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 Data Collection and Preprocessing 
We collected notable individuals including dates and locations for birth and death. 

In addition we also acquired related information on individual genres or professional 

roles. Locations in two of our datasets are geocoded, providing good quality latitude and 

longitude information. Supplementary table S1 summarizes the basic statistics. The 

nature, acquisition, and pre-processing of the datasets is explained further below. 

 

Table S1. Basic statistics for the FB, AKL, ULAN, and WCEN datasets. 'Type' 
characterizes individuals as defined by dataset publishers; we further indicate the total 
number of 'individuals'; the number of individuals with complete information on birth 
and death that act as 'links', including 'percentage' of total; the number of 'locations' or 
nodes connected by the 'links'; and the availability of 'geocodes', i.e. latitude and 
longitude information for 'locations' in a dataset. 

 
 
 
A. Freebase.com (FB) 

Freebase.com (3) is a large Google-owned knowledge base that is publicly editable 

and available under a Creative Commons Attribution (CC-BY) license, which allows for 

both sharing and remixing of the data (see http://creativecommons.org/licenses/by/2.5/).  

Freebase stores information in structured graph format, integrating and disambiguating 

data from a variety of sources, including Wikipedia, the Internet Movie Database 

(IMDb), and others. Freebase data was obtained with a Python script using the 

proprietary MQL query language via the public Google API. Beyond a large set of 

individuals that may be dead or not, Freebase contains about 447.000 'deceased persons' 

with different professions. Taking only individuals into account that include full birth and 

death date as well as location information, Freebase returns 120.211 birth-death records 

connecting over 37.062 locations, where lat/long information is included and covers a 

timeframe of 3500 years.  

During FB data preparation, we reduced dates, such as 01.01.2012, to the year, 

2012; we removed individuals with ages above 130 and below 0; we cleaned out latitude 
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and longitude coordinates that were out of range; and we queried and attached FB 

'profession' and 'sex' (meaning gender) information to our birth-death records (see Table 

S2). For known bias in FB see the respective section below. 

 

B. Allgemeines Künstlerlexikon (AKL)  
Allgemeines Künstlerlexikon (1969-2011) (4) is the most comprehensive scholarly 

artist lexicon in existence. It is based on the Thieme-Becker and Vollmer lexica (1907-

1962/1980) and is widely used as a reference in art research (5, 6). The publisher Verlag 

Walter DeGruyter, has provided us with a “controlled vocabulary extract” that is usually 

catered to librarians as a cataloging aid to disambiguate individuals. The originally 

provided extract contained about 1.1 million XML files, i.e. one file per individual, 

including an internal ID, a label name, variant names, professional specializations, birth 

and death information, as well as (dissociated from the latter) countries of activity. 

Taking only individuals into account that include full birth and death date as well as place 

information, the AKL data, as published in the SOM with permission of the provider to 

allow for replication of our conclusions, contains 153.794 birth-death records connecting 

57.169 locations. The AKL covers a timeframe of 2500 years, and unfortunately does not 

include latitude and longitude information for birth and death locations.   

During AKL data preparation we combined the granular XML files to a single list; 

we reduced dates to the year, with '-' indicating dates before common era (BCE); we 

systematically chose the first year in date strings such as '1485' in '1485/1490'; we 

disregarded fuzzy qualifiers such as 'gegen (towards)', 'nach (after)', 'um (around)', and 

'vor (before)'; we assigned location label strings with a unique ID (without 

disambiguating or merging entries any further, such as 'Tiflis' (Russian) and 'Tiblisi' 

(Georgian), or 'London' and 'London?'. We did not fully geocode the AKL locations, as 

AKL goes beyond the coverage of existing web services both temporally and spatially. 

