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Bayesian Models of Graphs, Arrays and
Other Exchangeable Random Structures

Peter Orbanz and Daniel M. Roy

Abstract. The natural habitat of most Bayesian
methods is data represented by exchangeable sequences of
observations, for which de Finetti’s theorem provides the
theoretical foundation. Dirichlet process clustering, Gaus-
sian process regression, and many other parametric and
nonparametric Bayesian models fall within the remit of this
framework; many problems arising in modern data analysis
do not. This expository paper provides an introduction to
Bayesian models of graphs, matrices, and other data that
can be modeled by random structures. We describe results
in probability theory that generalize de Finetti’s theorem
to such data and discuss the relevance of these results to
nonparametric Bayesian modeling. With the basic ideas
in place, we survey example models available in the lit-
erature; applications of such models include collaborative
filtering, link prediction, and graph and network analysis.
We also highlight connections to recent developments in
graph theory and probability, and sketch the more general
mathematical foundation of Bayesian methods for other
types of data beyond sequences and arrays.

1. Introduction. For data represented by exchange-
able sequences, Bayesian nonparametrics has developed
into a flexible and powerful toolbox of models and al-
gorithms. Its modeling primitives—Dirichlet processes,
Gaussian processes, etc.—are widely applied and well-
understood, and can be used as components in hierarchical
models [59] or dependent models [48] to address a wide va-
riety of data analysis problems. One of the main challenges
for Bayesian statistics and machine learning is arguably to
extend this toolbox to the analysis of data sets with more
interesting structure, such as graph, network, and rela-
tional data.

In this article, we consider structured data—sequences,
graphs, trees, matrices, etc.—and ask:

What is the appropriate class of statistical models for a
given type of structured data?

Representation theorems for exchangeable random struc-
tures lead us to an answer, and they do so in a very precise
way: They characterize the class of possible Bayesian mod-
els for the given type of data, show how these models are
parameterized, and even provide basic convergence guar-
antees. The probability literature provides such results
for dozens of exchangeable random structures, including
sequences, graphs, partitions, arrays, trees, etc. The pur-
pose of this article is to explain how to interpret these re-
sults and how to translate them into a statistical modeling
approach.

Overview

A statistical model is usually defined as a family P of
distributions on a sample space X—the family of all Gaus-
sians on X = R, say. The distributions Pθ in P are indexed
by a parameter θ (e.g., the mean and variance of the Gaus-
sian). In a typical statistical inference problem, we would
observe data X1, . . . , Xn, and then try to determine which
distribution in P best explains the data. There are differ-
ent ways of approaching this problem:

• One can seek an estimator (such as a maximum like-
lihood estimator) for the parameter.

• One can take a Bayesian approach, modeling θ with
a random variable Θ and computing the conditional
distribution of Θ given observed data (the posterior
distribution).

Howevever, the distribution of a sample X1, . . . , Xn is a
joint distribution on Xn. Estimating the joint distribu-
tion is hopeless without further assumptions, since the en-
tire sample constitutes just a single observation from this
distribution.

Both approaches mentioned above resolve this problem
by relying on an independence assumption—an i.i.d. as-
sumption in the frequentist case or a conditional i.i.d. as-
sumption (the observations are i.i.d. conditionally given
the parameter value) in the Bayesian case. The indepen-
dence property factorizes the joint distribution, which re-
duces the modeling problem to distributions on X. In the
Bayesian case, the assumption is justified if and only if the
data can be represented as an exchangeable sequence—
informally, if the order in which observations are recorded
does not matter. This characterization is given by de
Finetti’s theorem:

The joint distribution of an exchangeable sequence of
random values in X is characterized by a distribution of a

random probability measure on X.

If we assume a specific model P, the random distribution
mentioned in the theorem is an element PΘ of P, deter-
mined at random by the random parameter Θ.

Although this is clearly an important theoretical result,
we would hardly regard de Finetti’s theorem as a modeling
tool: Arguably, it revisits a modeling approach we would
have regarded as natural anyway, and justifies it in hind-
sight. The situation is very different for structured data,
where it is often far from obvious what a suitable class of
models would be. Suppose, for example, that the sample
is a large graph. Should we assume its edges are i.i.d. vari-
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ables? In graphs, that implies a single one-parameter fam-
ily of distributions, the Erdős-Rényi model, and is hence
hardly a general modeling approach. If we assume the
graph to be exchangeable—where we put off the precise
definition for now—we obtain a much larger class of distri-
butions. They are again characterized by an exchangeabil-
ity theorem, but in this case, the implications for statistical
models are rather more surprising than above:

The distribution of an exchangeable simple graph is
characterized by a distribution on the space of functions

from [0, 1]2 to [0, 1].

Hence, any specific function w : [0, 1]2 → [0, 1] defines a
distribution Pw on graphs (we will see in Section 3 how
we can sample a graph from Pw).

For modeling purposes, this means that any statistical
model of exchangeable graphs is a family of such distri-
butions Pw. Density estimation in exchangeable graphs
can therefore be formulated as a regression problem: It is
equivalent to recovering the function w from data. Once
again, we can choose a frequentist approach (define an esti-
mator for w) or a Bayesian approach (define a prior distri-
bution on a random function W ); we can obtain nonpara-
metric models by choosing infinite-dimensional subspaces
of functions, or parametric models by keeping the dimen-
sion finite.

Since a graph can be regarded as a special type of ma-
trix (the adjacency matrix), we can ask more generally
for models of exchangeable matrices, and obtain a similar
result:

The distribution of an exchangeable two-dimensional
array is characterized by a distribution on the space of

functions from [0, 1]3 to [0, 1].

There is a wide variety of random structures for which ex-
changeability can be defined; Table 1 lists some important
examples. Borrowing language from [5], we collectively
refer to such random objects as exchangeable random
structures. This article explains representation theorems
for exchangeable random structures and their implications
for Bayesian statistics and machine learning. The over-
arching theme is that the key implications of de Finetti’s
theorem can be generalized to many types of data, and
that these results are directly applicable to the derivation
and interpretation of statistical models.

Contents

Section 2: reviews exchangeable random structures, their
representation theorems, and the role of such theorems in
Bayesian statistics.
Section 3: introduces the generalization of de Finetti’s
theorem to models of graph- and matrix-valued data, the
Aldous-Hoover theorem, and explains how Bayesian mod-
els of such data can be constructed.
Section 4: surveys models of graph- and relational data
available in the machine learning and statistics literature.
Using the Aldous-Hoover representation, models can be
classified and some close connections emerge between mod-
els which seem, at first glance, only loosely related.
Section 5: describes recent development in the mathemat-
ical theory of graph limits. The results of this theory refine
the Aldous-Hoover representation of graphs and provide
a precise understanding of how graphs converge and how
random graph models are parametrized.
Section 6: explains the general Aldous-Hoover representa-
tion for higher-order arrays.
Section 7: discusses sparse random structures and net-
works, why these models contradict exchangeability, and
open questions arising from this contradiction.
Section 8: provides references for further reading.

2. Bayesian Models of Exchangeable Structures.
The fundamental Bayesian modeling paradigm based on ex-
changeable sequences can be extended to a very general ap-
proach, where data is represented by a random structure.
Exchangeability properties are then used to deduce valid
statistical models and useful parametrizations. This sec-
tion sketches out the ideas underlying this approach, before
we focus on graphs, matrices, and arrays in Section 3.

2.1. Basic example: Exchangeable sequences. The sim-
plest example of an exchangeable random structure is an
exchangeable sequence. We use the customary shorthand
notation (xi) := (x1, x2, . . .) for a sequence, and similarly
(xij) for a matrix, etc. Suppose (Xi) is an infinite se-
quence of random variables in a sample space X. We call
(Xi) exchangeable if its joint distribution satisfies

P(X1 ∈ A1, X2 ∈ A2, . . . ) (2.1)

= P(Xπ(1) ∈ A1, Xπ(2) ∈ A2, . . . )

for every permutation π of N := {1, 2, . . . } and every col-
lection of sets A1, A2, . . . . Expressing distributional equal-
ities this way is cumbersome, and we can write (2.1) more

Table 1
Exchangeable random structures

Random structure Theorem of Ergodic distributions pθ Statistical application

Exchangeable sequences de Finetti [22, 23] product distributions most Bayesian models [e.g. 57]
Hewitt and Savage [29]

Processes with exchangeable increments Bühlmann [17] Lévy processes
Exchangeable partitions Kingman [39] “paint-box” distributions clustering
Exchangeable arrays Aldous [2] sampling schemes Eq. (6.4), Eq. (6.10) graph-, matrix- and array-valued

Hoover [34] data (e.g., [31]); see Section 4
Kallenberg [35]

Block-exchangeable sequences Diaconis and Freedman [19] Markov chains e.g. infinite HMMs [9, 24]
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concisely as

(X1, X2, . . . )
d
= (Xπ(1), Xπ(2), . . . ) , (2.2)

or even (Xi)
d
= (Xπ(i)), where the notation Y

d
= Z means

that the random variables Y and Z have the same distri-
bution. Informally, exchangeability means that the proba-
bility of observing a particular sequence does not depend
on the order of the elements in the sequence.

If the elements of a sequence are exchangeable,
de Finetti’s representation theorem implies they are con-
ditionally i.i.d. The conditional independence structure is
represented by a random probability measure, a ran-
dom variable with values in the set M(X) of probability
distributions on X.

Theorem 2.1 (de Finetti). Let (X1, X2, . . . ) be an in-
finite sequence of random variables with values in a sample
space X. The sequence X1, X2, . . . is exchangeable if and
only if there is a random probability measure Θ on X such
that the Xi are conditionally i.i.d. given Θ and

P(X1 ∈ A1, X2 ∈ A2, . . . ) =

∫
M(X)

∞∏
i=1

θ(Ai) ν(dθ) (2.3)

where ν is the distribution of Θ. �

The integral on the right-hand side of (2.3) can be in-
terpreted as a two-stage sampling procedure:

1. Sample Θ ∼ ν, i.e., draw a probability distribution at
random from the distribution ν.

2. Given Θ, sample observations Xi conditionally i.i.d.
as

X1, X2, . . . |Θ ∼iid Θ . (2.4)

The theorem says that any exchangeable sequence can be
sampled by such a two-stage procedure; the distribution of
the sequence is determined by the choice of ν. The random
measure Θ is called the directing random measure and
is said to direct the exchangeable sequence X. Its dis-
tribution ν is called the mixing measure or de Finetti
measure.

Statistical inference is only possible if the distribution
of the data, or at least some of its properties, can be re-
covered from observations. For i.i.d. random variables, this
is ensured by the law of large numbers. The proof of de
Finetti’s theorem also implies a law of large numbers for
exchangeable sequences:

Theorem 2.2. If the sequence (Xi) is exchangeable,
the empirical distributions

Ŝn( . ) :=
1

n

n∑
i=1

δXi( . ) (2.5)

converge to Θ, in the sense that

Ŝn(A)→ Θ(A) as n→∞ (2.6)

holds with probability 1 for every set A. �

The two theorems have fundamental implications for
Bayesian modeling. If we assume the data can be repre-
sented by (some finite prefix) of an exchangeable sequence,
this implies without any further assumptions:

• Conditioned on a random probability measure Θ rep-
resenting an unknown distribution θ, every sample
X1, X2, . . . is i.i.d. with distribution Θ.

• Every exchangeable sequence model is characterized
by a unique distribution ν on M(X).

• A statistical model can be taken to be some subset of
M(X) rather than M(X∞), which we would have to
consider for a general random sequence.

• Statistical inference is possible in principle: With
probability one, the empirical distributions Ŝn con-
verge to the distribution Θ generating the data, ac-
cording to (2.6).

A modeling application might look like this: We consider
data generated by a specific data source or measurement
process, and assume that data generated by this source
can be represented as an exchangeable sequence. The def-
inition of exchangeability for an infinite sequence does not
mean we have to observe an infinite number of data points
to invoke de Finetti’s theorem; rather, it expresses the as-
sumption that samples of any finite size generated by the
source would be exchangeable. Hence, exchangeability is
an assumption on the data source, rather than the data.

According to de Finetti’s theorem, the data can then
be explained by the two-stage sampling procedure above,
for some distribution ν on M(X). A Bayesian model is
specified by choosing a specific distribution ν, the prior
distribution. In this abstract formulation of the prior as
a measure on M(X), the prior also determines the obser-
vation model, as the smallest set P ⊂M(X) on which ν
concentrates all its mass—since Θ then takes values in P,
and the sequence (Xi) is generated by a distribution in
P with probability 1. If X = R, for example, we could
choose ν to concentrate on the set of all Gaussian distri-
butions on R, and would obtain a Bayesian model with a
Gaussian likelihood and prior ν.

Given observations X1, . . . , Xn, we then compute the
posterior distribution, by conditioning ν on the observa-
tions. Theorem 2.2 implies that, if the empirical measure
converges asymptotically to a specific measure θ ∈M(X),
the posterior converges to a point mass at θ. This result
has to be interpreted very cautiously, however: It only
holds for a sequence (Xi) which was actually generated
from the measure ν we use as a prior. In other words,
suppose someone generates (Xi) from a distribution ν1 on
M(X) by the two-stage sampling procedure above, with-
out disclosing ν1 to us. In the sampling procedure, the
variable Θ ∼ ν1 assumes as its value a specific distribution
θ1, from which the data is then generated independently.
We model the observed sequence by choosing a prior ν2.
The posterior under ν2 still converges to a point mass, but
there is no guarantee that it is a point mass at θ1, and
(2.6) only holds if ν2 = ν1.

Thus, there are several important questions that ex-
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changeability does not answer:

• The de Finetti theorem says that there is some prior
which adequately represents the data, but provides no
guidance regarding the choice of ν: Any probability
measure ν on M(X) is the prior for some exchangeable
sequence.
• Theorem 2.2 only guarantees convergence for se-

quences of random variables generated from the prior
ν.
• Theorem 2.2 is a first-order result: It provides no in-

formation on how quickly the sequence converges. Re-
sults on convergence rates can only be obtained for
more specific models; the set of all exchangeable dis-
tributions is too large and too complicated to obtain
non-trivial statements.

Answers to these questions typically require further mod-
eling assumptions.

2.2. The general form of exchangeability results. Many
problems in machine learning and modern statistics involve
data which is more naturally represented by a random
structure that is not a sequence: often a graph, matrix,
array, tree, partition, etc. is a better fit to the structure
of the data. If it is possible to define a suitable notion
of exchangeability, the main features of de Finetti’s theo-
rem typically generalize. Although results differ in their
details, there is a general pattern, which we sketch in this
section before considering specific types of exchangeable
structures.

