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Belief Propagation Equation and Bethe Free Energy
In this section we derive the BP update equations appearing in the
main text. BP works with “messages” ψ i→k

t : These are estimates,
sent from node i to node k, of the marginal probability that ti = t
based on i’s interactions with nodes j≠ k. If the Hamiltonian is
−mQ, the update equations for these messages are as follows:
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Here Zi→k is simply a normalization factor, and ∂i denotes the
neighborhood of node i. The BP estimate of the marginal prob-
ability ψ i

t =Pr½ti = t� is then
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which is the same as [S1] except that we remove the condition j≠ k.
We can also estimate the two-point marginals and, in particular, the
probability that two neighboring points belong to the same group. If
hiji∈ E, the BP estimate of the probability that ti = t and tj = s is
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The update Eq. S1 involves qn2 messages: Every node interacts with
every other one, not just its neighbors. However, in the sparse case
we can simplify the effect of nonneighbors, by replacing themwith an
external field as in refs. 1 and 2. If k∉∂i and di; dk �
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In that case, we can identify the messages ψ i→k
t that i sends to its

nonneighbors k with its marginal ψ i
t. Then [S1] simplifies to
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where

θt =
Xn
j=1

djψ
j
t [S5]

denotes an external field acting on nodes in group t, which we
update after each BP iteration. Iterating [S4] now has compu-
tational complexity qm, which is linear in the number of edges
when q is fixed.
The Bethe free energy of a BP fixed point is a function of

the messages
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where Zi and Zij are the normalization constants for the one- and
two-point marginals appearing in [S2] and [S3]. BP fixed points
are also stationary points of the Bethe free energy (3).
Observe that the factorized solution ψ j→i

t = 1=q, where each
node is equally likely to be in each possible group, is always a
fixed point of the BP Eq. S4. Assuming it does not get stuck in
a local minimum, BP converges to a retrieval state whenever its
Bethe free energy is less than that of the factorized state. If the
network has average degree c, this is simply
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In Fig. S1 we compare the free energy, convergence time, and re-
trieval modularity for networks generated by the stochastic block
model at three different values of «, alongside an Erd}os–Rényi
graph of the same average degree c= 3. For small enough β,
their free energies are all equal to f factBethe, because they are all
in the paramagnetic phase. For each value of «, there is a critical
βR at which the free energy splits off from the others, where it
makes a transition to a retrieval state with fBethe < f factBethe. The
retrieval modularity jumps to a nonzero value, indicating com-
munity structure, and the convergence time diverges at the tran-
sition. For the Erd}os–Rényi graph, the apparent modularity also
jumps, but at β* = βSG it enters the spin-glass phase rather than
the retrieval phase: BP fails to converge and the retrieval mod-
ularity fluctuates, indicating partitions that are uncorrelated with
each other.

Relation with the Degree-Corrected Stochastic Block Model
The degree-corrected stochastic block model (DCSBM) was in-
troduced in ref. 4 to overcome the fact that the SBM typically
places low-degree and high-degree vertices into different groups,
because it expects the degree distribution within each group to
be Poisson. The DCSBM’s parameters are the expected node
degrees fdig and a q× q matrix of parameters ωrs. Given a par-
tition ftg, the number of edges Aij between each pair hiji is
Poisson distributed with mean didjωti;tj . In the simple graph case
where Aij = 1 if hiji∈ E and Aij = 0 otherwise, the log-likelihood of
the network is then
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If ωrs =ωin for r= s and ωout for r≠ s, the likelihood can be
written as

Zhang and Moore www.pnas.org/cgi/content/short/1409770111 1 of 5

www.pnas.org/cgi/content/short/1409770111


L=
X
hiji

�
log
�
didjωout

�
− didjωout

�

+
�
log

ωin

ωout

�24 X
hiji∈E

δti tj −
ωin −ωout

logðωin=ωoutÞ
X
hiji

didjδti tj

3
5: [S8]

Comparing with the definition of modularity, if we set ωin and
ωout such that

β= log
ωin
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and 2m=
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; [S9]

then the second term in [S8] is βmQðftgÞ. Because the first term
in [S8] does not depend on ftg, we have

eLðftgÞ ∝ eβmQðftgÞ;

and the Gibbs distribution is exactly the Gibbs distribution of par-
titions in the DCSBM.
Thus, for any fixed β, there are parameters ωin;ωout of the

DCSBM such that these distributions have the same free energy
and the same ground state. Belief propagation on the DCSBM
was described in ref. 5, and one can optimize the parameters
ωin;ωout through an expectation-maximization algorithm analo-
gous to that in refs. 1 and 2. However, our approach is different
in several ways:

• We define community structure directly in terms of a classic
measure, the modularity, as opposed to the log-likelihood of
a generative model.