Further major hurdles for geocoding location-label-strings in AKL are their notation in a 

mixture of German and native language transliteration, plus a disconnect of town and 

country information. We took into account AKL professional roles (see Table S2). For 

known bias in AKL see the respective section below. 
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C. The Getty Union List of Artist Names® (ULAN)  

The Getty Union List of Artist Names® (7) is a controlled vocabulary that, similar 

to the AKL, is used as a cataloging and retrieval aid in art research. The Getty Research 

Institute has provided the authors with a full ULAN dump of relational tables. Part of the 

Getty Open Content program, the ULAN dataset is now made available as Linked Open 

Data, with no restrictions in terms of further use. The data contains about 202.718 

'preferred names', of which we take only individuals into account that include full birth 

and death date as well as location information. After filtering, ULAN data contains 

20.173 birth-death records connecting 7.286 locations. Like AKL, the ULAN covers a 

timeframe of 2500 years. While the ULAN dataset is substantially smaller than AKL, it 

contains expert curated latitude and longitude information for locations, linking to the 

additionally provided Getty Thesaurus of Geographic Names® (TGN), which is also now 

available in the Getty Open Content program (31). ULAN includes professional 

specializations and roles (see Table S2). For known bias in ULAN see the respective 

section below.  

 

D. Winckelmann Corpus (WCen) 
The Winckelmann Corpus (11) is a scholarly reference database that brings together 

ancient Greek and Roman sculptures and monuments as known by 18th century pioneer 

classical archaeologist Johann Joachim Winckelmann and others. The publisher of the 

2001 DVD version, Verlag Biering & Brinkmann, provided us with the data, allowing us 

to map and analyze the full dataset as a network of complex networks (cf. 32). 

Beyond its main intended focus on monument-documentation, we can use the 

Winckelmann Corpus to construct a network, whose Giant Connected Component (GCC) 

connects 128 locations all over Europe across birth and death of 233 individuals. The 

strikingly heterogeneous structure of this small sample network, is visible in a clean way 

in Figure 1D. The raw version of this figure, based on data included in the SOM with 

permission of the provider to allow for replication, gave the initial hint for the viability of 

our macroscopic perspective on cultural history using birth-death data.  
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E. Google NGrams (Ngrams) 
The Google Ngram datasets record the frequency of words and word-combinations 

in an estimated 5% of all books ever published, and were originally used and provided to 

establish the field of culturomics (29). For our purpose, we downloaded the 'Google 

Ngram English dataset version 20090715' (28). 

From the data, we first extracted 3-grams and 4-grams by using regular expressions 

"^[A-Z].+ in [0-9]+" and "^[A-Z].+ .+ in [0-9]+", where the expression matches strings 

such as 'Paris in 1789' or 'Los Angeles in 1984' respectively. In the resulting preprocessed 

file, we looked up the Ngram count for each FB and AKL location-label-string in each 

year from 1400 until 2009. For instance, for 'Los Angeles', we identified all Ngram 

counts for the 4-grams 'Los Angeles in 1400', 'Los Angeles in 1401', etc. to 'Los Angeles 

in 2009'. For known bias in the Google Ngrams English dataset see the respective section 

below. 
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Table S2. FB, AKL, and ULAN include hundreds of professional roles and 
specializations by genre, in addition to plain birth and death information. We manually 
curated these roles and genres into a small set of categories: For FB we summarize 
performing arts, creative, governance (including politicians, lawyers, military, activists, 
and religion), academic (including education and health), sports, and business (including 
industry and travel). For AKL and ULAN we aggregate applied arts, architecture, fine 
arts, performing arts, and print & graphics. ULAN also includes academics and others. 
The table indicates our aggregate 'category' names, their 'total' frequency across 
individuals in a given dataset, and a list of most frequent 'example roles' or genres (with 
frequency). In all datasets, individuals can belong to more than one category. 
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Known Dataset Biases 
No historical dataset is free of bias. Here we provide an overview of the biases we 

encounter in FB, AKL, ULAN, and the Google Ngram English dataset. None of these 

biases fundamentally questions our results, but it puts them into perspective. 

