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Abstract

We propose that hypergraphs can be used to model social networks with overlapping communi-

ties. The nodes of the hypergraphs represent the communities. The hyperlinks of the hypergraphs

denote the individuals who may participate in multiple communities. The hypergraphs are not

easy to analyze, however, the line graphs of hypergraphs are simple graphs or weighted graphs, so

that the network theory can be applied. We define the overlapping depth k of an individual by

the number of communities that overlap in that individual, and we prove that the minimum adja-

cency eigenvalue of the corresponding line graph is not smaller than −kmax, which is the maximum

overlapping depth of the whole network. Based on hypergraphs with preferential attachment, we

establish a network model which incorporates overlapping communities with tunable overlapping

parameters k and w. By comparing with the Hyves social network, we show that our social net-

work model possesses high clustering, assortative mixing, power-law degree distribution and short

average path length.

1 Introduction

Social networks, as one type of real-world complex networks, are currently widely studied [1, 2, 3, 4].

Most social networks have common properties of the real-world networks, such as high clustering

coefficient, short characteristic path length, power law degree distribution [1, 3, 5, 6]. Meanwhile, they

possess some special properties like assortative mixture, community and hierarchical structure [4, 7, 8,

9]. The communities are the subunits of a network, which exhibit relatively higher levels of connections

within the subunits and a lower connectivity between the subunits. Community structures feature

important topological properties that have catalyzed researches on communities detection algorithms

and on modularity analysis [10, 11, 12]. The communities overlap with each other when nodes belong

to multiple communities. The overlap of different communities exists naturally in real-world complex

networks, particularly in social and biological networks [13, 14, 15]. The overlap is present at the

interface between communities and could also be pervasive in the whole network. The existence

of overlapping communities challenge the traditional algorithms and methods [10] for community

detection and network (nodes) partitioning. Ahn et al. [7] and Evans et al. [16] proposed that
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partitioning the links of the concerned network could be void of overlapping communities. Actually

this method only works when two communities overlap at most in one node, as shown in Figure 1 (a).

If two communities overlap in two or more nodes, they also overlap in links, as shown in Figure 1 (b)

where the thick black links belong to two communities.

We propose that hypergraphs and line graphs of hypergraphs can be used to model the networks

with overlapping communities. A hypergraph is the generalization of a simple graph. A hypergraph

H (N,L) has the same types of nodes as a simple graph [17], but its hyperlinks1 can connect a

variable number k of nodes, k = 1, 2, 3, · · · . Here N and L denote the number of nodes and hyperlinks

respectively. The line graph l (H) of a hypergraph H (N,L) is a graph in which every node of l (H)

represents a hyperlink ofH (N,L) and two nodes of l (H) are adjacent if and only if their corresponding

links share node(s) in H (N,L) [18]. As discussed in Section 3, the line graph l (H) is a simple graph2

when H (N,L) is linear3, otherwise l (H) is a weighted graph. Applying the concepts to communities,

we have that:

• Hypergraphs: The nodes represent the communities; The hyperlinks denote the individuals

who may belong to multiple communities. If an individual belongs to several communities, the

corresponding nodes are connected by the corresponding hyperlink.

• Line graphs of hypergraphs: The nodes represent the individuals. The communities consist of

the participating nodes and all the links inter-connecting them. Two individuals are connected

by a link if they belong to the same community. All the communities are the cliques in the line

graph.

By using hypergraphs and their line graphs, we establish in this article a network model which

incorporates overlapping communities structures for the first time with tunable overlapping parame-

ters: the overlapping depth k and the overlapping width w (defined in Section 2.1). By introducing

the preferential attachment to hypergraphs, we obtain a power-law community size distribution and a

power-law degree distribution. Our network model also possesses high clustering, assortative mixing

and short average path length. We compare the mentioned metrics of our model with the correspond-

ing metrics of an online social network retrieved from a part of public profiles of Hyves, which is the

popular Dutch social networking site.