The setup is as follows: The product space X∞ of in-
finite sequences is substituted by a suitable space X∞ of
more general, infinite structures. An infinite random struc-
ture X∞ is a random variable with values in X∞. Each
element of X∞ can be thought of as a representation of
an infinitely large data set or “asymptotic” sample. An
actual, finite sample of size n is modeled as a substruc-
ture Xn of X∞, such as a the length-n prefix of an infinite
sequence or a n-vertex subgraph of an infinite graph.

The first step in identifying a notion of exchangeability
is to specify what it means to permute components of a
structure x∞ ∈ X∞. If x∞ is an infinite matrix, for ex-
ample, a very useful notion of exchangeability arises when
one considers all permutations that exchange the ordering
of rows/columns, rather than the ordering of individual
entries. Exchangeability of a random structure X∞ then
means that the distribution of X∞ is invariant under the
specified family of permutations.

Once a specific exchangeable random structure X∞ is
defined, the next step is to invoke a representation theorem
that generalizes de Finetti’s theorem to X∞. Probability
theory provides such theorems for a range of random struc-
tures; see Table 1 for examples. A representation theorem
can be interpreted as determining (1) a natural parameter
space T for exchangeable models on X∞, and (2) a spe-
cial family of distributions on X∞, which are called the
ergodic distributions or ergodic measures. Each el-
ement θ ∈ T determines an ergodic distribution, and we

denote this distribution as pθ. The set of ergodic distribu-
tions is

{pθ : θ ∈ T} ⊂M(X∞) . (2.7)

The distribution of any exchangeable random structure
X∞ can then be represented as a mixture of these ergodic
distributions,

P(X∞ ∈ . ) =

∫
T

pθ( . ) ν(dθ) . (2.8)

In the specific case of exchangeable sequences, (2.8) is pre-
cisely the integral representation (2.3) in de Finetti’s the-
orem, and the ergodic measures are the distributions of
i.i.d. sequences, that is,

T := M(X) and pθ( . ) = θ∞( . ) . (2.9)

For more general random structures, the ergodic measures
are not usually product distributions, but they retain some
key properties:

• They are particularly simple distributions on X∞, and
form a “small” subset of all exchangeable distribu-
tions.

• They have a conditional independence property, in the
sense that a random structure X∞ sampled from one
of the ergodic distributions decomposes into condi-
tionally independent components. In de Finetti’s the-
orem, these conditionally independent components are
the elements Xi of the sequence.

As in the sequence case, the integral (2.8) in the general
case represents a two-stage sampling scheme:

Θ ∼ ν
X∞ | Θ ∼ pΘ .

(2.10)

For Bayesian modeling, this means:

A Bayesian model for an exchangeable random structure
X∞ with representation (2.8) is characterized by a prior

distribution on T.

Suppose the prior ν concentrates on a subset T ⊂ T, that
is, T is the smallest subset to which the prior assigns prob-
ability 1. Then T defines a subset

P := {pθ : θ ∈ T } (2.11)

of ergodic measures. We thus have defined a Bayesian
model on X∞, with prior ν and observation model P. In
summary:

• T is the natural parameter space for Bayesian models
of X∞, and the prior distribution is a distribution on
T.

• The observation model P is a subset of ergodic mea-
sures. An exchangeability theorem characterizing the
ergodic measures therefore also characterizes the ob-
servation model, because each distribution pθ is com-
pletely determined by θ.
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s1 s2

U3 U2U1

(1−
∑
j sj)

Fig 1: Sampling from a paint-box distribution with parameter
s = (s1, s2, . . . ). Two numbers i, j are assigned to the same block
of the partition if the uniform variables Ui and Uj are contained in
the same interval.

• If the set T on which the prior concentrates its mass
is a finite-dimensional subspace of T, the resulting
Bayesian model is parameteric. If T has infinite
dimension, the model is nonparametric.
• The representation (2.8) is typically complemented by

a convergence results: A specific function of the sam-
ples converges to Θ almost surely as n→∞, general-
izing Theorem 2.2. In particular, the parameter space
T can be interpreted as the set of all possible limit
objects.

2.3. Exchangeable partitions. An illustrative example
of an exchangeable random structure is an exchangeable
partition. Bayesian nonparametric clustering models are
based on such exchangeable random partitions. We again
define the exchangeable structure as an infinite object:
Suppose X1, X2, . . . is a sequence of observations. To en-
code a clustering solution, we have to specify which ob-
servations Xi belong to which cluster. To do so, it suf-
fices to record which index i belongs to which cluster, and
a clustering solution can hence be expressed as a parti-
tion π = (b1, b2, . . . ) of the index set N. Each of the sets
bi, called blocks, is a finite or infinite subset of N; ev-
ery element of N is contained in exactly one block. An
exchangeable partition is a random partition X∞ of N
which is invariant under permutations of N. Intuitively,
this means the probability of a partition depends only on
the relative sizes of its blocks, but not on which elements
are in which block.

Kingman [39] showed that exchangeable random parti-
tions can again be represented in the form of Eq. (2.8). The
parameter space T consists of all sequence θ := (s1, s2, . . . )
of scalars si ∈ [0, 1] which satisfy

s1 ≥ s2 ≥ . . . and
∑
i

si ≤ 1 . (2.12)

Let s̄n :=
∑n
i=1 si. Then θ defines a partition of [0, 1] into

intervals

Ij :=
[
s̄j−1, s̄j

)
and Ī :=

(
1− s̄∞, 1

]
, (2.13)

as shown in Fig. 1. Each ergodic distribution pθ is defined
as the distribution of the following random partition of N:

1. Generate U1, U2, . . . ∼iid Uniform[0, 1].

2. Assign n ∈ N to block bj if Un ∈ Ij . Assign every
remaining element (those n with Un ∈ Ī) to its own
block of size one.

Kingman called this distribution a paint-box distribu-
tion.

Theorem 2.3 (Kingman). Let X∞ be random parti-
tion of N.

1. X∞ is exchangeable if and only if

P(X∞ ∈ . ) =

∫
T

pθ( . ) ν(dθ) , (2.14)

for some distribution ν on T, where pθ is the paint-box
distribution with parameter θ ∈ T.

2. If X∞ is exchangeable, the scalars si can be recovered
asymptotically as limiting relative block sizes

si = lim
n→∞

|bi ∩ {1, . . . , n}|
n

. (2.15)

�

Part 1) is of course the counterpart to de Finetti’s theo-
rem, and part 2) corresponds to Theorem 2.2. In (2.15), we
compute averages within a single random structure, hav-
ing observed only a substructure of size n. Nonetheless,
we can recover the parameter θ asymptotically from data.
This is a direct consequence of exchangeability, and would
not generally be true for an arbitrary random partition.

Example 2.4 (Chinese restaurant process). A well-
known example of a random partition is the Chinese
restaurant process (CRP; see e.g. [30, 53] for details). The
CRP is a one-parameter discrete-time stochastic process
that induces a partition of N. The parameter α > 0 is
called the concentration; different values of α correspond
to different distributions P(X∞ ∈ . ) in Eq. (2.14). If X∞
is generated by a CRP, the paint-box parameter Θ is es-
sentially the sequence of weights generated by the “stick-
breaking” construction of the Dirichlet process [30]—with
the difference that the elements of Θ are ordered by size,
whereas stick-breaking weights are not. In other words, if
X∞ in (2.14) is a CRP, we can sample from ν by (1) sam-
pling from a stick-breaking representation and (2) ordering
the sticks by length. The lengths of the ordered sticks are
precisely the scalars si in the theorem. /

2.4. “Non-exchangeable” data. Exchangeability seems
at odds with many types of data; for example, a sequence
of stock prices over time will be poorly modeled by an
exchangeable sequence. Nonetheless, a Bayesian model of
a time series will almost certainly imply an exchangeability
assumption—the crucial question is which components of
the overall model are assumed to be exchangeable.

Example 2.5 (Discrete times series and random walks).
Another important type of exchangeability property [19,
68] is defined for sequences X1, X2, . . . taking values in a
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countable space X. Such a sequence is called Markov
exchangeable if the probability of observing an initial
trajectory x1, . . . , xn depends only on the initial state x1

and, for every pair y, y′ ∈ X, on the number of transi-
tions ty,y′ = #{j < n : xj = y, xj+1 = y′}. In particular,
the probability does not depend on when each transition
occurs. Diaconis and Freedman [19] showed the following:

If a (recurrent) process is Markov exchangeable, it is a
mixture of Markov chains.

(Recurrence means that each visited state is visited in-
finitely often if the process is run for an infinite number
of steps.) Thus, each ergodic distribution pθ is the distri-
bution of a Markov chain, and a parameter value θ con-
sists of a distribution on X (the distribution of the initial
state) and a transition matrix. If a Markov exchangeable
process is substituted for the Markov chain in a hidden
Markov model, i.e., if the Markov exchangeable variables
are latent variables of the model, the resulting model can
express much more general dependencies than Markov ex-
changeability. The infinite hidden Markov model [9] is
an example; see [24]. Recent work by Bacallado, Favaro,
and Trippa [8] constructs prior distributions on random
walks that are Markov exchangeable and almost surely re-
versible. /

A very general approach to modeling is to assume that
an exchangeability assumption holds marginally at each
value of a covariate variable z, e.g., a time or a location
in space: Suppose X∞ is a set of structures as described
above, and Z is a space of covariate values. A marginally
exchangeable random structure is a random measur-
able mapping

ξ : Z→ X∞ (2.16)

such that, for each z ∈ Z, the random variable ξ(z) is an
exchangeable random structure in X∞.

Example 2.6 (Dependent Dirichlet process). A pop-
ular example of a marginally exchangeable model is the
dependent Dirichlet process (DDP) of MacEachern [48].
In this case, for each z ∈ Z, the random variable ξ(z)
is a random probability measure whose distribution is a
Dirichlet process. More formally, Y is some sample space,
X∞ = M(Y), and the DDP is a distribution on mappings
Z→M(Y); thus, the DDP is a random conditional proba-
bility. Since ξ(z) is a Dirichlet process if z is fixed, samples
from ξ(z) are exchangeable. /

Eq. (2.16) is, of course, just another way of saying that ξ
is a X∞-valued stochastic process indexed by Z, although
we have made no specific requirements on the paths of ξ.
The interpretation as a path is more apparent in the next
example.

Example 2.7 (Coagulation/fragmentation models).
If ξ is a coagulation or fragmentation process, X∞ is the
set of partitions of N (as in Kingman’s theorem), and
Z = R+. For each z ∈ R+, the random variable ξ(z) is an

x

10
a

Ui

b

Xi F

Fig 2: de Finetti’s theorem expressed in terms of random functions:
If F is the inverse CDF of the random measure Θ in the de Finetti
representation, Xi can be generated as Xi := F (Ui), where Ui ∼
Uniform[0, 1].

exchangeable partition—hence, Kingman’s theorem is ap-
plicable marginally in time. Over time, the random parti-
tions become consecutively finer (fragmentation processes)
or coarser (coagulation processes): At random times, a
randomly selected block is split, or two randomly selected
blocks merge. We refer to [11] for more details and to [61]
for applications to Bayesian nonparametrics. /

2.5. Random functions vs random measures. De
Finetti’s theorem can be equivalently formulated in terms
of a random function, rather than a random measure, and
this formulation provides some useful intuition for Sec-
tion 3. Roughly speaking, this random function is the
inverse CDF of the random measure Θ in de Finetti’s the-
orem; see Fig. 2.

More precisely, suppose that X = [a, b]. A measure µ
on [a, b] can be represented by its cumulative distribution
function (CDF), defined as ψ(x) := µ([a, x]). Hence, sam-
pling the random measure Θ in de Finetti’s theorem is
equivalent to sampling a random CDF Ψ. A CDF is not
necessarily an invertible function, but it always admits a
so-called right-continuous inverse ψ−1, given by

ψ−1(u) = inf {x ∈ [a, b] | ψ(x) ≥ u} . (2.17)

This function inverts ψ in the sense that ψ ◦ ψ−1(u) = u
for all u ∈ [0, 1]. It is well-known that any scalar random
variable Xi with CDF ψ can be generated as

Xi
d
= ψ−1(Ui) where Ui ∼ Uniform[0, 1] . (2.18)

In the special case X = [a, b], de Finetti’s theorem there-
fore translates as follows: If X1, X2, . . . is an exchangeable
sequence, then there is a random function F := Ψ−1 such
that

(X1, X2, . . . )
d
= (F (U1), F (U2), . . . ) , (2.19)

where U1, U2, . . . are i.i.d. uniform variables.
It is much less obvious that the same should hold on an

arbitrary sample space, but that is indeed the case:

Corollary 2.8. Let X1, X2, . . . be an infinite, ex-
changeable sequence of random variables with values in a
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space X. Then there exists a random function F from
[0, 1] to X such that, if U1, U2, . . . is an i.i.d. sequence of
uniform random variables,

(X1, X2, . . . )
d
= (F (U1), F (U2), . . . ). (2.20)

�

As we will see in the next section, this random function
representation generalizes to the more complicated case of
array data, whereas the random measure representation in
Eq. (2.3) does not.

3. Exchangeable Graphs, Matrices, and Arrays.
Random arrays are a very general type of random struc-
ture, which include important special cases, such as ran-
dom graphs and random matrices. The representation the-
orem for exchangeable arrays is the Aldous-Hoover theo-
rem. In this section, we focus on 2-arrays, matrices and
graphs. The general case for d-arrays is conceptually sim-
ilar, but considerably more technical, and we postpone it
until Section 6.

A d-array is a collection of elements xi1,...,id ∈ X in-
dexed by d indices i1, . . . , id ∈ N. A sequence is a 1-array.
In this section, we assume the random structure X∞ to be
a random 2-array

X∞ = (Xij) =

X11 X12 . . .
X21 X22 . . .

...
...

. . .

 . (3.1)

A random matrix is a random 2-array, although the term
matrix usually implies that X has the algebraic structure
of a field. A random graph is a random matrix with
X = {0, 1}. As in the sequence case, we assume X∞ is in-
finite in size, and the statistical interpretation is that an
observed, finite array is a sub-array of X∞. In network
analysis problems, for example, an observed graph with n
vertices would be interpreted as a random induced sub-
graph of a huge underlying graph X∞, which is so large
that it is modeled as infinite.

In this section, we are interested in the characteriza-
tion of random arrays whose distributions are invariant to
permutations reordering the rows and columns. For a 2-
array, there are two natural ways to define exchangeability:
we can ask that the distribution of the array be invariant
only to the joint (simultaneous) permutation of the rows
and columns or also to separate permutations of rows and
columns.