 

A. Biographical coverage 
As visible in Table S1, only 12% to 28% of individuals in FB, AKL, and ULAN 

have a death location in addition to a birth location. Moreover, birth and death locations 

are usually the two most frequent locations associated with historical individuals, with 

the number of locations per individual decaying as a fat tail. In other words, building full 

life-paths for a large number of individuals remains a persistent challenge, which is why 

we focus exclusively on birth and death locations.  

 
B. Temporal coverage 

In terms of coverage over time, FB fluctuates in waves between 0 and 900 CE (see 

Fig. 1A). These fluctuations are a result of changes in geographic focus, where Roman, 

Chinese, and Arab individuals alternate in prominence. As more and more individuals 

come in, more and more geographic foci become concurrent and eventually wash out 

such fluctuations. AKL mostly covers artists, with little data before 1200 CE, when artists 

in Western Europe start to claim authorship with signatures (Nicholas of Verdun in 1189 

CE being a famous example). The emancipation of artists leads to increasing 

documentation of birth and death information. The void of data between 300 and 600 CE, 

which becomes visible in Fig. 1A, is a classical bias of scholarship in Western Art 

History, where the early Roman Empire, certain periods of Byzantium, Carolingian art, 

and Ottonic art get more attention than other periods due to the nature of source material. 

ULAN mostly covers artists, and is subject to very similar biases as AKL. 

 

C. Spatial coverage 
In terms of coverage in space, it turns out that our geographic bias is similar to that 

in the Human Mortality Database (HMD) (33), a standard demographic source that also 

focuses on Western countries and Japan. In Figure S1 the relative spatial bias of FB, 
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AKL, and ULAN becomes visible, comparing our data with the total amount of migration 

within and between 15 world regions in 2005 (9). 

 
D. Curated versus crowd sourced data 

In figures 1A and S3 we find that the partially crowd sourced FB covers more 

individuals up to the present, while the professionally curated AKL and ULAN cover 

relatively more individuals in the past. This indicates the complementary value of crowd 

sourced and curated data. 

 

E. Still alive bias 
FB, AKL, and ULAN are subject to a perceivable bias due to an increasing number 

of notable individuals still alive. We have marked the onset of this bias, currently 

approximately in 1930 CE, in figures 1A, S13A-F, and S17. Due to this bias, some 

locations appear of relatively low weight, as in the case of present-day Istanbul, which 

grew from a population of 680,000 in 1927 to 14 million in 2014. 

 

F. Place-aggregation, location name changes, and spelling variants 
Practitioners in demography and urban scaling, in particular, may wonder why we 

do not aggregate or reconcile locations to places. There are three reasons: Aggregating 

locations to places would (a) hide interesting ambiguities in location labels (Tiflis vs. 

Tbilisi), (b) introduce bias by sticking to an aggregation level that reflects a historical 

state, disregarding dynamics for which data is hard to obtain for many different countries 

(for e.g., even in case of wildly changing county boundaries in the US), and (c) hamper 

further research as the datasets continue to grow and aggregation would have to be done 

again and again on a growing number of locations. 

Reconciling location name changes (Constantinople vs. Istanbul) and spelling 

variants (Tiflis vs. Tbilisi) would certainly introduce a bias by changing the frequency 

distribution for large, well-known, and therefore easy-to-reconcile places, versus small, 

less-known, and therefore hard-to-reconcile places (cf. fig. S10). By avoiding 

reconciliation, we embrace the "gradient of uncertainty" in historical sources as opposed 

to threshold against it. As a consequence, we enable further investigation into the relative 

importance of toponyms over time, using our macroscope approach. 
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AKL contains "uncertain variant names" ("Moskau?"), whose reconciliation would 

not change the general frequency distribution of "main names" ("Moskau") (r = 0.99). 

Even though the presence of these "uncertain variant names" in AKL affects our analysis 

in a minor way (cf. fig. S10), we decided to keep them explicit, as they are hard won 

assets of historical research that allow for further investigation using our macroscope 

approach. 