2 Hypergraphs modeling social networks with overlapping commu-

nities

2.1 The overlapping parameters for communities

Human beings have multiple roles in the society, and these roles make people members of multiple

communities at the same time, such as companies, universities, families/relationships, hobby clubs,

1The hyperlinks here should not be confused with hyperlinks of WWW webs. Some papers call them hyperedges.
2A simple graph is an unweighted, undirected graph containing no self-loops (links starting and ending at the same

node) nor multiple links between the same pair of nodes.
3A hypergraph is linear if each pair of hyperlinks share at most one node. Hypergraphs where all hyperlinks connect

the same number k of nodes are defined as k-uniform hypergraphs. A 2-uniform hypergraph is a simple graph.
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(a) (b)

Figure 1: The example graphs showing the overlapping depths of nodes and the overlapping widths

of two communities. The nodes denote the individuals. The communities consist of links of the same

color and the shared thick black link(s) and the nodes incident to the links.

etc. Proteins may also involve in multiple functional categories in biological networks. That is how

overlapping communities emerge in social and biological networks. Sometimes only two communities

overlap in the same node, and sometimes a huge number of communities overlap in the same node.

Two communities may overlap only in one node and they may also overlap in many nodes.

Definition 1 We define the overlapping depth k of an individual by the number of communities that

overlap in that individual.

Definition 2 We define the overlapping width w of two communities by the number of individuals

that they overlap.

The nodes in Figure 1 denote the individuals. There are five individuals in Figure 1 (a) which

have at least two communities overlapping in them. The overlapping depths of them are 5, 3, 2, 2, 2.

As shown in Figure 1 (b), the overlapping widths of four community pairs, red and brown, red and

dark blue, green and dark blue, brown and green, are 3, 2, 2, 1. The individuals of the social network

modeled by a k-uniform hypergraph all belong to k different communities, hence, the overlapping

depths of all hyperlinks of a k-uniform hypergraph are k. The overlapping width of any node pair of a

linear hypergraph is not larger than 1, regarding nodes as communities and hyperlinks as individuals,

2.2 Modeling social networks

The hyperlinks and nodes represent the individuals and the communities respectively. People may

participate in multiple communities. If an individual belongs to several communities, the correspond-

ing nodes are connected by the corresponding hyperlink. We show how a hypergraph models a real

social network by an example of Figure 2. This is a small social network of a research group NAS4

at TU Delft. Despite of its small size, the overlapping communities still emerge. In Figure 2, there

4Network Architectures and Services group
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l51 ~ l54

Figure 2: An example of a hypergraph modeling a small size real social network. The hyperlinks and

nodes represent the individuals and the communities respectively. Each individual may participate in

multiple communities, in other words, the communites overlap with each other.

are 12 communities as described in Table 1, and there are 54 individuals among whom 6 individuals

belong to NAS group possessing overlapping depth of 5, 3, 3, 2, 2, 2. The 7th individual joins in both

the communities of a rock band and a soccer team.

The hypergraphs are too complicated to implement network analysis, however, the line graphs of

hypergraphs are simple graphs or weighted graphs whose properties are easier to investigate.

3 The line graphs of hypergraphs

We store a hypergraph by its unsigned incidence matrix, which is defined as an N ×L matrix R with

the entries rj1i = rj2i = · · · = rjki = 1 and the other entries of the ith column being 0, when the

hypergraph i is incident to nodes j1, j2, · · · , jk.

Definition 3 The line graph of a linear hypergraph H (N,L) is defined as a graph l (H), of which the

node set is the set of the hyperlinks of the hypergraph and two nodes are connected by an unweighted

link when the corresponding hyperlinks share one node.

Definition 4 The line graph of a nonlinear hypergraph H (N,L) is defined as a graph l (H), of which

the node set is the set of the hyperlinks of the hypergraph and two nodes are connected by an link of

weight t when the corresponding hyperlinks share t node(s).