Definition 3.1. A random 2-array (Xij) is called
jointly exchangeable if

(Xij)
d
= (Xπ(i)π(j)) (3.2)

for every permutation π of N, and separately exchange-
able if

(Xij)
d
= (Xπ(i)π′(j)) (3.3)

for every pair of permutations π, π′ of N. /

Invariance to all separate permutations of the rows and
the columns is an appropriate assumption if rows and
columns correspond with two distinct sets of entities, such
as in a collaborative filtering problem, where rows may
correspond to users and columns to movies. On the other
hand, if (Xij) is the adjacency matrix of a random graph
on the vertex set N, we would require joint exchangeability,
because there is only a single set of entities—the vertices
of the graph—each of which corresponds both to a row and
a column of the matrix.

Note that if the distribution of an array is invariant to an
arbitrary permutation of its elements, then, by de Finetti’s
theorem, the elements are conditionally i.i.d. If the row
and column structure is presumed to be important, in-
variance only to row and column permutations is a more
appropriate modeling assumption.

3.1. The Aldous-Hoover theorem. The analogue of
de Finetti’s theorem for exchangeable arrays is the
Aldous-Hoover theorem [2, 34]. It has two versions,
for jointly and for separately exchangeable arrays.

Theorem 3.2 (Aldous-Hoover). A random array
(Xij) is jointly exchangeable if and only if it can be repre-
sented as follows: There is a random function F : [0, 1]3 →
X such that

(Xij)
d
= (F (Ui, Uj , U{i,j})) , (3.4)

where (Ui)i∈N and (U{i,j})i,j∈N are, respectively, a sequence
and an array of i.i.d. Uniform[0, 1] random variables. �

Because the variables U{i,j} are indexed by a set, the in-
dices are unordered, and we can think of the array (U{i,j})
as an upper-triagonal matrix with i.i.d. uniform entries.
If the function F is symmetric in its first two arguments,
then X∞ is symmetric—that is, if F (x, y, . ) = F (y, x, . )
for all x and y, then Xij = Xji for all i and j. In general,
however, a jointly exchangeability matrix or 2-array need
not be symmetric.

Separately exchangeable arrays can also be given a pre-
cise characterization using Theorem 3.2:

Corollary 3.3 (Aldous). A random array (Xij) is
separately exchangeable if and only if it can be represented
as follows: There is a random function F : [0, 1]3 → X
such that

(Xij)
d
= (F (U row

i , U col

j , Uij)) , (3.5)

where (U row
i )i∈N, (U col

j ) and (Uij)i,j∈N are, respectively, two
sequences and an array of i.i.d. Uniform[0, 1] random vari-
ables. �

It is not hard to see that this follows directly from the
jointly exchangeable case: If we choose two disjoint, infi-
nite subsets C and R of N, there exist bijections r : N→ R
and c : N→ C. Separate exchangeability of (Xij) then im-

plies (Xij)
d
= (Xricj ). Because a separately exchangeable

array is jointly exchangeable, it can be represented as in
Eq. (3.4), and substituting in (Xricj ), R and C yields (3.5).
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0
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1
1

U1 U2

U1

U2

0

1

W (U1, U2)

U{1,2}
W

Fig 3: Sampling an exchangeable random graph according to Eq. (3.8). Left: A heat-map visualization of the random function W on [0, 1]2,
given here by W (x, y) = min{x, y}. In the case depicted here, the edge {1, 2} is not present in the graph, because U{1,2} > W (U1, U2).
Middle: The adjacency matrix of a 50-vertex random graph, sampled from the function on the left. Rows (and columns) in the matrix have
been ordered by their underlying Ui value, resulting in a matrix resembling W . Right: A plot of the random graph sample. The highly
connected vertices plotted in the center correspond to values lower right region in [0, 1]2. The minimum function example, due to Lovász
[45], is chosen as a particularly simple symmetric function which is not piece-wise constant. See Section 4 for examples with more structure.

Because separate exchangeability treats rows and
columns independently, the single sequence (Ui) of ran-
dom variables in Eq. (3.4) is replaced by two distinct se-
quences (U row

i )i∈N and (U col
j )j∈N, respectively. Addition-

ally, for each pair of distinct indices i and j, the single
variable U{i,j} in the joint case is now replaced by a pair
of variables Uij and Uji. The index structure of the uni-
form random variables is the only difference between the
jointly and separately exchangeable case.

Example 3.4 (Collaborative filtering). In the proto-
typical version of a collaborative filtering problem, users
assign scores to movies. Scores may be binary (“like/don’t
like”, Xij ∈ {0, 1}), have a finite range (“one to five stars”,
Xij ∈ {1, . . . 5}), etc. Separate exchangeability then sim-
ply means that the probability of seeing any particular
realization of the matrix does not depend on the way in
which either the users or the movies are ordered. /

Like de Finetti’s and Kingman’s theorem, the represen-
tation results are complemented by a convergence result,
due to Kallenberg [35, Theorem 3]. The general result in-
volves some technicalities and is not stated here; the special
case for random graphs is discussed in Section 5.

Remark 3.5 (Non-uniform sampling schemes). Is it
important that the random variables (Ui) and (Uij) are
uniformly-distributed in [0, 1]? Can different distribution
be chosen? If (Vi) is an i.i.d.-µ sequence and (Vij) an inde-
pendent i.i.d.-τ array, then the array (G(Vi, Vj , Vij)) will
be separately exchangeable if G is independent of (Vi) and
(Vij), irrespective of the distribution µ of each Vi or dis-
tribution τ of each Vij . However, Corollary 3.3 implies
there is also a representation in terms of uniform random
variables. On the other hand, for an arbitrary separately
exchangeable array (Xij), there may not be a random func-

tion F such that (Xij)
d
= (F (Vi, Vj , Vij)). While it is not

necessary that µ and τ be the uniform distribution on [0, 1],

it is sufficient. Technically speaking, it suffices for µ and
τ to be atomless probability measures on a standard Borel
space. The choice of [0, 1] and the uniform distribution is
a canonical one in probability. One could also choose R
and any Gaussian distribution. The resemblance between
functions on [0, 1]2 and empirical graph distributions (see
Fig. 3) makes the unit square convenient for purposes of
exposition. /

3.2. Exchangeable Graphs. A particular important
type of random structures are random graphs defined on
a nonrandom vertex set. For a graph on a countably in-
finite vertex set, we can consider the vertex set to be N
itself, without any loss of generality. A random graph G
is then given by a random edge set, which is a random
subset of N× N. A natural symmetry property of a ran-
dom graph is the invariance of its distribution to a rela-
beling/permutation of its vertex set. In this case, G is
said to be an exchangeable graph. Informally, G can
be thought of as a random graph up to isomorphism and
so its distribution is determined by the frequency of edges,
triangles, five-stars, etc., rather than by where these finite
subgraphs appear.

It is straightforward to check that G is an exchange-
able graph if and only if its adjacency matrix is jointly ex-
changeable. More carefully, let (Xij) be an array of binary
random variables and put Xij = 1 if and only if there is an
edge between vertices i, j ∈ N in G. Then a simultaneous
permutation of the rows and columns of X is precisely a
relabeling of the vertex set of G.

An important special case is when G is simple—i.e.,
undirected and without self-loops. In this case, X is sym-
metric with a zero diagonal, and its representation (3.4)
can be simplified: Let F be a random function satisfying
(3.4). Without loss of generality, we may assume that F is
symmetric in its first two arguments. Consider the (ran-
dom) function W from [0, 1]2 to [0, 1] given by W (x, x) := 0
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on the diagonal and otherwise by

W (x, y) := P[F (x, y, U) = 1|F ] (3.6)

=

∫ 1

0

F (x, y, u) du,

where U ∼ Uniform[0, 1] is independent of F . Then W is
random symmetric function from [0, 1]2 to [0, 1], and, by
construction,

(F (Ui, Uj , U{i,j}))
d
= (11{U{i,j} < W (Ui, Uj)}) . (3.7)

We thus obtain the following specialization of the Aldous-
Hoover theorem for exchangeable simple graphs:

Corollary 3.6. Let G be a random simple graph with
vertex set N and let X be its adjacency matrix. Then G
is an exchangeable graph if and only if there is a random
function W from [0, 1]2 to [0, 1] such that

(Xij)
d
= (11{U{i,j} < W (Ui, Uj)}), (3.8)

where Ui and U{i,j} are independent i.i.d. uniform vari-
ables as in (3.4). �

The representation (3.8) yields the following generative
process:

1. Sample a random function W ∼ ν.
2. For every vertex i ∈ N, sample an independent uni-

form random variable Ui, independent also from W .
3. For every pair of vertices i < j ∈ N, sample

Xij |W,Ui, Uj ∼ Bernoulli(W (Ui, Uj)) , (3.9)

where Xij = 1 indicates the edge connecting i and j
is present; if Xij = 0, it is absent.

Fig. 3 illustrates the generation of random simple graph.
We call a (measurable) function from [0, 1]2 to [0, 1] a

graphon. Thus, every exchangeable graph is represented
by a random graphon W . In the language of integral
decompositions, the ergodic distributions of exchangeable
simple graphs are parametrized by graphons. In (2.8), we
could take ν to be a distribution on the space of graphons.
We will see in Section 5 that θ has an interpretation as
a limit of the empirical adjacency matrices for larger and
larger subgraphs.

3.3. Application to Bayesian Models. The represen-
tation results above have fundamental implications for
Bayesian modeling—in fact, they provide a general char-
acterization of Bayesian models of array-valued data:

Statistical models of exchangeable arrays can be
parametrized by functions from [0, 1]3 → [0, 1]. Every
Bayesian model of an exchangeable array is character-
ized by a prior distribution on the space of functions
from [0, 1]3 to [0, 1].

For the special case of simple graphs, we can rephrase this
idea in terms of graphons:

Statistical models of exchangeable simple graphs are
parametrized by graphons. Every Bayesian model of an
exchangeable simple graph is characterized by a prior
distribution on the space of graphons.

In a Bayesian model of an exchangeable 2-array, the ran-
dom function F plays the role of the random parameter Θ
in (2.10), and the parameter space T is the set of measur-
able function [0, 1]3 → [0, 1]. Every possible value f of F
defines an ergodic distribution pf : In the jointly exchange-
able case, for example, Theorem 3.2 shows that X∞ can
be sampled from pf by sampling

∀i ∈ N : Ui ∼iid Uniform[0, 1] (3.10)

∀i, j ∈ N : U{i,j} ∼iid Uniform[0, 1] (3.11)

and computing X as

∀i, j ∈ N : Xij := f(Ui, Uj , U{i,j}) . (3.12)

Similarly, the ergodic distributions for separately ex-
changeable 2-arrays are given by (3.5). In the special case
of exchangeable simple graphs, the parameter space T can
be reduced to the set of graphons, and the ergodic distri-
bution pw defined by a graphon w is given by (3.8).

To the best of our knowledge, Hoff [31] was the first to
invoke the Aldous-Hoover theorem for statistical modeling.
The problem of estimating the distribution of an exchange-
able graph can be formulated as a regression problem on
the unknown function w. This perspective was proposed
in [43], where the regression problem is formulated as a
Bayesian nonparametric model with a Gaussian process
prior. The regression model need not be Bayesian, how-
ever, and recent work formulates the estimation of w un-
der suitable modeling conditions as a maximum likelihood
problem [65].

Remark 3.7 (Beyond exchangeability). Various types
of array-valued data depend on time or some other covari-
ate. In this case, joint or separate exchangeability might
be assumed to hold marginally, as described in Section 2.4.
E.g., in the case of a graph evolving over time, one could
posit the existence of a graphon W (., ., t) depending also
on the time t. More generally, the discussion in 2.4 applies
to joint and separate exchangeability just as it does to ex-
changeable sequences. On the other hand, sometimes ex-
changeability will not be an appropriate assumption, even
marginally. In Section 7, we highlight some reasons why
exchangeable graphs may be poor models of very large
sparse graphs. /

3.4. Uniqueness of representations. In the repre-
sentation Eq. (3.8), random graph distributions are
parametrized by functions w : [0, 1]2 → [0, 1]. This repre-
sentation is not unique, as illustrated in Fig. 4. The tech-
nical problems raised by the lack of uniqueness play an im-
portant role in the theory of graph limits, which we briefly
survey in Section 5. In graph limit theory, two graphons
are called weakly isomorphic if they parametrize the
same random graph. From a statistical perspective, the
graphon is not identifiable when regarded as a model pa-
rameter, although it is possible to treat the estimation
problem up to equivalence of functions [35, Theorem 4].

To see that the representation by w is not unique, simply
note that the graphon w′(x, y) = w(1− x, 1− y) is weakly
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Fig 4: Non-uniqueness of representations: The function on the left
parametrizes a random graph as in Fig. 3. On the right, this function
has been modified by dividing the unit square into 10×10 blocks and
applying the same permutation of the set {1, . . . , 10} simultaneously
to rows and columns. Since the random variables Ui in Eq. (3.8)
are i.i.d., sampling from either function defines one and the same
distribution on random graphs.

isomorphic to w because (Ui)
d
= (Vi) when Vi = 1− Ui for

i ∈ N. More generally, let φ : [0, 1]→ [0, 1] be a measure-
preserving transformation (MPT), i.e., a map such
that φ(U) is uniformly distributed when U is. By the same
argument as above, the graphon wφ given by wφ(x, y) =
w(φ(x), φ(y)) is weakly isomorphic to w. Fig. 4 shows an
example of a function w and its image under a MPT.

Although any graphon wφ obtained from w by a MPT
φ is weakly isomporphic to w, the converse is not true:
For two weakly isomorphic graphons, there need not be a
MPT that transforms one into the other [see 45, Example
7.11].

