
increase during seizure activity. Overall the most obvious
change was an increase of local clustering (C/C-s) during
the seizures in the lower frequency bands (1–13 Hz), which
continued in the postictal period and, with an increase of
the path length (L/L-s) during the rapid discharges (alpha
band), during seizure spreading (1–13 Hz) and after the sei-
zures (alpha and theta bands).

4. Discussion

Graph theoretical analysis was used to test the hypoth-
esis of a small-world structure of brain networks during sei-
zures compared to interictal recordings. We found an
increase of the clustering coefficient C in the lower frequen-
cy bands (1–13 Hz), and an increase of the path length L

(alpha and theta bands) during and after the seizure com-
pared to the interictal recordings. The increase of L/L-s
was significant but rather small (<1,5) which is more com-
patible with a small-world than an ordered configuration.

The graph analysis was based upon matrices of synchro-
nization between pairs of recording channels. We found an
increase of the mean synchronization likelihood (SL)
among the EEG signals during seizure activity compared
to the interictal epoch (Fig. 4). The increase was significant



Fig. 6. (a–f) Mean scaled clustering coefficient C/C-s in the different
frequency bands (a, 1–48 Hz; b, 1–4 Hz; c, 4–8 Hz; d, 8–13 Hz; e, 13–
30 Hz; f, 30–48 Hz) and (g–l) scaled path length L/L-s in the different
frequency bands (g, 1–48 Hz; h, 1–4 Hz; i, 4–8 Hz; j, 8–13 Hz; k, 13–30 Hz;
l, 30–48 Hz) for all patients through the epochs of interest (interictal,
BRD, DRD, ARD and postictal) with a fixed k. *significant (p < 0.05).
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during seizure spreading (ARD) for all frequency bands,
and for the alpha, beta and delta bands also during rapid
discharges (DRD). Ferri et al. (2004) have shown the value
of SL in seizure activity in their study of a nocturnal frontal
lobe seizure. Although the seizure they used had another
origin, they found a clear increase of SL in the alpha band
(8–12 Hz) during seizure and in the delta band (0.5–4 Hz)
at the end of the seizure. Zucconi et al. (2005) confirmed
these results in three more patients with nocturnal frontal
lobe seizures. In two patients there was involvement in
multiple frequency bands. Besides, they showed a clear
increase of SL a few seconds preceding the seizure. SL
was able to pick up features of the EEG not evident in
the visual analysis. Two other previous studies (Altenburg
et al., 2003; Smit et al., 2004) demonstrated that SL in
broad frequency bands seems to be a useful tool in epileptic
seizure detection on the neonatal ward. The mean SL
increased during seizure activity in neonatal EEG. Our
study confirms the usefulness of SL in an approach to
the dynamics of brain electrical synchronization in other
types of seizures.

To test our main hypothesis topographical characteris-
tics of the neuronal network were studied during the deter-
mined periods. Compared to the interictal period, we found
an increase of scaled C (C/C-s) and L (L/L-s) during and
after the seizure. The increase of C/C-s started in the alpha
and delta bands during rapid discharges (DRD at seizure
onset). During seizure spreading (ARD) there was an
increase of C/C-s in all lower frequency bands (1–13 Hz),
which continued postictally in the alpha band (see Table
2). The increase of L/L-s started at seizure onset (DRD)
in the alpha band, continued during seizure spreading
(ARD) in the lower frequency bands (1–13 Hz) and in
the broad filtered signal, and lasted postictally in the alpha
and theta bands. Since C/C-s and L/L-s increased signifi-
cantly during seizure activity, it seemed that the interictal
network had a more random configuration than the ictal
one. In Fig. 2 the neuronal network moved to the left dur-
ing the seizure, with an increase of C/C-s and L/L-s.
Although the increase of L/L-s was significant, L/L-s did
not exceed 1,5, which implied that the ictal neuronal net-
work did not reach an ordered state (completely left in
Fig. 2), rather a small-world configuration (somewhere in
the middle region of Fig. 2).