Beyond that, we hardly encounter bias due to a lack of aggregation to places or 

reconciliation of location names. Besides exceptionally interesting historical name 

changes, most variant names for locations are way less frequent than the main name. For 

birth-death distance there is no major bias, as the results for FB and ULAN are essentially 

the same, even though country toponyms are much more prominent in FB (cf. Fig. 

S13D/F). On the upside, we can look at several levels of resolution without re-

aggregating. Zooming into large places such as Paris or London, we find that the birth-

death-attractor pattern remains valid down to the level of city-quarters, while the main 

location point for these places will indicate the general attractiveness. This level of 

granularity is visible for London and Paris in Figs. S5/6, indicating a potential for further 

applications using our macroscope approach. 

 

G. Dataset language bias 
The Google Ngrams English dataset is based on English literature. It is therefore no 

surprise that the Treaty of Paris in 1763 appears as the strongest signal in Fig. 4A. Using 

the Google Ngrams French or German datasets, the French Revolution in 1789 would 

emerge as the strongest signal, which makes sense from a French or German perspective. 

This difference indicates that Ngram trajectories in different languages can be used to 

measure mutual attention or ignorance towards historical events. A similar bias can be 

expected in FB and ULAN, both curated in English, and AKL, which is edited in 

German. A logic next step would be to engage in a comparative analysis of further 

datasets in different languages, striving for a world-wide coverage of the birth-death 

macroscope. 
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Fig. S1. Migration bias in FB, ULAN, and coverage bias in AKL. To map spatial bias 
we normalize the net migration flux from birth to death in our datasets against migration 
within and between 15 world regions in 2005 (9), for (A) deaths in FB (last 20 years), 
(B) FB total, and (C) ULAN total. We map the net flux difference, given in orders of 
magnitude to indicate over-, neutral, and under-representation of migration flux in our 
data (red-grey-blue). For (D) AKL, where we lack the geocodes necessary to assign 
world regions to all locations, we map the coverage of regions, based on the visible 
clusters in Fig. S8, including information on the disconnected components. As expected, 
our datasets focus on migration within and out of Europe and North America. 
Underrepresented migration in our data includes notable individuals and artists moving 
from Central to North America, South America to Southern Europe, and in particular 
within Asia and Africa. This mapping could be used to suggest funding efforts to cover 
art and cultural research in underrepresented areas. 
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Historical World Population 
 

Fig. S2. World population estimates from 1 to 2012 CE. The commonly used sources 
of historical world population (34-51) largely agree on a super-exponential growth curve 
(52), while data points are sparse before 1700 CE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Demographic Heat Maps 
Demographic heat maps based on birth-death data expand modern demography. 

While standard demographic sources, such as the Human Mortality Database (HMD) 

(33), cover a time frame of several decades for most countries, our birth-death datasets 

reproduce essential patterns, while adding up to five centuries of information. Our 

demographic heat maps in Figure S4 are simplified versions of Lexis surfaces (10) or 

shaded contour maps (53). 
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Fig. S3 Demographic heat maps for FB, AKL, and ULAN from 1500 to 2012 CE. 
Time on the x-axis is plotted against death age on the y-axis, with the log number of 
deceased individuals given in color from low (blue) to high (red). (A), FB data reveals 
spikes of premature deaths as a result of crisis and war, such as the French Revolution, 
the American Civil War, World War I, or World War II. FB has exceptional coverage 
until present time, indicating a difference between crowd-sourced and expert data 
curation. (B), AKL data has more coverage in the past, while fading off in the last 
decades of the 20th century. Light-colored diagonals, best visible during the 20th century, 
indicate "lost generations" due to potential parents dying in crisis or war. (C), ULAN has 
substantially less data but is consistent with the general pattern. The over-expression at 
age 100 in ULAN is an artifact due to a data entry guideline that improves local queries. 
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Birth-Death Imbalance 
In Figures 1C and S4 we plot the number of births versus deaths for locations in FB, 

AKL, and ULAN, differentiating death-attractors (red) from birth-sources (blue). 