Remark 3.8 (Monotonization is not applicable). A
question that often arises in this context is whether a
unique representation can be defined through “mono-
tonization”: On the interval, every bounded real-valued
function can be transformed into a monotone left-
continuous functions by a measure-preserving transforma-
tion, and this left-continuous representation is unique [e.g.
45, Proposition A.19]. It is well known in combinatorics
that the same does not hold on [0, 1]2 [15, 45]. More pre-
cisely, one might attempt to monotonize w on [0, 1]2 by

first considering its projection v(x) :=
∫ 1

0
w(x, y) dy. The

1

10

0

w

0

01

1

w′

1
2

w′′

Fig 5: The functions w and w′ are distinct but parametrize the
same random graph (an almost surely bipartite graph). Both remain
invariant and hence distinct under monotonization, which illustrates
that monotonization does not yield a canonical representation (see
Remark 3.8 for details). Additionally, function w′′ shows that the
projections do not distinguish different random graphs: w′′ projects
to the same constant functions as w and w′, but parametrizes a
different distribution (an Erdős-Rényi graph with edge probability
1/2).

function v can be transformed into a monotone represen-
tation by a unique MPT φ, which we can then apply to
both arguments of w to obtain wφ. It is tempting to think
that the graphon wφ resulting from this process depends
only of the weak-isomorphism class of w, but this approach
does not yield a canonical representation: Fig. 5 shows
two distinct graphons w and w′ that have identical projec-
tions v = v′ (the constant function 1/2) and thus identical

MPTs φ = φ′. Therefore, wφ 6= w′
φ′

, illustrating that the
MPT given by monotonizing the projection does not yield
a canonical representative. /

4. Models in the Machine Learning Literature.
The representation theorems show that any Bayesian model
of an exchangeable array can be specified by a prior on
functions. Models can therefore be classified according to
the type of random function they employ. This section sur-
veys several common categories of such random functions,
including random piece-wise constant (p.w.c.) functions,
which account for the structure of models built using Chi-
nese restaurant processes, Indian buffet processes and other
combinatorial stochastic processes; and random continuous
functions with, e.g., Gaussian process priors. Special cases
of the latter include a range of matrix factorization and di-
mension reduction models proposed in the machine learn-
ing literature. Table 2 summarizes the classes in terms
of restrictions on the random function and the values it
takes.

4.1. Cluster-based models. Cluster-based models as-
sume that the rows and columns of the random array
X := (Xij) can be partitioned into (disjoint) classes, such
that the probabilistic structure between every row- and
column-class is homogeneous. Within social science, this
idea is captured by assumptions underlying stochastic
block models [33, 64].

The collaborative filtering problem described in Ex-
ample 3.4 is a prototypical application: here, a cluster-
based model would assume that the users can be
partitioned into classes/groups/types/kinds (of users),
and likewise, the movies can also be partitioned into
classes/groups/types/kinds (of movies). Having identified
the underlying partition of users and movies, each class of
user would be assumed to have a prototypical preference
for each class of movie.

Because a cluster-based model is described by two par-
titions, this approach to modeling exchangeable arrays is
closely related to clustering, and many well-known non-
parametric Bayesian stochastic processes—e..g, the Dirich-
let process and Pitman-Yor process, or their combinatorial
counterpart, the Chinese restaurant process—are common
components of cluster-based models. Indeed, we will begin
by describing the Infinite Relational Model [38, 66], the
canonical nonparametric, cluster-based, Bayesian model
for arrays.

To our knowledge, the Infinite Relational Model, or sim-
ply IRM, was the first nonparametric Bayesian model of
an exchangeable array. The IRM was introduced in 2006



“OR-nonexch” — 2013/12/31 — 2:21 — page 11 — #11

11

Model class Random function F Distribution of values

Cluster-based (Section 4.1) p.w.c. on random product partition exchangeable
Feature-based (Section 4.2) p.w.c. on random product partition feature-exchangeable
Piece-wise constant (Section 4.3) p.w.c. general random partition arbitrary
Gaussian process-based (Section 4.4) continuous Gaussian

Table 2
Important classes of exchangeable array models. (Note that p.w.c. stands for piecewise constant.)

independently by Kemp, Tenenbaum, Griffiths, Yamada
and Ueda [38], and then by Xu, Tresp, Yu and Kriegel
[66]. (Xu et al. referred to their model as the Infinite Hid-
den Relational Model, but we will refer to both simply by
IRM.) The IRM can be seen as a nonparametric generaliza-
tion of parametric stochastic block models introduced by
Holland, Laskey and Leinhardt [33] and Wasserman and
Anderson [64]. In the following example, we describe the
model for the special case of a {0, 1}-valued array.

Example 4.1 (Infinite Relational Model). Under the
IRM, the generative process for a finite subarray of bi-
nary random variables Xij , i ≤ n, j ≤ m, is as follows:
To begin, we partition the rows (and then columns) into
clusters according to a Chinese restaurant process, or
simply CRP. (See Pitman’s excellent monograph [53] for a
in-depth treatment of the CRP and related processes.) In
particular, the first and second row are chosen to belong to
the same cluster with probability proportional to 1 and to
belong to different clusters with probability proportional
to a parameter c > 0. Subsequently, each row is chosen to
belong to an existing cluster with probability proportional
to the current size of the cluster, and to a new cluster with
probability proportional to c. Let Π := {Π1, . . . ,Πκ} be
the random partition of {1, . . . , n} induced by this process,
where Π1 is the cluster containing 1, and Π2 is the clus-
ter containing the first row not belonging to Π1, and so
on. Note that the number of clusters, κ, is also a random
variable. Let Π′ := {Π′1, . . . ,Π′κ′} be the random parti-
tion of {1, . . . ,m} induced by this process on the columns,
possibly with a different parameter c′ > 0 determining the
probability of creating new clusters. Next, for every pair
(k, k′) of cluster indices, k ≤ κ, k′ ≤ κ′, we generate an
independent beta random variable θk,k′ .

1 Finally, we gen-
erate each Xij independently from a Bernoulli distribution
with mean θk,k′ , where i ∈ Πk and j ∈ Π′k′ . As we can
see, θk,k′ represents the probability of links arising between
elements in clusters k and k′.

The Chinese restaurant process (CRP) generating Π
and Π′ is known to be exchangeable in the sense that the
distribution of Π is invariant to a permutation of the un-
derlying set {1, . . . , n}. It is then straightforward to see
that the distribution on the subarray is exchangeable. In
addition, it is straightforward to verify that, were we to
have generated an n+ 1×m+ 1 array, the marginal distri-
bution on the n×m subarray would have agreed with that
of the above process. This implies that we have defined a

1For simplicity, assume that we fix the hyperparameters of the
beta distribution, although this assumption can be relaxed if one is
careful not to break exchangeability or projectivity.

so-called projective family and so results from probability
theory imply that there exists an infinite array and that
the above process describes the distribution of every finite
subarray. /

The IRM model can be seen to be a special case of
exchangeable arrays that we will call cluster-based. We
will define this class formally, and then return to the IRM
example, re-describing it in this new language where the
exchangeability is manifest. To begin, we first introduce a
subclass of cluster-based models, called simple cluster-
based models:

Definition 4.2. We say that a Bayesian model of an
exchangeable array is simple cluster-based when, for some
random function F representing X, there are random par-
titions B1, B2, . . . and C1, C2, . . . of the unit interval [0, 1]
such that:

1. On each block Ai,j := Bi × Cj × [0, 1], F is constant.
Let fij be the value F takes on block Ai,j .

2. The block values (fij) are themselves an exchangeable
array, and independent from (Bi) and (Cj).

We call an array simple cluster-based if its distribution
is.2 /

Most examples of simple cluster-based models in the
literature—including, e.g., the IRM—take the block values
fij to be conditionally i.i.d. (and so the array (fij) is then
trivially exchangeable). As an example of a more flexible
model for (fij), which is merely exchangeable, consider the
following:

Example 4.3 (exchangeable link probabilities). For
every block i in the row partition, let ui be an indepen-
dent and identically distributed Gaussian random variable.
Similarly, let (vj) be an i.i.d. sequence of Gaussian ran-
dom variables for the column partitions. Then, for every
row and column block i, j, put fij := sig(ui + vj), where
sig : R → [0, 1] is a sigmoid function. The array (fij) is
obviously exchangeable. /

Like with cluster-based models of exchangeable se-
quences, if the number of classes in each partition is
bounded, then a simple cluster-based model of an ex-
changeable array is a mixture of a finite-dimensional family

2Those familiar with the theory of exchangeable partitions might
note that our model does not allow for singleton blocks (aka dust).
This is a straightforward generalization, but complicates the presen-
tation.
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of ergodic distributions. Therefore, mixtures of an infinite-
dimensional family must place positive mass on partitions
with arbitrarily many classes.

In order to define the more general class of cluster-
based models, we relax the piecewise constant nature of the
random function. In particular, we will construct an ex-
changeable array (Xij) from a corresponding array (θij) of
parameters, which will have a simple cluster-based model.
The parameter θij could, e.g., determine the probability of
an interaction Xij ∈ {0, 1}. More generally, the parame-
ters index a family of distributions on X.

To precisely define such models, we adapt the notion of
a randomization from probability theory [36]. Intuitively,
given a family {Pt : t ∈ T} of distributions on X and a
collection of random variables θi in T, we can generate a
conditionally independent collection of random variable Yi,
each with distribution Pθi . The following definition makes
this idea more precise.

Definition 4.4 (randomization). Let T be a param-
eter space, let P be a family {Pt : t ∈ T} of distributions
on X, and let θ := (θi : i ∈ I) be a collection of random
variables taking values in T, indexed by elements of a set
I. (E.g., I = N2) We say that a collection Y := (Yi : i ∈ I)
of random variables, indexed by the same set I, is a P -
randomization of θ when the elements Yi are condition-
ally independent given θ, and Yi | θ ∼ Pθi for all i ∈ I. /

Thus, a generative model for the collection Y is to first
generate θ, and then, for each i ∈ I, to sample Yi indepen-
dently from the distribution Pθi . It is straightforward to
prove that, if θ is an exchangeable array and Y is a ran-
domization of θ, then Y is exchangeable. We may therefore
define:

Definition 4.5 (cluster-based models). We say that
a Bayesian model for an exchangeable array X := (Xij)
in X is cluster-based when X is a P -randomization of a
simple cluster-based exchangeable array θ := (θij) taking
values in a space T, for some family {Pt : t ∈ T} of distri-
butions on X. We say an array is cluster-based when its
distribution is. /

The intuition is that the cluster memberships of every
pair i, j of individuals determines a parameter θij , which in
turn determines a distribution Pθij . The actual observed
relationship Xij is then a sample from Pθij .

Let X, θ, T and P be defined as above. We may
characterize the random function F for X as follows: Let
φ : T × [0, 1] → X be such that φ(t, U) is Pt-distributed
for every t ∈ T, when U is uniformly distributed in [0, 1].
(Such a function φ is sometimes called a sampling func-
tion.) Then, if G is the random function representing the
exchangeable array (θij) then

F (x, y, z) = φ(G(x, y, z), z) (4.1)

is a function representing X. (Recall that G(x, y, z) =
G(x, y, z′) for almost all x, y, z, z′ by part 1 of Defini-
tion 4.2.)

The next example describes a model that generates the
random partitions using a Dirichlet process.

Example 4.6 (Infinite Relational Model continued).
We may alternatively describe the IRM distribution on
exchangeable arrays as follows: Let P be a family
{Pt : t ∈ T} of distributions on X (e.g., a family of
Bernoulli distributions indexed by their means in [0, 1])
and let H be a prior distribution on the parameter space
[0, 1] (e.g., a Beta distribution, so as to achieve conjugacy).
The IRM model of an array X := (Xij) is cluster-based,
and in particular, is a P -randomization of a simple, cluster-
based exchangeable array θ := (θij) of parameters in T.

In order to describe the structure of θ, it suffices to
describe the distribution of the partitions (Bk) and (Ck)
as well as that of the block values. For the latter, the IRM
simply chooses the block values to be i.i.d. draws from the
distribution H. (While the block values can be taken to be
merely exchangeable, we have not seen this generalization
in the literature.) For the partitions, the IRM utilizes the
stick-breaking construction of a Dirichlet process [58].

In particular, let W1,W2, . . . be an i.i.d. sequence of
Beta(1, α) random variables, for some concentration pa-
rameter α > 0. For every k ∈ N, we then define

Vk := (1−W1) · · · (1−Wk−1)Wk. (4.2)

With probability one, we have Vk ≥ 0 for every k ∈ N and∑∞
k=1 Vk = 1 almost surely, and so the sequence (Vk) char-

acterizes a (random) probability distribution on N. We
then let (Bk) be a sequence of contiguous intervals that
partition of [0, 1], where Bk is the half-open interval of
length Vk. In the jointly exchangeable case, the random
partition (Ck) is usually chosen either as a copy of (Bk),
or as partition sampled independently from the same dis-
tribution as (Bk).

The underlying discrete partitioning of G induces a par-
tition on the rows and columns of the array under the
IRM model. In the IRM papers themselves, the cluster-
ing of rows and columns is described directly in terms of a
Chinese restaurant process (CRP) like we did in our first
description of the IRM, rather than as above, where we
described the model in terms of an explicit list of proba-
bilities. To connect the random probabilities (Vk) for the
rows with the CRP, note that Vk is the limiting fraction of
rows in the kth cluster Πk as the number of rows tends to
infinity. /

4.2. Feature-based models. Feature-based models of
exchangeable arrays have similar structure to cluster-based
models. Like cluster-based models, feature-based models
partition the rows and columns into clusters, but unlike
cluster-based models, feature-based models allow the rows
and columns to belong to multiple clusters simultaneously.
The set of clusters that a row belongs to are then called its
features. The interaction between row i and column j is
then determined by the features that the row and column
possess.
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Fig 6: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant
process) with conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as
in Example 4.3; 3) a LFRM (where partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as
in Example 4.10; 4) a Mondrian-process-based model with a single latent dimension; 5) a Gaussian-processed-based model with a single
latent dimension. (Note that, in practice, one would use more than one latent dimension in the last two examples, although this complicates
visualization. In the first four figures, we have truncated each of the “stick-breaking” constructions at a finite depth, although, at the
resolution of the figures, it is very difficult to notice the effect.)

The stochastic process at the heart of most existing
feature-based models of exchangeable arrays is the Indian
buffet process, introduced by Griffiths and Ghahramani
[28]. The Indian buffet process (IBP) produces an allo-
cation of features in a sequential fashion, much like the
Chinese restaurant process produces a partition in a se-
quential fashion. In the follow example, we will describe
the Latent Feature Relational Model (LFRM) of Miller et
al. [49], one of the first nonparametric, feature-based mod-
els of exchangeable arrays. For simplicity, we will describe
the special case of a {0, 1}-valued, separately-exchangeable
array.

Example 4.7 (Latent Feature Relational Model). Un-
der the LFRM, the generative process for a finite subarray
of binary random variables Xij , i ≤ n, j ≤ m, is as fol-
lows: To begin, we allocate features to the rows (and then
columns) according to an IBP. In particular, the first row is
allocated a Poisson number of features, with mean γ > 0.
Each subsequent row will, in general, share some features
with earlier rows, and possess some features not possessed
by any earlier row. Specifically, the second row is also al-
located a Poisson number of altogether new features, but
with mean γ/2, and, for every feature possessed by the
first row, the second row is allocated that feature, inde-
pendently, with probability 1/2. In general, the kth row:
is allocated a Poisson number of altogether new features,
with mean γ/k; and, for every subset K ⊆ {1, . . . , k−1} of
the previous rows, and every feature possessed by exactly
those rows in K, is allocated that feature, independently,
with probability |K|/n. (We use the same process to al-
locate a distinct set of features to the m columns, though
potentially with a different constant γ′ > 0 governing the
overall number of features.)