• Rather than having to fit the parameters of the DCSBM
with an EM algorithm, we have a single temperature pa-
rameter β. We can usually detect communities by setting
β= β* as in the main text; at worst, we just have to a scan
a small region.

• For real-world networks the retrieval modularity appears to
be a good guide to the number of groups q* , whereas the free
energy of the (DC)SBM continues to decrease for q> q*.

• Our approach appears to work equally well for networks with
Poisson degree distributions (generated by the SBM) and
those with heavy-tailed degree distributions, such as the
LFR benchmark (6) and the network of political blogs, where
the DCSBM does much better (4). In particular, we have no
need to do model selection between SBM and DCSBM, as
was done using the Bethe free energy in ref. 5.

The Nishimori Line and the Optimal Temperature
When data are produced by an underlying generative model,
inference of the latent parameters can be done optimally along
the Nishimori line (7, 8), where the Gibbs distribution is exactly the
posterior distribution of the latent parameters (in this case
the group labels or partitions). If the network is generated by the
DCSBM, then Eq. S9 gives a βNishimori that corresponds to the
correct parameters at the Nishimori line. Determining the pa-
rameters, and therefore βNishimori, could be done with an EM
algorithm as in refs. 1 and 2, but our goal is to avoid this addi-
tional learning step. Moreover, if the network is not actually
generated by the DCSBM, there is a priori no value of β that
corresponds to the Nishimori line and no way to determine the
optimal β without access to the ground truth.
However, for synthetic networks generated by the SBM, we can

construct an approximate Nishimori line by omitting the differ-
ence between the SBM and the DCSBM, by assuming that the
expected degrees are actually the same. This gives

βNishimori = log
cin
cout

=− log e:

In Fig. S2 we show the phase diagram from the main text with this
approximate Nishimori line added. It passes through the critical
point ðe* ; β* Þ (one can check analytically that β* =−loge* )
and then it avoids the spin-glass phase, passing directly from
the paramagnetic phase to the retrieval phase. This recovers
the fact that replica symmetry breaking cannot occur on the
Nishimori line (9).

Choosing the Number of Groups
Choosing the number q of groups in a network is a classic model
selection problem. Setting q by maximizing the modularity is
a widely used heuristic in the network literature; however, as we
have already seen, it is prone to overfitting. For example, the
maximum modularity for an Erd}os–Rényi graph is an increasing
function of q, whereas the correct model has q= 1. Similarly, in
the stochastic block model the likelihood increases, or the
ground state energy decreases, until every node is assigned to its
own group.
One approach (1, 2) is to use the free energy rather than the

ground state energy. In essence, the entropic term penalizes
overfitting and gives us the total likelihood of the model summed
over all partitions, as opposed to the likelihood of the best
partition. This approach works well on synthetic graphs: The free
energy decreases until we reach the correct number of groups,
after which it stays roughly constant. However, on real-world
networks the free energy continues to decrease with q, for ex-
ample as shown in figure 8 of ref. 2. Thus, for networks not
generated by the SBM, it is not clear that this method works.
Here we propose to use the retrieval modularity Qðf̂tgÞ as

a criterion for choosing q. Namely, we claim that Qðf̂tgÞ in-
creases with q until we reach the correct value q* . For q> q* ,
either Qðf̂tgÞ stays the same or the retrieval phase disappears
and we enter the spin-glass phase. In Fig. S3 we plot Qðf̂tgÞ and
BP convergence time for the karate club network with different
values of q. With q= 2, i.e., the ground-truth number of groups,
the retrieval phase is very large. For larger q, the retrieval phase
becomes narrower, and Qðf̂tgÞ does not increase. Note the
similarity with Fig. 2, Right in the main text.
In Fig. S4, we plot Qðf̂tgÞ for different values of q as a function

of β for three networks with known community structure: a syn-
thetic network generated by the SBM with q* = 4, the karate
club with q* = 2 (10), and a network of political books with
qp= 3 (11). In each case, Qðf̂tgÞ stops growing at q= qp and is
nearly independent of β throughout the retrieval phase. (To deal
with fluctuations, in practice we don’t increase q unless the re-
trieval modularity increases by at least some threshold value.)
Thus, our method gives the correct number of communities,
rather than overfitting.
Note that here q* refers to the top level of organization in the

network. In the main text, we discuss using our approach to re-
cursively divide communities into subcommunities. In that case,
we use this procedure to determine the number q* of sub-
communities we should split the network into at each stage and
stop splitting when we reach communities with q* = 1.