We observe that the line graph l (H) is a simple graph when H (N,L) is linear, and l (H) of

nonlinear hypergraph H (N,L) is a weighted graph. The adjacency matrix of the line graphs of

hypergraphs can be computed from the unsigned incidence matrices of hypergraphs.

In Figure 3 we show the line graph of the hypergraph of Figure 2. As depicted, there are 12

communities, of which 5 communities have 6 members and 7 communities have 5 members. Table 2

shows the members of all the communities of the network in Figure 3. We see that the line graph

display the community structure and the overlap better.
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Nodes Communities

n1 TU Delft research group-NAS

n2 MIT research group

n3 Cornell Univ. research group

n4 IEEE/ACM ToN editorial board

n5 Kansas State Univ. research group

n6 Ericsson

n7 KPN (Dutch Telecom)

n8 Piano club

n9 TNO (A Dutch consulting company)

n10 A rock band

n11 A soccer team

n12 TU Delft research group-Bioinformatics

Table 1: The details of all communities of the NAS social network.

Communities Individuals

n1 l1 to l6

n2 l1, l8 to l12

n3 l1, l13 to l17

n4 l1, l18 to l22

n5 l1, l23 to l27

n6 l2, l28 to l31

n7 l3, l32 to l35

n8 l3, l36 to l39

n9 l4, l40 to l43

n10 l4, l7, l44 to l46

n11 l5, l7, l47 to l50

n12 l6, l51 to l54

Table 2: The members of all the communities of the NAS social network.
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Figure 3: The line graph of the hypergraph in Figure 2. The nodes here denote the individuals while

the communities consist of links of the same color and the shared thick black link(s) and the nodes

incident to the links.

4 The relation between the maximum overlapping depth kmax and

the smallest adjacency eigenvalue of the corresponding line graph

4.1 The line graph of linear and k-uniform hypergraph Hk (N,L)

Since Hk (N,L) is k-uniform, the unsigned incidence matrix R of Hk (N,L) has exactly k 1-entries and

N − k 0-entries in each column, and we have kmax = k. Hence, all the diagonal entries of RTR are k.

Due to the definition of linearity of hypergraphs, two columns of R of Hk (N,L) have at most one 1-

entry at the same row. Hence, all the non-diagonal entries of RTR are either 1 or 0. In addition, RTR

is a Gram matrix [19, 20]. Therefore the adjacency matrix of the line graph of linear and k-uniform

hypergraph Hk (N,L) is,

Al(Hk) = RTR− kI (1)

Both of the matrices
(

RTR
)

L×L
and

(

RRT
)

N×N
are positive semidefinite,

xT
(

RTR
)

x = (Rx)T Rx = ‖Rx‖22 ≥ 0

xT
(

RRT
)

x =
(

RTx
)T

RTx =
∥

∥RTx
∥

∥

2

2
≥ 0

All eigenvalues of
(

RTR
)

L×L
are non-negative. Due to (1), the adjacency eigenvalues of the line graph

of linear and k-uniform hypergraph Hk (N,L) are not smaller than −k, where k is the overlapping

depth.

We have more results for linear and uniform networks.

Lemma 5 (see [19]) For all matrices An×m and Bm×n with n ≥ m, it holds that λ (AB) = λ (BA)

and λ (AB) has n−m extra zero eigenvalues,

λn−m det (BA− λI) = det (AB − λI)

6



Using Lemma 5 we have,

det
(

(

RTR
)

L×L
− λI

)

= λL−N det
(

(

RRT
)

N×N
− λI

)

Using the definition of the adjacency matrix of the line graph in (1) yields,

det
(

Al(Hk) − (λ− k) I
)

= λL−N det
(

(

RRT
)

N×N
− λI

)

or

det
(

Al(Hk) − λI
)

= (λ+ k)L−N det
(

(

RRT
)

N×N
− (λ+ k) I

)

(2)

The adjacency matrix Al(Hk) has at least L − N eigenvalues of −k, where N is the number of com-

munities and L is the number of individuals. The matrix RRT is positive semidefinite, hence, the

remaining N eigenvalues of Al(Hk) are not smaller than −k.