We now describe how the features possessed by the
rows and columns come to generate the observed subarray.
First, we number the row- and column- features arbitrar-
ily, and for every row i and column j, we let Ni,Mj ⊆ N
be the set of features they possess, respectively. For ev-
ery pair (k, k′) of a row- and column- feature, we gener-
ate an independent and identically distributed Gaussian
random variable wk,k′ . Finally, we generate each Xi,j

independently from a Bernoulli distribution with mean
sig(
∑
k∈Ni

∑
k′∈Mj

wk,k′). Thus a row and column that

possess feature k and k′, respectively, have an increased
probability of a connection as wk,k′ becomes large and pos-
itive, and a decreased probability as wk,k′ becomes large
and negative.

The exchangeability of the subarray follows from the
exchangeability of the IBP itself. In particular, define the
family of counts ΠN , N ⊆ {1, . . . , n}, where ΠN is the
number of features possessed by exactly those row in N .
We say that Π := (ΠN ) is a random feature allocation
for {1, . . . , n}. (Let Π′ be the random feature allocation for
the columns induced by the IBP.) The IBP is exchangeable
is the sense that

(ΠN )
d
= (Πσ(N)) (4.3)

for every permutation π of {1, . . . , n}, where σ(N) :=
{σ(n) : n ∈ N}. Moreover, the conditional distribution of
the subarray given the feature assignments (Ni,Mj) is the
same as the conditional distribution given the feature al-
locations (ΠN ,Π

′
M ). It is then straightforward to verify

that the subarray is itself exchangeable. Like with the
IRM example, the family of distributions on subarrays of
different sizes is projective, and so there exists an infinite
array and the above process describes the distribution of
every subarray. /

We will cast the LFRM model as a special case of a
class of models that we will call feature-based. From the
perspective of simple cluster-based models, simple feature-
based models also have a block structured representing
function, but relax the assumption that values of each
block form an exchangeable array. To state the defini-
tion of this class more formally, we begin by generalizing
the notion of a partition of [0, 1]. (See [16] for recent work
characterizing exchangeable feature allocations.)

Definition 4.8 (feature allocation). Let U be
a uniformly-distributed random variable and E :=
(E1, E2, . . . ) a sequence of subsets of [0, 1]. Given E, we
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say that U has feature n when U ∈ En. We call the se-
quence E a feature allocation if

P
{
U /∈

⋃
k≥nEk

}
→ 1 as n→∞. (4.4)

/

The definition probably warrants some further explana-
tion: A partition is a special case of a feature allocation,
in which the sets En are disjoint and represent blocks of
a partition. The relation U ∈ Ek then indicates that an
object represented by the random variable U is in block
k of the partition. In a feature allocation, the sets Ek
may overlap. The relation U ∈ En now indicates that the
object has feature n. Because the sets may overlap, the
object may possess multiple features. However, condition
Eq. (4.4) ensures that the number of features per object
remains finite (with probability 1).

A feature allocation induces a partition if we equate any
two objects that possess exactly the same features. More
carefully, for every subset N ⊂ N of features, define

E(N) :=
⋂
i∈N

Ei ∩
⋂
j /∈N

([0, 1] \ Ej) . (4.5)

Then, two objects represented by random variables U and
U ′ are equivalent iff U,U ′ ∈ E(N) for some finite set N ⊂
N. As before, we could consider a simple, cluster-based
representing function where the block values are given by
an (fN,M ), indexed now by finite subsets N,M ⊆ N. Then
fN,M would determine how two objects relate when they
possess features N and M , respectively.

However, if we want to capture the idea that the re-
lationships between objects depend on the individual fea-
tures the objects possess, we would not want to assume
that the entries of fN,M formed an exchangeable array,
as in the case of a simple, cluster-based model. E.g., we
might choose to induce more dependence between fN,M
and fN ′,M when N∩N ′ 6= ∅ than otherwise. The following
definition captures the appropriate relaxation of exchange-
ability:

Definition 4.9 (feature-exchangeable array). Let
Y := (YN,M ) be an array of random variables indexed by
pairs N,M ⊆ N of finite subsets. For a permutation π of N
and N ⊆ N, write π(N) := {π(n) : n ∈ N} for the image.
Then, we say that Y is feature-exchangeable when

(YN,M )
d
= (Yπ(N),π(M)), (4.6)

for all permutations π of N. /

Informally, an array Y indexed by sets of features is
feature-exchangeable if its distribution is invariant to per-
mutations of the underlying feature labels (i.e., of N). The
following is an example of a feature-exchangeable array,
which we will use when we re-describe the Latent Feature
Relational Model in the language of feature-based models:

Example 4.10 (feature-exchangeable link probabili-
ties). Let w := (wij) be a conditionally i.i.d. array of
random variables in R, and define θ := (θN,M ) by

θN,M = sig(
∑
i∈N

∑
j∈M wij), (4.7)

where sig : R→ [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward
to verify that θ is feature-exchangeable. /

We can now define simple feature-based models:

Definition 4.11. We say that a Bayesian model of an
exchangeable array X is simple feature-based when, for
some random function F representing X, there are random
feature allocations B and C of the unit interval [0, 1] such
that, for every pair N,M ⊆ N of finite subsets, F takes
the constant value fN,M on the block

AN,M := B(N) × C(M) × [0, 1], (4.8)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an
array is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based mod-
els by pointing out that simple feature-based arrays are
simple cluster-based arrays when either i) the feature al-
locations are partitions or ii) the array f is exchangeable.
The latter case highlights the fact that feature-based ar-
rays relax the exchangeability assumption of the underly-
ing block values.

As in the case of simple cluster-based models, nonpara-
metric simple feature-based models will place positive mass
on feature allocations with an arbitrary number of distinct
sets. As we did with general cluster-based models, we will
define general feature-based models as randomizations of
simple models:

Definition 4.12 (feature-based models). We say that
a Bayesian model for an exchangeable array X := (Xij)
in X is feature-based when X is a P -randomization of a
simple, feature-based, exchangeable array θ := (θij) taking
values in a space T , for some family {Pt : t ∈ T} of distri-
butions on X. We say an array is feature-based when its
distribution is. /

Comparing Definitions 4.5 and 4.12, we see that the
relationship between random functions representing θ and
X are the same as with cluster-based models. We now
return to the LFRM model, and describe it in the language
of feature-based models:

Example 4.13 (Latent Feature Relational Model con-
tinued). Recall that a feature-based model is determined
by the randomization family P , the distribution of the un-
derlying feature-exchangeable array f of link probabilities,
and the distribution of the random feature allocation. In
the case of the LFRM, P is the family Bernoulli(p) distri-
butions, for p ∈ [0, 1] (although this is easily generalized,
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and does not represent an important aspect of the model).
The underlying feature-exchangeable array f is that de-
scribed in Example 4.10.

The random feature allocations underlying the LFRM
can be described in terms of so-called “stick-breaking” con-
structions of the Indian buffet process. One of the simplest
stick-breaking constructions, and the one we will use here,
is due to Teh, Görür, and Ghahramani [60]. (See also [62],
[51] and [52].)

Let W1,W2, . . . be an i.i.d. sequence of Beta(α, 1) ran-
dom variables for some concentration parameter α > 0.
For every k, we define Vk :=

∏k
j=1Wj . (The relationship

between this construction and Eq. (4.2) highlights one of
several relationships between the IBP and CRP.) It follows
that we have 1 ≥ V1 ≥ V2 ≥ · · · ≥ 0. The allocation of fea-
tures then proceeds as follows: for every k ∈ N, we assign
the feature with probability Vk, independently of all other
features. It can be shown that

∑
k Vk is finite with proba-

bility one, and so we have a valid feature allocation; every
object has a finite number of features with probability one.

We can describe a feature allocation (Bn) corresponding
with this stick-breaking construction of the IBP as follows:
Put B1 = [0, V1), and then inductively, for every n ∈ N,
put

Bn+1 :=

2n−1⋃
j=1

[bj , (bj+1 − bj) · Vn+1) (4.9)

where Bn = [b1, b2) ∪ [b3, b4) ∪ · · · ∪ [b2n−1, b2n). (As one
can see, this representation obscures the conditional inde-
pendence inherent in the feature allocation induced by the
IBP.) /

4.3. Piece-wise constant models. Simple partition- and
feature-based models have piecewise-constant structure,
which arises because both types of models posit prototyp-
ical relationships on the basis of a discrete set of classes
or features assignments, respectively. More concretely, a
partition of [0, 1]3 is induced by partitions of [0, 1].

An alternative approach is to consider partitions of
[0, 1]3 directly, or partitions of [0, 1]3 induced by partitions
of [0, 1]2. Rather than attempting a definition capturing a
large, natural class of such models, we present an illustra-
tive example:

Example 4.14 (Mondrian-process-based models [56]).
A Mondrian process is a partition-valued stochastic process
introduced by Roy and Teh [56]. (See also Roy [55, Chp. V]
for a formal treatment.) More specifically, a homoge-
neous Mondrian process on [0, 1]2 is a continuous-time
Markov chain (Mt : t ≥ 0), where, for every time t ≥ 0, Mt

is a floorplan-partition of [0, 1]2—i.e., a partition of [0, 1]2

comprised of axis-aligned rectangles of the form A = B×C,
for intervals B,C ⊆ [0, 1]. It is assumed that M0 is the
trivial partition containing a single rectangle.

Every continuous-time Markov chain is characterized by
the mean waiting times between jumps and the discrete-
time Markov process of jumps (i.e., the jump chain) em-

bedded in the continuous-time chain. In the case of a Mon-
drian process, the mean waiting time from a partition com-
posed of a finite set of rectangles {B1 × C1, . . . , Bk × Ck}
is
∑k
j=1(|Bj | + |Cj |)−1. The jump chain of the Mondrian

process is entirely characterized by its transition probabil-
ity kernel, which is defined as follows: From a partition
{B1 × C1, . . . , Bk × Ck} of [0, 1]2, we choose to “cut” ex-
actly one rectangle, say Bj ×Cj , with probability propor-
tional to |Bj |+ |Cj |; Choosing j, we then cut the rectangle
vertically with probability proportional to |Cj | and hori-
zontally with probability proportional to |Bj |; Assuming
the cut is horizontal, we partition Bj into two intervals
Bj,1 and Bj,2, uniformly at random; The jump chain then
transitions to the partition where Bj × Cj is replaced by
Bj,1 × Cj and Bj,2 × Cj ; The analogous transformation
occurs in the vertical case.

As is plain to see, each partition is produced by a se-
quence of cuts that hierarchically partition the space. The
types of floorplan partitions of this form are called guil-
lotine partitions. Guillotine partitions are precisely the
partitions represented by kd-trees, the classical data struc-
ture used to represent hierarchical, axis-aligned partitions.

The Mondrian process possesses several invariances that
allow one to define a Mondrian process M∗t on all of
R2. The resulting process is no longer a continuous-time
Markov chain. In particular, for all t > 0, M∗t has a count-
ably infinite number of rectangles with probability one.
Roy and Teh [56] use this extended process to produce a
nonparametric prior on random functions as follows:

Let (ψn) be an exchangeable sequence of random vari-
ables in X, let M be a Mondrian process on R2, indepen-
dent of (ψn), and let (An) be the countable set of rectangles
comprising the partition of R2 given by Mc for some con-
stant c > 0. Roy and Teh propose the random function F
from [0, 1]3 to [0, 1] given by F (x, y, z) = ψn, where n is
such that An 3 (− log x,− log y). An interesting property
of F is that the partition structure along any axis-aligned
slice of the random function agrees with the stick-breaking
construction of the Dirichlet process, presented in the IRM
model example. Roy and Teh present results in the case
where the ψn are Beta random variables, and the data are
modeled as a Bernoulli randomization of an array gener-
ated from F . (See [55] and [56] for more details.) /

4.4. Gaussian-process-based models. Up until now, we
have discussed classes of models for exchangeable arrays
whose random functions have piece-wise constant struc-
ture. In this section we briefly discuss a large and impor-
tant class of models that relax this restriction by modeling
the random function as a Gaussian process.

We begin by recalling the definition of a Gaussian pro-
cess [e.g. 54]. Let G := (Gi : i ∈ I) be an indexed collection
of R-valued random variables. We say that G is a Gaus-
sian process on I when, for all finite sequences of indices
i1, . . . , ik ∈ I, the vector (G(i1), . . . , G(ik)) is Gaussian,
where we have written G(i) := Gi for notational conve-
nience. A Gaussian process is completely specified by two
function-valued parameters: a mean function µ : I → R,
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satisfying

µ(i) = E
(
G(i)

)
, i ∈ I, (4.10)

and a positive semidefinite covariance function κ : I ×
I → R+, satisfying

κ(i, j) = cov(G(i), G(j)). (4.11)

Definition 4.15 (Gaussian-process-based exchange-
able arrays). We say that a Bayesian model for an ex-
changeable array X := (Xij) in X is Gaussian-process-
based when, for some random function F representing X,
the process F = (Fx,y,z; x, y, z ∈ [0, 1]) is Gaussian on
[0, 1]3. We will say that an array X is Gaussian-process-
based when its distribution is. /

In the language of Eq. (3.12), a Gaussian-process-based
model is one where a Gaussian process prior is placed on
the function f . The definition is stated in terms of the
space [0, 1]3 as domain of the uniform random variables
U to match our statement of the Aldous-Hoover theorem
and of previous models. In the case of Gaussian processes,
however, it is arguably more natural to use the real line
instead of [0, 1], and we note that this is indeed possible:
Given an embedding φ : [0, 1]3 → J and a Gaussian process
G on J , the process G′ on [0, 1]3 given by G′x,y,z = Gφ(x,y,z)

is Gaussian. More specifically, if the former has a mean
function µ and covariance function κ, then the latter has
mean µ ◦ φ and covariance κ ◦ (φ ⊗ φ). We can therefore
talk about Gaussian processes on spaces J that can be put
into correspondence with the unit interval.