Deviations from the balanced diagonal are measured as multiples me of statistical error e, 

which is calculated using the equation: 
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where b is the number of births and d is the number of deaths in a location. 

 

 

Fig. S4. Birth-death scatter plots with birth sources (blue) and death attractors (red) 
for locations in (A) AKL and (B) ULAN cumulated over all time. As in FB (cf. Fig. 1C), 
deviations from the balanced diagonal, measured as multiples me of statistical error e, 
span up to four orders of magnitude; in AKL and ULAN too, significant outliers host 
multiple times more deaths than births. Note that outliers are highly significant, even if 
the numbers of birth and death are low: 'Laren', for example, is a small but highly affluent 
location in the Netherlands; strong bias towards births in 'Tiflis' on the other hand points 
to a Russian exodus from 'Tbilisi', Georgia (both location labels are present in AKL, with 
the latter being located closer to the diagonal). 

 

See Fig. S13 below, for dynamics and further quantification of significance. 
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Birth to Death Migration 

Fig. S5. Birth to death migration in FB, cumulated over all time to 2012 CE:  
(A), North America; and (B), Europe, and (C) worldwide (cf. Figs. 1E and S6/7). 
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Fig. S6. Birth to death migration in ULAN, cumulated over all time to 2012 CE:  
(A), North America; (B), Europe, and (C) worldwide (cf. Figs. 1E and S5/7). 
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Fig. S7. Birth to death migration in AKL, cumulated over all time to 2012 CE. 
Without geocodes, cultural proximity emerges using a spring-embedded graph layout 
(54). (A), Europe and North America dominate the global cluster; (B), Japan attaches to 
the cluster as a tendril (cf. Figs. 1E and S5/6). 
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PageRank versus Eigenvector Centrality 
We chose to use PageRank in our static maps in Figs. S5-S7 over other eigenvalue-

based centralities, as PageRank is (1) well-defined in directed networks, (2) not sensitive 

to the outgoing edges of hubs, and (3) does not have the localization problem that can be 

found in other eigenvector-based centralities. 

Directionality: Eigenvector centrality has problems when applied to directed graphs. 

For instance, it is well known that all nodes in the in-component of a directed graph will 

have the value of zero. More precisely, non-zero eigenvector centrality can be assigned 

only to the nodes "in a strongly connected component of two or more vertices, or the out-

component of such a component" (55 p. 172). Katz centrality (56) solves this problem by 

assigning a small centrality value to every node. However, it is still less useful than 

PageRank, as it fully transfers node importance to each of its out-neighbors. For instance, 

if we adopt Katz centrality (or eigenvector centrality), each out-neighbor of Paris will get 

a huge boost in their centrality and a small town near a hub may become more important, 

according to the centrality measure, relative to other cultural centers (55 p. 175). 

PageRank addresses this problem by 'diluting' the influence of a hub into its outgoing 

edges. 

Strong bias towards hubs (localization transition): Another reason why we have 

used PageRank is the existence of localization in the eigenvector centrality. As shown in 

a recent paper (57), even under a common condition, eigenvector centrality may fail to 

assign appropriate centrality to all nodes, as the hubs and their neighbors consume a non-

vanishing fraction of the eigenvector centrality while that of the other nodes converges to 

zero (~ O(1/n)). In other words, the eigenvector centrality may ignore a large fraction of a 

network when there are large hubs. This indeed happens if we apply Eigenvector 

Centrality to FB (34%), AKL (41%), and ULAN (42%). 
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Modeling Statistical Regularities 
 
Heaps’ Law 
 

We expect the total number of notable individuals N(t) in our birth-death data to 

grow exponentially 

N(t) ~ exp(rt),     (2)  

with a given growth rate r. In Figure 1A we observe that r is usually stable over several 

centuries. The number of birth or death locations for notable individuals S(t) also grows 

exponentially 

S(t) ~ exp(st),     (3) 

which implies an underlying Heap’s law S(t) ~ N(t)α, where α = s/r ≈ 0.9 (see Figs. 2A 

and S8). 