4.2 The line graph of linear and non-uniform hypergraph H (N,L) with kmax

Since the maximum overlapping depth of H (N,L) is kmax, the unsigned incidence matrix R of

Hk (N,L) has at most kmax 1-entries in each column. Therefore, the largest diagonal entry of RTR is

kmax. The adjacency matrix of the line graph of a linear and non-uniform hypergraph H (N,L) is,

Al(H) = RTR+ C − kmaxI (3)

where C = diag
(

c11 c22 · · · cLL

)

and cjj ≥ 0, 1 ≤ j ≤ L. By adding C to RTR, we make all

the diagonal entries of RTR+ C equal to kmax.

We show that RTR+ C is also positive semidefinite.

xT
(

RTR+C
)

x = xT
(

RTR
)

x+ xT
(√

C
T√

C
)

x

= ‖Rx‖22 +
∥

∥

∥

√
Cx

∥

∥

∥

2

2
≥ 0 (4)

where xL×1 is an arbitrary vector and
√
C = diag

( √
c11

√
c22 · · · √

cLL

)

. Hence, the adjacency

eigenvalues of the line graph of a linear and non-uniform hypergraph H (N,L) are not smaller than

−kmax, where kmax is the maximum overlapping depth of H (N,L).

4.3 The line graph of nonlinear and non-uniform hypergraph H (N,L) with kmax

Since H (N,L) is nonlinear, there are some pairs of hyperlinks sharing more than one nodes. If

hyperlink i and hyperlink j share t nodes, then, by the definition of the line graph of hypergraph

H (N,L), the link weight of the corresponding link between node i and j in the line graph is t.

The line graph of nonlinear hypergraph H (N,L) becomes a weighted graph. In the language of

social networks, the link weight of two individuals is t if the two individuals are both members of

t communities. The adjacency matrix of the line graph of nonlinear and non-uniform hypergraph

H (N,L) is,

Al(H) = RTR+ C − kmaxI

where C = diag
(

c11 c22 · · · cLL

)

and cjj ≥ 0, 1 ≤ j ≤ L. By adding C to RTR, we make all

the diagonal entries of RTR + C are kmax. We have proved that RTR + C is positive semidefinite,

hence, the adjacency eigenvalues of the line graph of nonlinear and non-uniform hypergraph H (N,L)

are also not smaller than −kmax.
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(a) (b)

Figure 4: The seed (the starting hypergraph) (a) and the growing element (b) we use in the simulation.

At each time step a growing element is added to the existing hypergraph. All the hyperlinks of the

growing elements has only one red circle means that they can only connect to one more node.

Network N L α C Cr ρD l

The Hyves social network 10326 1260458 −0.88 0.84 0.024 0.29 6.7

The line graph of the 1510 32031 −0.76 0.58 0.029 0.72 4.8

generated hypergraph

Table 3: The properties of an social network retrieved from Hyves and the line graph of the hypergraph

generated by our hypergraph model. The properties measured are: the total number of nodes N , the

total number of nodes L, exponent α of the power-law degree distribution, clustering coefficient C,

assortativity coefficient ρD (we have employed the formula in [9]), average path length l. For a

comparison we have included the clustering coefficient Cr of a ER random graph with the same size

and link density.

5 Hypergraphs with power-law degree distribution

As a common property, the node degree of many real-world large networks including social networks

follows a power-law distribution [1, 5]. To model social networks better, we need to incorporate

the power-law degree distribution into our hypergraph model. We introduce network growing and

preferential attachment to our hypergraph model.