The above definition also implies that the array X is
conditionally Gaussian, ruling out, e.g., the possibility of
{0, 1}-valued arrays. This restriction is overcome by con-
sidering randomizations of Gaussian-process-based arrays.
Indeed, in the {0, 1}-valued case, the most common type
of randomization can be described as follows:

Definition 4.16 (noisy sigmoidal/probit likelihood).
Let ξ be a Gaussian random variable with mean m ∈ R and
variance v > 0, and let σ : R→ [0, 1] be a sigmoidal func-
tion. We define the family {Lr : r ∈ R} of distributions on
{0, 1} by Lr{1} = E

(
σ(r + ξ)

)
. /

Many of the most popular parametric models for ex-
changeable arrays of random variables can be constructed
as (randomizations of) Gaussian-process-based arrays. For
a catalog of such models and several nonparametric vari-
ants, as well as their covariance functions, see [43]. Here
we will focus on the parametric eigenmodel, introduced
by Hoff [31, 32], and its nonparametric cousin, introduced
Xu, Yan and Qi [67]. To simplify the presentation, we will
consider the case of a {0, 1}-valued array.

Example 4.17 (Eigenmodel [31, 32]). In the case
of a {0, 1}-valued array, both the eigenmodel and its

nonparametric extension can be interpreted as an L-
randomizations of a Gaussian-process-based array θ :=
(θij), where L is given as in Definition 4.16 for some mean,
variance and sigmoid. To complete the description, we de-
fine the Gaussian processes underlying θ.

The eigenmodel is best understood in terms of a zero-
mean Gaussian process G on Rd × Rd. (The correspond-
ing embedding φ : [0, 1]3 → Rd × Rd is φ(x, y, z) =
Φ−1(x)Φ−1(y), where Φ−1 is defined so that Φ−1(U) ∈ Rd
is a vector of independent doubly-exponential (aka Lapla-
cian) random variables when U is uniformly distributed in
[0, 1].) The covariance function κ : Rd × Rd → R+ of the
Gaussian process G underlying the eigenmodel is simply

κ(u, v;x, y) = 〈u, x〉〈v, y〉, u, v, x, y ∈ Rd, (4.12)

where 〈., .〉 : Rd × Rd → R denotes the dot product, i.e.,
Euclidean inner product. This corresponds with a more
direct description of G: in particular,

G(x, y) = 〈x, y〉Λ (4.13)

where Λ ∈ Rd×d is a d × d array of independent standard
Gaussian random variables and 〈x, y〉A =

∑
n,m xnymAn,m

is an inner product. /

A nonparametric counterpart to the eigenmodel was in-
troduced by Xu et al. [67]:

Example 4.18. The Infinite Tucker Decomposition
model [67] defines the covariance function on Rd × Rd to
be

κ(u, v;x, y) = κ′(u, x)κ′(v, y), u, v, x, y ∈ Rd, (4.14)

where κ′ : Rd × Rd → R is some positive semi-definite
covariance function on Rd. This change can be understood
as generalizing the inner product in Eq. (4.12) from Rd
to a (potentially, infinite-dimensional) reproducing kernel
Hilbert space (RKHS). In particular, for every such κ′,
there is an RKHS H such that

κ′(x, y) = 〈φ(x), φ(y)〉H, x, y ∈ Rd. (4.15)

/

A related nonparametric model for exchangeable arrays,
which places fewer restrictions on the covariance structure
and is derived directly from the Aldous-Hoover represen-
tation, is described in [43].

5. Convergence, Concentration and Graph Lim-
its. We have already noted that the parametrization of
random arrays by functions in the Aldous-Hoover theorem
is not unique. Our statement of the theorem also lacks an
asymptotic convergence result such as the convergence of
the empirical measure in de Finetti’s theorem. The tools
to fill these gaps have only recently become available in a
new branch of combinatorics which studies objects known
as graph limits. This section summarizes a few elementary
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Fig 7: For graph-valued data, the directing random function F in the Aldous-Hoover representation can be regarded as a limit of adjacency
matrices: The adjacency matrix of a graph of size n can be represented as a function on [0, 1]2 by dividing the square into n × n patches
of equal size. On each patch, the representing function is constant, with value equal to the corresponding entry of the adjacency matrix.
(In the figure, a black patch indicates a value of one and hence the presence of an edge.) As the size of the graph increases, the subdivision
becomes finer, and converges to the function depicted on the right for n → ∞. Convergence is illustrated here for the two functions from
Fig. 4. Since the functions are equivalent, the two random graphs within each column are equal in distribution.

notions of this rapidly emerging field and shows how they
apply to the Aldous-Hoover theorem for graphs.

Convergence results in statistics study the behavior of
the empirical distribution (2.5). The corresponding ob-
ject for exchangeable graphs is an empirical estimate of
the graphon, which is a “checkerboard function”: Given
a finite graph gn with n vertices, we subdivide [0, 1]2 into
n× n square patches, resembling the n× n adjacency ma-
trix. We then define a function wgn with constant value 0
or 1 on each patch, equal to the corresponding entry of the
adjacency matrix. We call wgn the empirical graphon
of gn. Examples are plotted in Fig. 7. Since wgn is a valid
graphon, it parameterizes an infinite random graph, even
though n is finite. Aldous-Hoover theory provides a graph
counterpart to the law of large numbers:

Theorem 5.1 (Kallenberg [35]). Let w be a graphon.
Suppose we sample a random graph from w one vertex at
a time, and Gn is the graph given by the first n vertices.
Then the distributions defined by wGn converge weakly to
the distribution defined by w with probability 1. �

A recent development in combinatorics and graph the-
ory is the theory of graph limits [46, 47]. This theory
defines a distance measure δ

�
on graphons (more details

below). The metric can be applied to finite graphs, since
the graphs can be represented by the empirical graphon.
It is then possible to study conditions under which se-
quences of graphs converge to a limit. It turns out that
limits of graphs can be represented by graphons, and the
convergence of graphs corresponds precisely to the weak
convergence of the distributions defined by the empirical
graphons. This theory refines the Aldous-Hoover theory
with a large toolbox of powerful results. We describe a
few aspects in the following. The authoritative (and very

well-written) reference is [45].

5.1. Metric definition of convergence. The most con-
venient way to define convergence is by defining a metric:
If d is a distance measure, we can define w as the limit of
wgn if d(w,wgn) → 0 as n → ∞. The metric on functions
which has emerged as the “right” choice for graph conver-
gence is called the cut metric, and is defined as follows:
We first define a norm as

‖w‖
�

:= sup
S,T⊂[0,1]

∫
S×T

w(x, y) dxdy . (5.1)

(The integral is with respect to Lebesgue measure dx
because the variables Ui are uniformly distributed.)
Intuitively—if we assume for the moment that w can in-
deed be thought of as a limiting adjacency matrix—S and
T are subsets of nodes. The integral (5.1) measures the
total number of edges between S and T in the “graph” w.
Since a partition of the vertices of a graph into two sets is
called a cut, ‖ . ‖

�
is called the cut norm. The distance

measure defined by d
�

(w,w′) := ‖w − w′‖
�

is called the
cut distance.

Suppose w and w′ are two distinct functions which
parametrize the same distribution on graphs. The dis-
tance d

�
in general perceives such functions as different:

The functions in Fig. 7, for instance, define the same graph,
but have non-zero distance under d

�
. Hence, if we were to

use d
�

to define convergence, the two sequences of graphs
in the figure would converge to two different limits. We
therefore modify d

�
as follows: For any given w, let [w] be

the set of all functions w′ which define the same random
graph.

δ
�

(w1, w2) := inf
w′∈[w2]

d
�

(w1, w
′) . (5.2)

Informally, we can think of the functions in [w2] as func-
tions obtained from w2 by a “rearrangement” like the one
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illustrated in Fig. 4. The definition above says that, before
we measure the distance between w1 and w2 using d

�
, we

rearrange w2 in the way that aligns it most closely with
w1. In Fig. 4, this closest rearrangement would simply re-
verse the permutation of blocks, so that the two functions
would look identical.

The function δ
�

is called the cut pseudometric: It is
not an actual metric, since it can take value 0 for two dis-
tinct functions. It does, however, have all other properties
of a metric. By definition, δ

�
(w,w′) = 0 holds if and only

if w and w′ parametrize the same random graph.

Definition 5.2. We say that a sequence (gn)n∈N of
graphs converges if δ

�
(wgn , w) → 0 for some measurable

function w : [0, 1]2 → [0, 1]. The function w is called the
limit of (gn), and often referred to as a graph limit. /

Clearly, the graph limit is a graphon, and the two terms
are used interchangeably. This definition indeed provides
a metric counterpart to convergence of exchangeable graph
distributions:

Theorem 5.3. A function w is the graph limit of a se-
quence (gn)n∈N of graphs if and only if the random graph
distributions defined by the empirical graphons wgn con-
verge weakly to the distribution defined by w. �

5.2. Unique parametrization in the Aldous-Hoover the-
orem. Recall that two graphons can be equivalent, in the
sense that they are distinct functions but define the same
random graph (they are weakly isomorphic in the language
of Section 3.4). The equivalence classes [w] form a parti-
tion of the space W of all graphons, which motivates the
definition of a “quotient space”: We can define a new space

Ŵ by collapsing each equivalence class to a single point.

Each element ŵ ∈ Ŵ corresponds to all functions in one
equivalence class, and hence to one specific random graph
distribution. Since the pseudometric δ

�
only assigns dis-

tance 0 to two distinct functions if they are equivalent, it

turns into a metric on Ŵ, and (Ŵ, δ
�

) is a metric space.
Although the elements of this space are abstract objects,
not actual functions, the space has remarkable analytical
properties, and is one of the central objects of graph limit
theory.

Since Ŵ contains precisely one element for each er-
godic distribution on exchangeable graphs, we can obtain
a unique parametrization of exchangeable graph models

by using T := Ŵ as a parameter space: If w ∈W is a

graphon and ŵ the corresponding element of Ŵ—the ele-

ment to which w was collapsed in the definition of Ŵ—we

define a family {pŵ : ŵ ∈ Ŵ} of distributions on exchange-
able arrays by taking pŵ to be the distribution induced by
the uniform sampling scheme described by Eq. (3.8) when
W = w.

Although the existence of such a probability kernel is
not a trivial fact, it follows from a technical result of Or-
banz and Szegedy [50]. In particular, the Aldous-Hoover

theorem for an exchangeable random graph G can then be
written as a unique integral decomposition

P(G ∈ . ) =

∫
Ŵ

pŵ( . ) ν(dŵ) , (5.3)

in analogy to the de Finetti representation.

5.3. Regularity and Concentration. All convergence
results we have seen so far provide only asymptotic guaran-
tees of convergence, but no convergence rates. We give two
examples of concentration results from graph limit theory,
which address similar questions as those asked in mathe-
matical statistics and empirical process theory: How large
a graph do we have to observe to obtain reliable estimates?

Underlying these ideas is one of the deepest results of
modern graph theory, Szemeredi’s regularity lemma: For
every very large graph g, there is a small, weighted graph
ĝ that summarizes all essential structure in g. The only
condition is that g is sufficiently large. In principle, this
means that ĝ can be used as an approximation or summary
of g, but unfortunately, the result is only valid for graphs
which are much larger than possible in most conceivable
applications. There are, however, weaker forms of this
result which hold for much smaller graphs.

To define ĝ for a given graph g, we proceed as follows:
Suppose Π := {V1, . . . , Vk} is a partition of V(g) into k
sets. For any two sets Vi and Vj , we define pij as the
probability that two vertices v ∈ Vi and v′ ∈ Vj , each
chosen uniformly at random from its set, are connected by
an edge. That is,

pij :=
# edges between Vi, Vj

|Vi| · |Vj |
. (5.4)

The graph ĝΠ is now defined as the weighted graph with
vertex set {1, . . . , k} and edge weights pij for edge (i, j).
To compare this graph to g, it can be helpful to blow it up
to a graph gΠ of the same size as g, constructed as follows:

• Each node i is replaced by a clique of size |Vi| (with
all edges weighted by 1).

• For each pair Vi and Vj , all possible edges between the
sets are inserted and weighted by pij .

If we measure how much two graphs differ in terms of the
cut distance, g can be approximated by gΠ as follows:

Theorem 5.4 (Weak regularity lemma [27]). Let k ∈
N and let g be any graph. There is a partition Π of V(g)
into k sets such that d

�
(g, gΠ) ≤ 2(

√
log(k))−1. �

This form of the result is called “weak” since it uses a
less restrictive definition of what it means for g and gΠ

to be close then Szemerédi’s original result. The weaker
hypothesis makes the theorem applicable to graphs that
are, by the standards of combinatorics, of modest size.

A prototypical concentration result based on Theo-
rem 5.4 is the following:
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Theorem 5.5 ([44, Theorem 8.2]). Let f be a real-
valued function on graphs, which is smooth in the sense
that |f(g)− f(g′)| ≤ d

�
(g, g′) for any two graphs g and

g′ defined on the same vertex set. Let G(k, g) be a ran-
dom graph of size k sampled uniformly from g. Then the
distribution of f(G(k, g)) concentrates around some value
f0 ∈ R, in the sense that

P
{
|f(G(k, g))− f0| >

20√
k

}
< 2−k . (5.5)

�

The relevance of such results to statistics becomes ev-
ident if we think of f as a statistic of a graph or net-
work (such as the edge density) which we try to estimate
from an observed subgraph of size k. Results of this type,
for graphs and other random structures, are collectively
known under the term property testing, and are covered
by a sizeable literature in combinatorics and theoretical
compute science [6, 45].

6. Exchangeability and higher-dimensional ar-
rays ∗. The theory of exchangeable arrays extends beyond
2-dimensional arrays, and, indeed, some of the more excit-
ing implications and applications of the theory rely on the
general results. In this section we begin by defining the nat-
ural extension of (joint) exchangeability to higher dimen-
sions, and then give higher-dimensional analogues of the
theorems of Aldous and Hoover due to Kallenberg. These
theorems introduce exponentially-many additional random
variables as the dimension increases, but a theorem of
Kallenberg’s shows that only a linear number are neces-
sary to produce an arbitrarily good approximation. The
presentation owes much to Kallenberg [35].