 

 

Fig. S8. The number of birth and death locations S(t) over the number of individuals 
N(t) for (A) AKL and (B) ULAN cumulating over all time, and (C) our generalized 
mobility model (see below) (cf. Fig. 2A). 
 
 
Zipf’s Law 
 

The probabilities Bf and Df  of birth and death of an individual in the kth most 

frequent location follows Zipf’s law 
Bkf B

k
ζ−~  and Dkf D

k
ζ−~ ,     (4) 
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where ζB ≈ 0.9 ± 0.1 and ζD ≈ 1.1 ± 0.1. Fig. S11 presents the respective Zipf plots 

for FB, AKL, ULAN, and our generalized mobility model (see below). The cumulative 

plots in Figs. S12 are equivalent and include precise quantifications of the slopes (Fig. 2C 

and S12G-J). Note that the CDF slopes correspond to the Zipf slopes plus 1. 

  

 
Fig. S9. Scaling patterns for birth, death, and birth-death paths. (A-D) Zipf plots for 
FB, AKL, ULAN, and our generalized mobility model, equivalent to Fig. S12, here 
cumulated over all time. The plots show the respective rank frequencies fk of the k-th 
most frequent birth location (blue), death location (red), and birth to death link (black). 
 
Growth of Individual Locations 
 
To model birth and death population growth for individual locations, we denote Bi(t) and 

Di(t) as the total number of respective births and deaths in a location i. Inspired from the 

fact that the total population grows exponentially (Eq. 2), we may write 

))(exp(~)(
))(exp(~)(

ttD
ttB

ii

ii

δ
β

,     (5)  
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where βi(t) and δi(t) represents the growth rate of the respective birth and death processes. 

In Fig. S17, we plot B(t) and D(t) for seven exemplary locations in FB, finding that βi(t) 

and δi(t) are approximately linear with time t over stretches of several centuries. 

 

Network Model 
 

We model the dynamics of birth to death migration as a network, where locations 

are the nodes, and notable individuals contribute to the link weight of their birth and 

death locations over time. Following the work in (58), our model includes two main 

mechanisms governing the growth of the birth–death network: (a) nodes join the network 

with rate dS/dt and (b) new internal links are generated with rate d(N-S)/dt. More 

precisely, we have following differential equations 
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where the probability B
iΠ , D

iΠ  and I
ji→Π  satisfy the preferential attachment 

principle 
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fitness of the place i, our model (6-7) predicts the following asymptotical solutions: 

      
∫

∫
∝

∝

t

t

D
ii

t

t

B
ii

i

i

dttt

dttt

')'()(

')'()(

ηδ

ηβ
,          (8) 

revealing a surprising connection between the growth rate and the fitness function. 

The fact that βi(t) and δi(t) grow linearly with time indicates that )(tB
iη and )(tD

iη are 
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nearly constant under time evolution. The Zipf’s law of Bf and Df , or equivalently the 

fat tail nature of the population distribution P(B) and P(D) can be calculated from the 

fitness distribution ρ(η), which can be measured directly from the empirical data. 

For Heaps and Zipf distributions resulting from our model see Figs. S8C and S9D. 

The fitness measure is used in the death rate trajectories in Figs. 4 and S16. 
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Global Scaling Dynamics 

Fig. S10. Cumulative probability plots tracking global scaling dynamics. (A-C) 
Births and (D-F) deaths in FB, AKL, and ULAN ante (meaning up to) 1300 to 2012 CE. 
The plots are normalized over final number of locations in the system, indicating that the 
nature of the distributions for birth and death is consistent over many centuries. (G-I) 
Evolution of power-law slopes over centuries for births and deaths in FB, AKL, and 
ULAN, fitted using the method in (18). The uncertainty interval indicates goodness-of-fit, 
while the numbers associated to the data points provide the respective x-min value. Note 
that birth and death scale significantly different in FB from the 19th and in AKL from the 
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17th/18th century onwards, while ULAN has less data but confirms the trend. (J) A 
pairwise Kolmogorov-Smirnov KS test, comparing birth and death distributions directly, 
confirms this result, as the p-value falls below 0.01 for FB in the 19th century, for AKL in 
the 17th century and to 12% for ULAN in the 20th.  
 