During the seizures, the neuronal network changed from
a more random network interictally, in the direction of a
small-world structure. These findings are the first experi-
mental proof of a more random architecture in a (less path-
ological) functioning network (the interictal state is by
definition abnormal in these patients). Several studies have
shown that anatomical neuronal networks display small-
world characteristics (namely a high local clustering and
also a short path length) (Strogatz, 2001). Stephan et al.
(2000) showed that graph analysis can be applied equally
well to patterns of functional and anatomical connectivity,
in both cases a typical small-world network was revealed.
In agreement with this, a few studies with fMRI and one
with MEG data have shown typical small-world patterns
in human brain networks (Stam, 2004; Salvador et al.,
2005; Achard et al., 2006). In a recently published study
with EEG data of Alzheimer patients and control subjects,
Stam et al. (2007) also have shown a small-world pattern in
healthy controls. In the Alzheimer patients the network
showed a predominant loss of long-distance connections,
resulting in a significantly longer L. Bartolomei et al.
(2006a) have shown a randomization of the underlying
neuronal network in MEG data of brain tumor patients
compared to healthy controls. In the case of epilepsy the



Table 2
Results interictal epoch versus the other periods

p-values: BRD DRD ARD Postictal

Frequency band (Hz) C/C-s L/L-s C/C-s L/L-s C/C-s L/L-s C/C-s L/L-s

1–48 – – – – – .043 – –
1–4 – – .043 – .028 .046 – –
4–8 – – – – .043 .018 – .043
8–13 – – .018 .028 .018 .018 .018 .018
13–30 – – – – – – – –
30–48 – – – – – – – –

Abbreviations. BRD, before rapid discharges; DRD, during rapid discharges; ARD, after rapid discharges; C/C-s, clustering coefficient; L/L-s, path length.
–, not significant.
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situation seems to be different. In our study the small-world
configuration was not associated with the less pathological
state of the brain: the interictal state had less small-world
features than the (late) ictal and postictal states. The inter-
ictal state seemed to function more as a random network
than the (post)ictal condition. Whether this condition is
an abnormal feature of the epileptic human brain is uncer-
tain since there is no available study dealing with this prob-
lem. Chavez et al. (2006) suggested that random networks
synchronize even better then small-world networks. In
accordance with their statement it is possible that the inter-
ictal neuronal network structure in MTLE patients is not a
normal, small-world-like network, but closer to a patho-
logical random network which could lead to the onset of
epileptic seizures. Following seizure onset, the neuronal
network changes towards a more small-world configura-
tion sustaining postictally. Percha et al. (2005) found that
randomly connected networks have a dynamical regime
of brain functioning where rapid phase transitions could
take place and this state would correspond to seizure-like
activity. The other previously published study about
small-world networks and seizures Netoff et al. (2004) sug-
gested also a relationship between small-world topography
and seizure activity. They showed with a model of excitato-
ry hippocampal neurons that networks with small-world
features were more likely to generate seizures and random-
ly connected networks were associated with an even stron-
ger tendency to synchronization (resulting in ‘bursting’
behavior). Although there are great differences in the data
we used and the experimental studies, there are similarities
that can be explored in future studies. There is one case
study which applies graph-theoretical analysis at a seizure
registered with depth electrodes (Wu et al., 2006). Their
results, that the clustering coefficient increases during sei-
zure activity, confirm our findings in seven patients.

Some considerations can be made about the method we
used. Although we were able to show changes in the neuro-
nal networks during seizures, even after a rigorous control
for changes in synchronization strength, we should consid-
er that the present analysis was done with large time-win-
dows (16 s) and therefore gives a ‘mean’ but stable image
of the network topography in each period. A more subtle
analysis, using for example a sliding window, would be
the next step to catch more dynamic and finer changes in
the network dynamics. This method will make the compar-
ison between the different seizure stages difficult and there-
fore we choose to compare relatively longer and more
stabilized epochs for this first study. There are also some
considerations with the application of graph theoretical
analysis to EEG data. EEG signals record neuronal activity
of virtual networks based on the correlation between EEG
channels. This connectivity depends on, but is not the same
as, the actual anatomical connections of the underlying
neuronal network. Although there are suggestions in the
literature that these networks are globally comparable
(Kotter and Sommer, 2000). When transforming these data
towards a graph, we measure the correlations between
those channels and their brain areas but not the real ana-
tomical network. Therefore it is important to correct for
the different mean SL when calculating C and L, by fixing
the mean number of connections per channel (k). When k is
not kept constant in this calculation, C and L will be influ-
enced more by the different synchronization instead of the
changes of the underlying neuronal network (Stam et al.,
2007).