Definition 6.1 (jointly exchangeable d-arrays). Let
(Xk1,...,kd) be a d-dimensional array (or simply d-array)
of random variables in X. We say that X is jointly ex-
changeable when

(Xk1,...,kd)
d
= (Xπ(k1),...,π(kd)) (6.1)

for every permutation π of N. /

As in the 2-dimensional representation result, a key
ingredient in the characterization of higher-dimensional
jointly exchangeable d-arrays will be an indexed collection
U of i.i.d. latent random variables. In order to define the
index set for U , let Ñd be the space of multisets J ⊆ N of
cardinality |J | ≤ d. E.g., {{1, 1, 3}} ∈ Ñ3 ⊆ Ñ4. Rather
than two collections—a sequence (Ui) indexed by N, and
a triangular array (U{{i,j}}) indexed by multisets of cardi-
nality 2—we will use a single i.i.d. collection U indexed by
elements of Ñd. For every I ⊆ [d] := {1, . . . , d}, we will
write k̃I for the multiset

{{ki : i ∈ I}} (6.2)

and write

(Uk̃I ; I ∈ 2[d] \ ∅) (6.3)

for the element of the function space [0, 1]2
[d]\∅ that maps

each nonempty subset I ⊆ [d] to the real Uk̃I , i.e., the

element in the collection U indexed by the multiset k̃I ∈
Ñ|I| ⊆ Ñd.

Theorem 6.2 (Aldous, Hoover). Let U be an i.i.d. col-
lection of uniform random variables indexed by multisets
Ñd. A random d-array X := (Xk; k ∈ Nd) is jointly ex-
changeable if and only if there is random measurable func-

tion F : [0, 1]2
[d]\∅ → X such that

(Xk; k ∈ Nd) d
= (F (Uk̃I ; I ∈ 2[d] \ ∅); k ∈ Nd). (6.4)

�

When d = 2, we recover Theorem 3.2 characterizing
two-dimensional exchangeable arrays. Indeed, if we write
Ui := U{{i}} and Uij := U{{i,j}} for notational convenience,
then the right hand side of Eq. (6.4) reduces to

(F (Ui, Uj , Uij); i, j ∈ N) (6.5)

for some random F : [0, 1]3 → X. When d = 3, we instead
have

(F (Ui, Uj , Uk, Uij , Uik, Ujk, Uijk); i, j, k ∈ N) (6.6)

for some random F : [0, 1]7 → X, where we have addition-
ally taken Uijk := U{{i,j,k}} for notational convenience.

6.1. Separately exchangeable d-arrays. As in the two-
dimensional case, arrays with certain additional symme-
tries can be treated as special cases. In this section, we
consider separate exchangeability in the setting of d-arrays,
and in the next section we consider further generalizations.
We begin by defining:

Definition 6.3 (separately exchangeable d-arrays).
We say that d-array X is separately exchangeable when

(Xk1,...,kd)
d
= (Xπ1(k1),...,πd(kd)) (6.7)

for every collection π1, . . . , πd of permutations of N. /

For every J ⊆ [d], let 1J denote its indicator function
(i.e., 1J(x) = 1 when x ∈ J and 0 otherwise), and let the
vector kJ ∈ Zd+ := {0, 1, 2, . . . }d be given by

kJ := (k1 1J(1), . . . , kd 1J(d)). (6.8)

In order to represent separately exchangeable d-arrays, we
will use a collection U of i.i.d. uniform random variables
indexed by vectors Zd+. Similarly to above, we will write

(UkI ; I ∈ 2[d] \ ∅) (6.9)

for the element of the function space [0, 1]2
[d]\∅ that maps

each nonempty subset I ⊆ [d] to the real UkI , i.e., the
element in the collection U indexed by the vector kI . Then
we have:
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Corollary 6.4. Let U be an i.i.d. collection of uni-
form random variables indexed by vectors Zd+. A ran-
dom d-array X := (Xk; k ∈ Nd) is separately exchange-
able if and only if there is random measurable function

F : [0, 1]2
[d]\∅ → X such that

(Xk; k ∈ Nd) d
= (F (UkI ; I ∈ 2[d] \ ∅); k ∈ Nd). (6.10)

�

We can consider the special cases of d = 2 and d = 3
arrays. Then we have, respectively,

(F (Ui0, U0j , Uij); i, j ∈ N) (6.11)

for some random F : [0, 1]3 → X; and

(F (Ui00, U0j0, U00k, Uij0, Ui0k, U0jk, Uijk); i, j, k ∈ N)
(6.12)

for some random F : [0, 1]7 → X. As we can see, jointly ex-
changeable arrays, which are required to satisfy fewer sym-
metries than their separately exchangeable counterparts,
may take Uij0 = U0ij = Ui0j = Uji0 = . . . . Indeed, one can
show that these additional assumptions make jointly ex-
changeable arrays a strict superset of separately exchange-
able arrays, for d ≥ 2.

6.2. Further generalizations. In applications, it is com-
mon for the distribution of an array to be invariant to per-
mutations that act simultaneously on some but not all of
the dimensions. E.g., if the first two dimensions of an ar-
ray index into the same collection of users, and the users
are a priori exchangeable, then a sensible notion of ex-
changeability for the array would be one for which these
first two dimensions could be permuted jointly together,
but separately from the remaining dimensions.

More generally, we consider arrays that, given a parti-
tion of the dimensions of an array into classes, are invariant
to permutations that act jointly within each class and sep-
arately across classes. More carefully:

Definition 6.5 (π-exchangeable d-arrays). Let π =
{I1, . . . , Im} be a partition of [d] into disjoint classes, and
let p = (pI ; I ∈ π) be a collection of permutations of N,
indexed by the classes in π. We say that a d-array X is
π-exchangeable when

(Xk1,...,kd ; k ∈ Nd) d
= (Xpπ1 (k1),...,pπd (kd); k ∈ Nd),

(6.13)

for every collection p of permutations, where πi denotes
the subset I ∈ π containing i. /

We may now cast both jointly and separately exchange-
able arrays as π-exchangeable arrays for particular choices
of partitions π. In particular, when π = {[d]} we recover
joint exchangeability, and when π = {{1}, . . . , {d}}, we re-
cover separate exchangeability. Just as we characterized

jointly and separately exchangeable arrays, we can charac-
terize π-exchangeable arrays.

Let π be a partition of [d]. In order to describe the
representation of π-exchangeable d-arrays, we will again
need a collection U of i.i.d. uniform random variables, al-
though the index set is more complicated than before: Let
V(π) := XI∈πÑ|I| denote the space of functions taking
classes I ∈ π to multisets J ⊆ N of cardinality J ≤ |I|.
We will then take U to be a collection of i.i.d. uniform
random variables indexed by elements in V(π).

When π = {[d]}, V(π) is equivalent to the space Ñd
of multisets of cardinality no more than d, in agreement
with the index set in the jointly exchangeable case. The
separately exchangeable case is also instructive: there π =
{{1}, . . . , {d}} and so V(π) is equivalent to the space of
functions from [d] to Ñ1, which may again be seen to be
equivalent to the space Zd+ of vectors, where 0 encodes

the empty set ∅ ∈ Ñ1 ∩ Ñ0. For a general partition π
of [d], an element in V(π) is a type of generalized vector,
where, for each class I ∈ π of dimensions that are jointly
exchangeable, we are given a multiset of indices.

For every I ⊆ [d], let k̃πI ∈ V(π) be given by

k̃πI(J) = k̃I∩J , J ∈ π, (6.14)

where k̃J is defined as above for jointly exchangeable ar-
rays. We will write

(Uk̃πI ; I ∈ 2[d] \ ∅) (6.15)

for the element of the function space [0, 1]2
[d]\∅ that maps

each nonempty subset I ⊆ [d] to the real Uk̃πI , i.e., the ele-
ment in the collection U indexed by the generalized vector
k̃πI . Then we have:

Corollary 6.6 (Kallenberg [35]). Let π be a partition
of [d], and let U be an i.i.d. collection of uniform random
variables indexed by generalized vectors V(π). A random
d-array X := (Xk; k ∈ Nd) is π-exchangeable if and only

if there is random measurable function F : [0, 1]2
[d]\∅ → X

such that

(Xk; k ∈ Nd) d
= (F (Uk̃πI ; I ∈ 2[d] \ ∅); k ∈ Nd). (6.16)

�

6.3. Approximations by simple arrays. These repre-
sentational results require a number of latent random
variables exponential in the dimension of the array, i.e.,
roughly twice as many latent variables are needed as the
entries generated in some subarray. Even if a d-array is
sparsely observed, each observation requires the introduc-
tion of potentially 2d variables. (In a densely observed
array, there will be overlap, and most latent variables will
be reused.)

Regardless of whether this blowup poses a problem for
a particular application, it is interesting to note that ex-
changeable d-arrays can be approximated by arrays with
much simpler structure, known as simple arrays.
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Definition 6.7 (simple d-arrays). Let U = (U Ik ; I ∈
π, k ∈ N) be an i.i.d. collection of uniform random vari-
ables. We say that a π-exchangeable d-array X is simple
when there is a random function F : [0, 1][d] → X such that

(Xk; k ∈ Nd) d
= (F (Uπ1

k1
, . . . , Uπdkd ); k ∈ Nd), (6.17)

where πj is defined as above. /

Again, it is instructive to study special cases: in the

jointly exchangeable case, taking Uj := U
{[d]}
j , we get

(F (Uk1 , . . . , Ukd); k ∈ Nd) (6.18)

and, in the separately exchangeable case, we get

(F (U1
k1 , . . . , U

d
kd

); k ∈ Nd), (6.19)

taking U ij := U
{i}
j . We may now state the relationship

between general arrays and simple arrays:

Theorem 6.8 (simple approximations, Kallenberg [35,
Thm. 2]). Let X be a π-exchangeable d-array. Then
there exists a sequence of simple π-exchangeable arrays
X1, X2, . . . such that, for all finite sub-arrays XJ :=
(Xk; k ∈ J), J ⊆ Nd, the distributions of XJ and Xn

J are
mutually absolutely continuous, and the associated densi-
ties tend uniformly to 1 as n→∞ for fixed J . �

7. Sparse random structures and networks. Ex-
changeable random structures are not “sparse”. In an ex-
changeable infinite graph, for example, the expected number
of edges attached to each node is either infinite or zero. In
contrast, graphs representing network data typically have
a finite number of edges per vertex, and exhibit properties
like power-laws and “small-world phenomena”, which can
only occur in sparse graphs. Hence, even though exchange-
able graph models are widely used in network analysis, they
are inherently misspecified. Since the lack of sparseness is
a direct mathematical consequence of exchangeability, net-
works and sparse random structures pose a problem that
seems to require genuinely non-exchangeable models. The
development of a coherent theory is, despite intense efforts
in mathematics, a largely unsolved problem. In this sec-
tion, we make the problem more precise and describe how,
at least in principle, exchangeability might be substituted
by other symmetry properties. The topic raises a host of
challenging questions to which, in most cases, we have no
answers.

7.1. Dense vs Sparse Random Structures. In an ex-
changeable structure, events either never occur, or they
occur infinitely often with a fixed (though unknown) prob-
ability. The simplest example is an exchangeable binary
sequence: By de Finetti’s theorem, the binary variables
are conditionally i.i.d. with a Bernoulli distribution. If
we sample infinitely often, conditionally on the random
Bernoulli parameter taking value p ∈ [0, 1], the fraction of

ones in the sequence will be precisely p. Therefore, we ei-
ther observe a constant proportion of ones (if p > 0) or no
ones at all (if p = 0).

In an exchangeable graph, rather than ones and zeros,
we have to consider the possible subgraphs (single edges,
triangles, five-stars, etc). Each possible subgraph occurs
either never, or infinitely often. Since an infinite graph may
have infinitely many edges even if it is sparsely connected,
the number of edges is best quantified in terms of a rate:

Definition 7.1. Let (gn) be a sequence of graphs
gn = (vn, en), where gn has n vertices. We say that the
sequence is sparse if, as n increases, |en| is of size O(n) (is
upper-bounded by c · n for some constant c). It is called
dense if |en| = Θ(n2) (lower-bounded by c · n2 for some
constant c). /

If a random graph is sampled step-wise one vertex at
a time, the partial graphs at each step also form a se-
quence, and we can refer to the random graph as dense
or sparse, depending on whether the sequence is dense or
sparse. (This definition has to be used with caution, sinse
changing the order in which vertices are generated may af-
fect the rate.) A typical example of dense random graphs
are infinite random graphs in which each vertex has in-
finite degree. Random graphs with bounded degrees are
sparse. Many important types of graph and array data
are inherently sparse: In a social network with billions of
users, individual users do not, on average, have billions of
friends.

Fact 7.2. Exchangeable graphs are not sparse. If a
random graph is exchangeable, it is either dense or empty.

/

The argument is simple: Let Gn be an n-vertex random
undirected graph sampled according to Eq. (3.8). The ex-
pected proportion of edges in present in Gn, out of all(
n
2

)
= n(n−2)

2 possible edges, is independent of n and given
by ε := 1

2

∫
[0,1]2

W (x, y) dxdy. (The factor 1
2 occurs since

W is symmetric.) If ε = 0, it follows that Gn is empty
with probability one and therefore trivially sparse. On the
other hand, if ε > 0, we have ε ·

(
n
2

)
= Θ(n2) edges in ex-

pectation and so, by the law of large numbers, Gn is dense
with probability one.

Remark 7.3 (Graph limits are dense). The theory of
graph limits described in Section 5 is intimately related to
exchangeability, and is inherently a theory of dense graphs:
If we construct a sequence of graphs with sparsely growing
edge sets, convergence in cut metric is still well-defined,
but the limit object is always the empty graphon, i.e., a
function on [0, 1]2 which vanishes almost everywhere. /

One possible way to generate sparse graphs is of course
to modify the sampling scheme for exchangeable graphs to
generate fewer edges.
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Example 7.4 (The BJR model [13]). There is a very
simple way to modify the Aldous-Hoover approach into one
that generates sparse random graphs: Suppose we sample
a finite graph with a fixed number n of vertices. We simply
multiply the probability in our usual sampling scheme by
1/n:

Xij ∼ Bernoulli
( 1

n
w(Ui, Uj)

)
for i, j ≤ n .

Comparison with our argument why exchangeable graphs
are dense immediately shows that a graph sampled this
way is sparse. More generally, we can multiply w by some
other rate function ρn (instead of specifically ρn = 1/n),
and ask how this model behaves for n→∞. Statistical
properties of this model are studied by Bickel, Chen, and
Levina [12], who consider the behavior of moment estima-
tors for the edge density, triangle density and other sub-
graph densities. /

An obvious limitation of the BJR model is that it does
not actually attempt to model network structure: It can
equivalently be sampled by sampling from a graphon as
in (3.8) and then deleting each edge independently at ran-
dom, with probability (1 − ρn). (In the parlance of ran-
dom graph theory, this is exchangeable sampling followed
by i.i.d. bond percolation.) In other words, the BJR model
modifies an exchangeable graph to fit a first-order statistic
of a network (the number of edges), but it cannot generate
typical network structures, such as power laws.