Note that we do not fit q-exponentials, as found for small city sizes and used for tracking 
dynamics in urban scaling literature (25, 59, 60), because small and large locations in our 
datasets do not scale along exponential curves with power-law tails (as in 25 based on 
data from 59). In fact, the q-exponential nature of cities in the urban scaling literature is 
likely to be an effect of the aggregation of locations to places, where small locations are 
more likely to be integrated into mid-size and larger locations. Indeed, the AKL dataset 
(Fig. S10B/E) shows the opposite effect for small locations with one or two births or 
deaths due to the presence of uncertain or ambiguous location labels, such as 
"Moskau(?)" in addition to "Moskau". This systematic effect of unknown or uncertain 
nodes changing distribution slopes systematically is a known phenomenon in cultural 
databases (32). Trying to clean such systematic properties in large datasets is likely to 
create more bias due to the inherent gradient of uncertainty; not cleaning such 
uncertainties exposes the existing bias as in the case of AKL in comparison to FB (see 
small numbers of births in Fig. S10A/B). It also serves to note that such uncertainties in 
cultural data collections are hard-won assets, subject to editorial guidelines, that should 
not be removed before analysis. During data preparation, we made sure that the resulting 
biases are systematic and do not influence our results in a negative way (see the section 
on known biases above). 
 

Birth to Death Distances 
 

 
Fig. S11. The probability of birth to death distances Δr over several centuries in 
ULAN from before 1300 to 2012 CE. As in the case of FB (Fig. 2C), the distribution 
changes very little over time and reveals a clear preference for shorter-range migration on 
the order of zero to hundreds of kilometers. As expected for a substantially smaller 
dataset, the median distance (vertical lines) in ULAN fluctuates over a wider range than 
in FB. For AKL we did not calculate distances due to missing geocodes. 
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Death Share Dynamics 

Fig. S12. Death-share dynamics for locations in FB, AKL, and ULAN indicate 
substantial instabilities of ranking in the system due to noise (cf. 26). (A-C) Relative 
death-share and consequently rank of major FB, AKL, and ULAN locations fluctuates 
over centuries. Cross-dataset correlations, such as visible for Florence, Rome, and Paris 
point to stable local specifics that need to be addressed by qualitative scholarship. (D-F) 
The corrected sample standard deviation of death-share change σΔx|x in a function of 
death-share x for deaths in FB, AKL, and ULAN locations. The linear regression 
exponents 0.62 to 0.9 < 1 indicate that locations with higher market share tend to be more 
stable, while the coefficients 0.11 to 0.2 point to strong general instability in both death-
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share and rank. (G-I) Surface plots of death-share-change Δx in a function of death-share 
x, indicating that Δx fluctuates asymmetrically for high x, as typical for complex systems 
with substantial rank instabilities due to noise (cf. 26 for other systems). 

Birth-Death Imbalance Dynamics 

 
Fig. S13. Birth-death deviation dynamics over two millennia in FB, AKL, and 
ULAN. (A-C) The maximum absolute deviation, measured as multiples me of the 
statistical error e (cf. the birth death imbalance section above), grows with dataset size 
from 0 to 2012 CE. The median deviation fluctuates around 0 to -1 while the median 
absolute deviation (MAD) from the median, a robust measure of significance, fluctuates 
closely (+/–1) around the median. During best dataset coverage the MAD collapses with 
the median. (D-F) Fluctuating birth-death imbalance in FB, AKL, and ULAN locations 
from 1500 to 2012 CE. The vertical grey line at 1930 indicates the onset of a systematic 
bias where all locations dip towards birth and then deviate towards death (cf. known 
biases section above). This bias is due to notable individuals not dead yet (with their 
births not yet recorded) as well as an increase in life expectancy over the 20th century 
(delaying their birth record even further). As a result of this systematic bias our original 
Figures 1C and S4 are slightly shifted off the diagonal towards death. The general picture 
however is not influenced by the systematic bias. We can still observe major deviations 
towards birth and death during the bias phase in form of consistent differences in slopes 
between individual locations. 
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Frame Sequence for North America 