Additional Comparisons with Louvain and OSLOM
In Fig. S5 we show comparisons between our BP algorithm,
Louvain (12), and OSLOM (13) on networks with power-law
degree distributions. In Fig. S5, Left, the graphs are generated
by the LFR benchmark process (6). We show the normalized
mutual information (14) as a function of the mixing parameter
μ. As for the SBM graphs shown in the main text, there is
a parameter range where BP achieves a higher NMI than the
other algorithms. In Fig. S5, Right, we show results for a network
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with no community structure, where the degree distribution
follows a power law with exponent −2. Whereas BP correctly
chooses q* = 1 as the number of groups, the other algorithms
overfit, finding a number of communities that grow with the
network size. These results are similar to those shown in Fig. 5
of the main text.

The Resolution Limit
In this section we describe results of our algorithm on the ring-of-
cliques network, which is the standard example of the resolution
limit (15). This network has size n= ab; it consists of a cliques,
each of which is composed of b nodes, which are connected to
the neighboring cliques by a single link. Thus, the intuitively
correct partition of the network puts each clique into one group.
However, when b is sufficiently small compared with a, maxi-

mizing the modularity forces us to combine multiple cliques
(15–20). For example, if a= 24 and b= 5, the correct partition
with 24 groups has modularity 0.8674, whereas the division with
12 groups of two cliques each has modularity 0.8712. As a con-
sequence, maximizing the modularity fails to divide the network
correctly into the cliques.
In Fig. S6 we plot the dendrogram obtained by our hierarchical

clustering algorithm starting from three different initial con-
ditions (from Top to Bottom). All three dendrograms have two
levels below the root. The first split creates groups consisting of
multiple cliques, but the second split correctly assigns each clique
to its own group. At that point the algorithm concludes that the
cliques have no internal structure, and it stops subdividing. This
suggests that our hierarchical clustering algorithm may be able to
avoid the resolution limit.
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Fig. S1. (Left) Free energy (solid lines) and convergence time (dashed lines) as a function of β for networks generated by the stochastic block model for three
different values of e= cout=cin, also compared with an Erd}os–Rényi graph. (Right) Retrieval modularity for these networks. All networks have size n= 104 and
average degree c= 3. The networks generated by the SBM have q= 2 groups of equal size.

Fig. S2. The phase diagram from the main text for networks generated by the stochastic block model, with the approximate Nishimori line βNishimori =−log e

added (blue line). Replica symmetry breaking cannot occur on the Nishimori line, and indeed it avoids the spin-glass phase. Inference at βNishimori would be
optimal, but it would require us to learn, or infer, the correct value of the parameter «.
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Fig. S3. Retrieval modularity (blue ×) and BP convergence time (red +) of the karate club network with two groups (Top Left), three groups (Top Right), and
four groups (Bottom). With q= 2, which is the ground-truth value, the system has a very strong community structure, represented by a large retrieval phase
starting at βR = 0:565. With q= 3, the retrieval phase exists between βR =0:79 and βSG = 1:35; compare Fig. 2, Right in the main text. With q= 4 groups, the
retrieval phase becomes even narrower, between βR = 0:97 and βSG = 1:3.

Fig. S4. Retrieval modularity as a function of q for three networks where the number of groups is known: a network generated by the stochastic block model
with q*= 4, n= 104, and e= 0:1 (Top Left); the karate club with q*= 2 (Top Right); and the network of political books with q*= 3 (Bottom). In each case, for
q>q* the retrieval modularity stops growing until the spin-glass phase appears.
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Fig. S5. Comparison of BP, the Louvain method, and OSLOM on benchmark networks with power-law degree distributions. (Left) Networks are LFR
benchmarks with n= 104 and c=4. The distribution of community sizes follows a power law with exponent −1, ranging from 200 to 400. The degree distri-
bution is a power law with exponent −2, and the maximum degree is 30. We show the normalized mutual information (NMI) as a function of the mixing
parameter μ, and there is a range of μ where BP achieves a higher NMI than the other algorithms. (Right) We show results on a random graph with no
community structure, with a power-law degree distribution with exponent −2 and mean c= 6. Here BP correctly chooses q*= 1 for the number of groups,
whereas the other algorithms overfit, selecting a number of groups that grow with n. For both graphs, each data point is averaged over 20 instances. Compare
Fig. 5 in the main text.

Fig. S6. Three dendrograms obtained by our hierarchical clustering algorithm on the ring of cliques, generated by independent runs with different initial
conditions. Here there are a= 24 cliques of size b= 5 each. The number inside each node indicates the number of nodes in it. In all three runs, the first level of
splitting merges multiple cliques together, but the second level correctly divides the network into individual cliques. This offers some evidence that our hi-
erarchical algorithm can overcome the resolution limit, as opposed to algorithms that maximize the modularity.
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