7.2. Beyond exchangeability: Symmetry and ergodic
theory. The example of networks and sparse structures
shows that there are important random structures which
are not exchangeable. This raises the question whether
integral decompositions and statistical models, which we
have throughout derived from exchangeability, can be ob-
tained in a similar manner for structures that are not ex-
changeable. In principle, that is possible: Exchangeability
is a special case of a probabilistic symmetry. It turns out
that integral decompositions can be derived from much
more general symmetries than exchangeability.

A probabilistic symmetry is defined by choosing a
group G of transformations g : X∞ → X∞. A random
structure X∞ is called invariant to G or G-symmetric

g(X)
d
= X for all g ∈ G. If so, we also say that the dis-

tribution of X∞ is G-invariant. For example, a sequence
of random variables is exchangeable if and only if the dis-
tribution of the sequence is invariant under the group of
permutations of N acting on the indices of the sequence.
Exchangeability of arrays (as in the Aldous-Hoover theo-
rem) corresponds with a subgroup generated by row and
column permutations. Invariant measures play a key role
in several fields of mathematics, especially ergodic theory.

A very general result, the ergodic decomposition theo-
rem, shows that integral decompositions of the form (2.8)
are a general consequence of probabilistic symmetries,
rather than specifically of exchangeability. The general
theme is that there is some correspondence of the form

invariance property ←→ integral decomposition .

e1e2

e3

P ν1ν2

ν3

Fig 8: If E is finite, the de Finetti mixture representation Eq. (2.3)
and the more general representation Eq. (7.1) reduce to a finite con-
vex combination. The points inside the set—i.e., the distributions
P with the symmetry property defined by the group G—can be rep-
resented as convex combinations P =

∑
ei∈E νiei, with coefficients

νi ≥ 0 satisfying
∑
i νi = 1. When E is infinite, an integral is substi-

tuted for the sum.

In principle, Bayesian models can be constructed based on
any type of symmetry, as long as this symmetry defines a
useful set of ergodic distributions. The following statement
of the ergodic decomposition theorem glosses over various
technical details; for a precise statement, see [37, Theorem
A1.4].

Theorem 7.5 (Varadarajan [63]). Let G be a “nice”
group acting on a space X∞ of infinite structures. Then
there exists a family E := {pθ : θ ∈ T} of distributions on
X∞ such that, if the distribution of a random structure
X∞ is G-invariant, it has a representation of the form

P(X∞ ∈ . ) =

∫
T

pθ( . ) ν(dθ) (7.1)

for a unique distribution ν on T. The distributions pθ ∈
E are the so-called ergodic distributions associated with
G. �

We have already encountered the components of (7.1) in
Section 2: In Bayesian terms, pθ again corresponds to the
observation distribution and ν to the prior. Geometrically,
the integral representation Eq. (7.1) can be regarded as
convex combination. Fig. 8 illustrates this idea for a toy
example with three ergodic measures. A special case of the
ergodic decomposition theorem is well-known in Bayesian
theory as a result of Freedman [25, 26]:

Example 7.6 (Freedman’s theorem). Consider a se-
quence X1, X2, . . . as in de Finetti’s theorem. Now re-
place invariance under permutations by a stronger condi-
tion: Let O(n) be the orthogonal group of rotations and
reflections on Rn, i.e., the set of n× n orthogonal matrices.
We now demand that, if we regard any initial sequence of n
variables as a random vector in Rn, then rotating and/or
reflecting this vector does not change the distribution of
the sequence: That is, for every n ∈ N and M ∈ O(n),

(X1, X2, . . . )
d
= (M(X1, . . . , Xn), Xn+1, . . . ) . (7.2)
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In the language of Theorem 7.5, the group G is the set of
all rotations and reflections acting on all finite prefixes of
a sequence. For every σ > 0, let Nσ be the distribution of
zero-mean Gaussian random variable with standard devi-
ation σ. Freedman showed that, if X∞ satisfies Eq. (7.2),
then its distribution is a scale mixture of Gaussians:

P(X∞ ∈ . ) =

∫
R+

N∞σ ( . ) νR+
(dσ) . (7.3)

Thus, E contains all factorial distributions of zero-mean
Gaussian distributions on R, T is the set R>0 of variances,
and ν a distribution on R>0. /

Compared to de Finetti’s theorem, where G is the group
of permutations, Freedman’s theorem increases the size of
G: Any permutation can be represented as an orthogonal
matrix, but here rotations have been added as well. In
other words, we are strengthening the hypothesis by im-
posing more constraints on the distribution of X∞. As a
result, the set E of ergodic measures shrinks from all fac-
torial measures to the set of factorials of zero-mean Gaus-
sians. This is again an example of a general theme:

larger group ←→ more specific representation

In contrast, the Aldous-Hoover theorem weakens the hy-
pothesis of de Finetti’s theorem—in the matrix case, for
instance, the set of all permutations of the index set N2 is
restricted to those which preserve rows and columns—and
hence yields a more general representation.

Remark 7.7 (Symmetry and sufficiency). An alter-
native way to define symmetry in statistical models is
through sufficient statistics: Intuitively, a symmetry prop-
erty identifies information which is not relevant to the sta-
tistical problem; so does a sufficient statistic. For example,
the empirical distribution retains all information about a
sample except for the order in which observations were
recorded. A model for random sequences is hence ex-
changeable if and only if the empirical distribution is a
sufficient statistic. In an exchangeable graph model, the
empirical graphon (the checkerboard function in Fig. 7)
is a sufficient statistic. If the sufficient statistic is finite-
dimensional and computes an average 1

n

∑
i S0(xi) over ob-

servations for some function S0, the ergodic distributions
are exponential family models [41]. A readable introduc-
tion to this topic is given by Diaconis [18]. The definitive
reference is the monograph of Lauritzen [42], who refers to
the set E of ergodic distributions as an extremal family. /

Not every probabilistic symmetry is applicable in statis-
tics in the same way as exchangeability is. To be useful to
statistics, the symmetry must satisfy two conditions:

1. The set E of ergodic measures should be a “small”
subset of the set of symmetric measures.

2. The measures pθ should have a tractable represen-
tation, such as Kingman’s paint-box or the Aldous-
Hoover sampling scheme.

Theorem 7.5 guarantees neither. If (1) is not satisfied, the
representation is useless for statistical purposes: The inte-
gral representation Eq. (7.1) means that the information
in X∞ is split into two parts, the information contained in
the parameter value θ (which a statistical procedure tries
to extract) and the randomness represented by pθ (which
the statistical procedure discards). If the set E is too large,
Θ contains almost all the information in X∞, and the de-
composition becomes meaningless. We will encounter an
appealing notion of symmetry for sparse networks in the
next section—which, however, seems to satisfy neither con-
dition (1) or (2). It is not clear at present whether there are
useful types of symmetries which do not imply some form
of invariance to a group of permutations. Although the
question is abstract, the incompatibility of sparseness and
exchangeability means it is directly relevant to Bayesian
statistics.

7.3. Stationary networks and involution invariance. Is
there a form of invariance that yields statistical models for
network data? There is indeed a very natural notion of
invariance in networks, called involution invariance, which
we describe in more detail below. This property has in-
teresting mathematical properties and admits an ergodic
decomposition as in Theorem 7.5, but it seems to be too
weak for applications in statistics.

A crucial difference between network structures and ex-
changeable graphs is that, in most networks, location in
the graph matters. If conditioning on location is informa-
tive, exchangeability is broken. Probabilistically, location
is modeled by marking a distinguished vertex in the graph.
A rooted graph (g, v) is simply a graph g in which a par-
ticular vertex v has been marked. A very natural notion of
invariance for networks is called involution invariance [1]
or unimodularity [10], and can be thought of as a form of
stationarity:

Definition 7.8. Let P be the distribution of a ran-
dom rooted graph, and define a distribution P̃ as follows:
A sample (G,w) ∼ P̃ is generated by sampling (G, v) ∼ P ,
and then sampling w uniformly from the neighbors of v in
G. The distribution P is called involution invariant if
P = P̃ . /

The definition says that, if an observer randomly walks
along the graph G by moving to a uniformly selected neigh-
bor in each step, the distribution of the network around the
observer remains unchanged (although the actual neigh-
borhoods in a sampled graph may vary).

Involution invariance is a symmetry property which ad-
mits an ergodic decomposition, and Aldous and Lyons
[1] have characterized the ergodic measures. This char-
acterization is abstract, however, and there is no known
“nice” representation resembling, for example, the sam-
pling scheme for exchangeable graphs. Thus, of the two
desiderata described in Section 7.2, property (2) does not
seem to hold. We believe that property (1) does not hold
either: Although we have no proof at present, it seems
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that involution invariance is too weak a constraint to yield
interesting statistical models (i.e., the set of ergodic dis-
tributions is a “large” subset of the involution invariant
distributions).

Since exchangeability and involution invariance are the
only well-studied probabilistic symmetries for random
graphs, the question how statistical models of networks
can be characterized is an open problem:

Is there a notion of probabilistic symmetry whose ergodic
measures in (7.1) describe useful statistical models for

sparse graphs with network properties?

There is a sizeable literature on sparse random graph mod-
els which can model power laws and other network prop-
erties; see, for example [21]. These are probability models
and can be simulated, but estimation from data is often
intractable, due to stochastic dependencies between the
edges in the random graph. On the other hand, some de-
pendence between edges is necessary to obtain a power law
and similar properties. Hence, a suitable notion of symme-
try would have to restrict dependencies between edges suf-
ficiently to permit statistical inference, but not to the full
conditional independence characteristic of the exchange-
able case.

8. Further References. Excellent non-technical ref-
erences on the general theory of exchangeable arrays and
other exchangeable random structures are two recent sur-
veys by Aldous [4, 5]. His well-known lecture notes [3] also
cover exchangeable arrays. The most comprehensive avail-
able reference on the general theory is the monograph by
Kallenberg [37] (which presupposes in-depth knowledge of
measure-theoretic probability). Kingman’s original article
[39] provides a concise reference on exchangeable random
partitions. A thorough, more technical treatment of ex-
changeable partitions can be found in [11].

Schervish [57] gives an insightful discussion of the appli-
cation of exchangeability to Bayesian statistics. There is
a close connection between probabilistic symmetries (such
as exchangeability) and sufficient statistics, which is cov-
ered by a substantial literature. See Diaconis [18] for an
introduction and further references. For applications of ex-
changeability results to machine learning models, see [24],
who discuss applications of the partial exchangeability re-
sult of Diaconis and Freedman [19] to the infinite hidden
Markov model [9].

The theory of graph limits in its current form was initi-
ated by Lovász and Szegedy [46, 47] and Borgs et al. [14].
It builds on work of Frieze and Kannan [27], who intro-
duced both the weak regularity lemma (Theorem 5.4) and
the cut norm d

�
. In the framework of this theory, the

Aldous-Hoover representation of exchangeable graphs can
be derived by purely analytic means [46, Theorem 2.7].
The connection between graph limits and Aldous-Hoover
theory was established, independently of each other, by
Diaconis and Janson [20] and by Austin [7]. An acces-
sible introduction to the analytic perspective is the sur-
vey [44], which assumes basic familiarity with measure-

theoretic probability and functional analysis, but is largely
non-technical. The monograph [45] gives a comprehensive
account.

Historically, the Aldous-Hoover representation was es-
tablished in independent works of Aldous and Hoover in
the late 1970s. Aldous’ proof used probability-theoretic
methods, whereas Hoover, a logician, leveraged techniques
from model theory. In 1979, Kingman [40] writes

...a general solution has now been supplied by Dr David
Aldous of Cambridge. [...] The proof is at present very
complicated, but there is reason to hope that the tech-
niques developed can be applied to more general exper-
imental designs.

Aldous’ paper [2], published in 1981, attributes the idea of
the published version of the proof to Kingman. The results
were later generalized considerably by Kallenberg [35].
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[24] Fortini, S. and Petrone, S. (2012). Predictive construction of
priors in Bayesian nonparametrics. Braz. J. Probab. Stat., 26(4),
423–449.

[25] Freedman, D. A. (1962). Invariants under mixing which gener-
alize de Finetti’s theorem. Ann. Math. Statist., 33, 916–923.

[26] Freedman, D. A. (1963). Invariants under mixing which gener-
alize de Finetti’s theorem. Ann. Math. Statist., 34(1194–1216).

[27] Frieze, A. and Kannan, R. (1999). Quick approximation to ma-
trices and applications. Combinatorica, 19(2), 175–220.

[28] Griffiths, T. L. and Ghahramani, Z. (2006). Infinite latent fea-
ture models and the Indian buffet process. In Adv. in Neural In-
form. Processing Syst. 18 , pages 475–482. MIT Press, Cambridge,
MA.

[29] Hewitt, E. and Savage, L. J. (1955). Symmetric measures on
Cartesian products. Transactions of the American Mathematical
Society, 80(2), 470–501.

[30] Hjort, N., Holmes, C., Müller, P., and Walker, S., editors (2010).
Bayesian Nonparametrics. Cambridge University Press.

[31] Hoff, P. (2008). Modeling homophily and stochastic equivalence
in symmetric relational data. In Adv. Neural Inf. Process. Syst.
2007 .

[32] Hoff, P. D. (2011). Separable covariance arrays via the
Tucker product, with applications to multivariate relational data.
Bayesian Analysis, 6(2), 179–196.

[33] Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983).
Stochastic blockmodels: First steps. Social Networks, 5(2), 109–
137.

[34] Hoover, D. N. (1979). Relations on probability spaces and ar-
rays of random variables. Technical report, Institute of Advanced
Study, Princeton.

[35] Kallenberg, O. (1999). Multivariate sampling and the estimation
problem for exchangeable arrays. J. Theoret. Probab., 12(3), 859–
883.

[36] Kallenberg, O. (2001). Foundations of Modern Probability.
Springer, 2nd edition.

[37] Kallenberg, O. (2005). Probabilistic Symmetries and Invariance
Principles. Springer.

[38] Kemp, C., Tenenbaum, J., Griffiths, T., Yamada, T., and Ueda,
N. (2006). Learning systems of concepts with an infinite relational
model. In Proc. of the Nat. Conf. on Artificial Intelligence, vol-
ume 21, page 381.

[39] Kingman, J. F. C. (1978). The representation of partition struc-
tures. J. London Math. Soc., 2(18), 374–380.

[40] Kingman, J. F. C. (1979). Discussion of: ”on the reconciliation
of probability assessments” by D. V. Lindley, A. Tversky and R. V.
Brown. Journal of the Royal Statistical Society. Series A, 142(2),
171.
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