 
Fig. S14. Sequence of frames, based on movie S2, exemplifying the FB narrative for  
North America 1630 to 2011 CE. As in movie S1 and Fig. 3A, the dynamically applied 
color scheme (with black and white inverted in print) denotes birth-death imbalance (blue 
to red). Here too, individuals appear as particles in the movie, indicating collective 
directions of flow as they gravitate towards their death locations. 
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Centralization and Federal Competition 
 

 
Fig. S15. Centralization and federal competition in the United Kingdom. (A) Death-
share dynamics in FB locations from before 1300 to 2012 CE, and (B) the final network 
state for locations in the United Kingdom. London clearly emerges as the center of a 
winner-takes-all, while we still find exceptionally high regional cohesion. This special 
situation can be explained with the social season where individuals move seasonally 
between the city and the country-side. Note that during the 16th and 17th century, the 
Tower of London, a prison, and Tyburn, a village now part of London, known for capital 
punishment, are among the top ranked death locations for notable individuals in the 
United Kingdom. 
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Cultural Trajectories 

 
Fig. S16. Cultural trajectories for eight selected cultural centers indicate successive 
periods of cultural leadership, providing detail for further micro-readings (cf. Fig. S12A-
C). For each city we show trajectories based on the English Google Ngrams, the FB total, 
and AKL total datasets, in correspondence to the Paris trajectories in Figs. 4A-B. Here, 
we show trajectories for (A), Rome, (B), London, (C), Vienna, (D), Berlin, (E), Munich, 
(F), New York, (G), Chicago, and (H), Los Angeles. For New York we include US 
immigration data for comparison (61). 
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Fig. S17. The number of births and deaths in seven different FB locations over time 
from 1300 to 2012 CE. Changes in slope, such as for Munich deaths shortly after 1806, 
indicate a substantial change in fitness, such as becoming the capital of the Bavarian 
kingdom. The cutoff for births after the grey line at 1920 is due to notable people that are 
still alive and therefore not recorded yet. 
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Supplementary Movies 
 
Movie S1. European birth-death network dynamics, offering a meta-narrative of 
cultural history based on the FB dataset, 0 to 2012 CE (67 seconds). The dynamically 
applied color scheme indicates birth sources (blue) and death attractors (red) in 
correspondence to Fig. 1C. Individuals in the videos appear as particles gravitating 
towards their death locations, indicating collective directions of flow. The video is 
rendered with one frame per year at 30 frames per second. Further characterization of the 
movie content is given in the text and Fig. 3A. 
 
Movie S2. North American birth-death network dynamics, offering a meta-
narrative of cultural history based on the FB dataset, 1620 to 2012 CE (13 seconds). 
As in Movie S1, the dynamically applied color scheme indicates birth sources (blue) and 
death attractors (red) in correspondence to Fig. 1C. Individuals in the videos appear as 
particles gravitating towards their death locations, indicating collective directions of flow. 
The video is rendered with one frame per year at 30 frames per second. 
 
 
 

Additional Data Tables 

Additional Data table S1 (separate file) 
SchichDataS1_FB.xlsx 

Additional Data table S2 (separate file) 
SchichDataS2_AKL.xlsx 

Additional Data table S3 (separate file) 
SchichDataS3_ULAN.xlsx 

Additional Data table S4 (separate file) 
SchichDataS4_WCEN.xlsx 
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