This study is the first where small-world characteristics
were studied in intracerebral EEG recordings of temporal
lobe seizures. It provides support for changes in the direc-
tion of a more ordered configuration of functional brain
networks during seizures. These changes were most prom-
inent during seizure spreading. Interestingly, the postictal
state also disclosed changes in network configuration. Fur-
thermore, a more random configuration was found in the
interictal recorded epochs which supported the theory of
Netoff et al. (2004) and Chavez et al. (2006), that a random
network even had a stronger tendency to synchronize. This
suggests that the random interictal neuronal network con-
figuration causes the seizures. This is the first step in what
may become a promising research method to explore the
dynamical processes underlying epilepsy. Future research
should investigate whether patients suffering from mesial
temporal lobe epilepsy have indeed particular random
interictal state characteristics.
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Appendix A. Mathematical background of synchronization

likelihood

The synchronization likelihood (SL) is a measure of the
generalized synchronization between two dynamical systems
X and Y (Stam and van Dijk, 2002). Generalized synchro-
nization (Rulkov et al., 1995) exists between X and Y of the
state of the response system is a function of the driver sys-
tem: Y = F(X). The first step in the computation of the syn-
chronization likelihood is to convert the time series xi and
yi recorded from X and Y as a series of state space vectors
using the method of time delay embedding (Takens, 1981):

X i ¼ ðxi; xiþL; xiþ2�L; xiþ3�L . . . ; xiþðm�1Þ�LÞ ð1Þ

where L is the time lag, and m is the embedding dimension.
From a time series of N samples, N � (m · L) vectors can
be reconstructed. State space vectors Yi are reconstructed
in the same way.

Synchronization likelihood is defined as the conditional
likelihood that the distance between Yi and Yj will be small-
er than a cutoff distance ry, given that the distance between
Xi and Xj is smaller than a cutoff distance rx. In the case of
maximal synchronization this likelihood is 1; in the case of
independent systems, it is a small, but nonzero, number,
namely Pref. This small number is the likelihood that two
randomly chosen vectors Y (or X) will be closer than the
cut-off distance r. In practice, the cut-off distance is chosen
such that the likelihood of random vectors being close is
fixed at Pref, which is chosen the same for X and for Y.
To understand how Pref is used to fix rx and ry we first con-
sider the correlation integral:

Cr ¼
2

NðN � wÞ
XN

i¼1

XN�w

j¼iþw

hðr � jX i � X jjÞ ð2Þ

Here the correlation integral Cr is the likelihood that two
randomly chosen vectors X will be closer than r. The verti-
cal bars represent the Euclidean distance between the vec-
tors. N is the number of vectors, w is the Theiler
correction for autocorrelation (Theiler, 1986) and h is the
Heaviside function: h(X) = 0 if X > = 0 and h(X) = 1 if
X < 0. Now, rx is chosen such that Crx = Pref and ry is cho-
sen such that Cry = Pref. The synchronization likelihood
between X and Y can now be formally defined as:

SL ¼ 2

NðN � wÞpref

�
XN

i¼1

XN�w

j¼iþw

hðrx � jX i � X jjÞhðry � jY i � Y jjÞ ð3Þ
SL is a symmetric measure of the strength of synchroniza-
tion between X and Y (SLXY = SLYX). In equation [3] the
averaging is done over all i and j; by doing the averaging
only over j SL can be computed as a function of time i.
From [3] it can be seen that in the case of complete syn-
chronization SL = 1; in the case of complete independence
SL = Pref. In the case of intermediate levels of synchroniza-
tion Pref < SL < 1. In the present study the following
parameters were used: Pref was set at 0.01, for the state
space embedding a time lag of 10 samples, an embedding
dimension of 10 and a Theiler correction (W2) of 0.1.
When we tried the algorithm proposed by Montez et al.
(2006), the results were comparable.
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