By preferential attachment, we generate linear and non-uniform hypergraphs only with overlapping

depth of 2 and 3. Starting with a small hypergraph (with m0 nodes, m0 > 4), which we call as a

seed, at every time step we add a growing element which consists of three nodes and two hyperlinks

of overlapping depth of 2 and two hyperlinks of overlapping depth of 3. The four hyperlinks connect

all the three nodes of a growing element to the existing hypergraph. Note that all four hyperlinks can

only connect to one more node. The probability Π that a hyperlink will connect to a node i depends

on the current degree Si of i, Π (i) = Si/
∑

Si, where
∑

Si is the sum of degrees of all the existing

nodes. In order to guarantee the linearity, the four hyperlinks must connect to different existing nodes

at each time step. Figure 4 shows us the seed and the growing element we use in the simulation. ρD

Using this model (with the seed and the growing element in Figure 4), we generate a hypergraph

H with 1015 nodes and 1510 hyperlinks, which is stored in the unsigned incidence matrix R. By the

8



formula (3), we compute the adjacency matrix of the line graph l (H). The line graph5 of the generated

hypergraph has 1510 nodes and 32031 links. The degree DH of a random node of a hypergraph is

defined as the number of hyperlinks which are incident to that node, and it is essentially equal to the

size of the corresponding community. The degree distribution Pr (DH = k) of that generated hyper-

graph denotes actually the community size distribution, and strictly follows power-law distribution.

The degree of a random node of the line graph is denoted as Dl(H), and we show in Figure 5 that the

degree distribution Pr
(

Dl(H) = k
)

of the line graph approximately follows power-law distribution.

As the most popular online social networking site in Netherlands, Hyves has more than 10 million

users, which means that more than half of the Dutch population are using Hyves. Nearly half of Hyves

users make their profiles open to the public. From the open profiles we can see some information of

users including companies, schools, colleges, clubs and other organizations, to which they belong. By

using a breath-first search we found out that there are 17619 users claiming that they belong to some

communities. The total number of these communities are 10326. We make a network with 17619

users as nodes, and two users are connected by a link when they belong to the same community. We

denote the size of a community as SC , which is defined as the total number of individuals belonging

to that community. We compute the properties of the Hyves social network and the line graph of

the hypergraph generated by our hypergraph model with preferential attachment. As shown in Table

3, both of these two networks have high clustering coefficient, positive assortativity coefficient, short

average path length and similar exponent of the power-law degree distribution, although the size of the

line graph is much smaller than the size of the Hyves social network. As depicted in Figure 5 (a) and

(b), the community size of the Hyves social network follows a power-law distribution with exponent

α = −1.88, and the degree distribution of the Hyves social network can also be fitted by a power-law

function with exponent α = −0.88. Figure 5 (c) and (d) show us that the power-law degree distribution

of the generated hypergraph α = −2.5 is quite similar with that of the community size distribution

of Figure 5 (a), and the exponent of power-law degree distribution of the line graph α = −0.76 seems

very close to the exponent in Figure 5 (b). Table 3 and Figure 5 show that our hypergraph model

with preferential attachment has the common properties of real-world social networks, besides that

community structure and community overlap are already incorporated.

6 Conclusion

We have modeled social networks with overlapping communities by hypergraphs and the line graphs

of hypergraphs. The hyperlinks and nodes represent the individuals and the communities respectively.

If an individual belongs to several communities, the corresponding nodes are connected by the corre-

sponding hyperlink. Since the line graphs of hypergraphs are just simple graphs or weighted graph,

we can implement the current network analysis techniques. We defined the overlapping depth k of

an individual by the number of communities that overlap in that individual, and we proved that the

minimum adjacency eigenvalue of the line graphs of hypergraphs is not smaller than −kmax, which is

the maximum overlapping depth of the whole network. We established a network model which incor-

porates overlapping communities structures for the first time with tunable overlapping parameters.

5This line graph is unweighted, since the hypergraph we have generated is linear.
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Figure 5: The community size distribution of the Hyves social network (a) and the degree distribution

of the generated hypergraph (c), and the degree distribution of the Hyves social network (b) and the

degree distribution of the line graph of the generated hypergraph (d). They are all fitted by power-law

function f(x) = βxα, and α = −1.88 (a), α = −2.5 (c), α = −0.88 (b), α = −0.76 (d).

By comparing our model with the online social network Hyves, we have shown that our network model

possesses the common properties of large social networks.
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