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Mesoscale structures (communities) are used to understand the macroscale properties of complex networks,
such as their functionality and formation mechanisms. Microscale structures are known to exist in most complex
networks (e.g., large number of triangles or motifs), but they are absent in the simple random-graph models
considered (e.g., as null models) in community-detection algorithms. In this paper we investigate the effect of
microstructures on the appearance of communities in networks. We find that alone the presence of triangles leads
to the appearance of communities even in methods designed to avoid the detection of communities in random
networks. This shows that communities can emerge spontaneously from simple processes of motiff generation
happening at a microlevel. Our results are based on four widely used community-detection approaches (stochas-
tic block model, spectral method, modularity maximization, and the Infomap algorithm) and three different
generative network models (triadic closure, generalized configuration model, and random graphs with triangles).
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I. INTRODUCTION

A popular approach to understanding the macroscale or-
ganization of complex networks is to consider their division
into mesoscale communities of nodes. Communities are of-
ten defined as groups of nodes that are densely connected
within each group but with fewer links between groups, al-
though more general definitions exist [1]. The problem of de-
tecting communities in networks has received great attention
in the last few decades, with many methods and applications
across sociology, biology, and computer science [2,3].

The proposed approaches to identify communities in net-
works have different partitioning strategies as well as different
topological requirements for the definition of a community,
resulting in different methods often detecting different com-
munities in the same network. A fundamental challenge faced
by all methods is how to account for (random) fluctuations in
the connectivity pattern across nodes. For instance, a strong
limitation of the popular modularity maximization approach
[4] is that it detects communities even in Erdös-Renyi random
graphs [5] (despite accounting for links due to random chance
in the definition of modularity [4,6]). This limitation can be
overcome when communities are inferred from an underlying
generative model, such as the stochastic block model (SBM)
[7]. However, the random-graph models used for compar-
isons in these developments are extremely simple and lack
microscale structures known to exist in real networks, such
as a positive clustering coefficient or disproportional number
of small subgraphs (motifs).

Another crucial question is how the community detection
results are related to the generative process of those networks
[3]. The observation of communities in a network are often
implicitly associated to the existence of an underlying rela-
tionship between the nodes, that influenced the formation of
the network and was responsible for the appearance of the
community (e.g., communities in social networks are assumed
to reflect some underlying identity between the individuals of

a community). This association is far from necessary because
complex macroscale structures often emerge spontaneously
from simple microscale interactions, as observed in multiple
examples studied in Complex Systems and Statistical Physics
(e.g., collective motion and self-organized criticality).

In this paper, we investigate the effect of triangles on the
appearance of communities in networks. This is a further step
in the more general exploration [8–10] between the effect of
microscale structures—whose origin require only local infor-
mation and are usually more easily explained—on mesoscale
structures such as the communities found using different
algorithms. Our conjecture is that observed communities in
many real networks are an emergent property of microscale
processes. Our paper demonstrates through the analysis of
simple models how this indeed happens. Differently from
Refs. [8–10], we use a variety of community-detection meth-
ods, including methods that are robust against the detection of
communities in random networks. This is essential to isolate
the effect of triangles from the effect of random fluctuations
on the formation of communities.

In the next section we describe the different models we
consider to generate networks with a tunable clustering coef-
ficient (number of triangles). We then describe the outcome of
four different community detection methods on these models,
showing the effect of triangles on the communities. We then
discuss in further detail our main numerical finding, a phase
transition for the number of communities found using an SBM
inference-based method. Finally, we summarize our results
and discuss their implications. Codes used in our analysis are
available in Ref. [11].

II. GENERATING NETWORKS WITH CLUSTERING

In this section we discuss how we generate networks with
a tunable amount of triangles. We are interested in simple
graphs of N nodes defined by the adjacency matrix A = {ai, j},
where ai, j = 1 if there is a link between nodes i and j and
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ai, j = 0 otherwise. A triangle exists between nodes i, j, and k
if ai, j = a j,k = ak,i = 1. The density of triangles in a network
can be quantified by the (global) clustering coefficient

C = 3 × N�
N3

, (1)

where N� is the total number of triangles in the network, and
N3 = ∑N

i=1

(ki

2

)
is the number of connected triples (where ki =∑N

j=1 ai, j is the degree of node i). The clustering coefficient
Eq. (1) is thus a proxy for the number of triangles, the
quantity we wish to vary. We focus on triangles because of
their simplicity, their simple interpretation within the context
of real networks, and the fact that many real networks with
community structure, particularly social networks, also have
high clustering coefficients [8,12]. In fact, the allegoric rep-
resentation of triangles in social networks—“friends of my
friends are also my friends”—is also a likely explanation for
the process of generating communities (friendship groups).

To support our claims and assess the effect of triangles
on the appearance of communities, we generate networks
with tunable clustering coefficient Eq. (1), then apply four
widely used community detection methods to these gener-
ated networks. We are interested in models for which we
can increase the number of nodes N for a fixed average
degree 〈k〉 = 1

N

∑N
i=1 ki (sparse network) and tune the clus-

tering coefficient from 0 to a Cmax > 0. Considering these
constraints we generate networks from three different gen-
erative models: (i) the triadic closure model [9] in which
nodes are added to the network in such a way that new
links form triangles with probability p; (ii) an extension of
the traditional configuration model that includes triangles
[13,14]; and (iii) k-regular graphs with a fixed number of
triangles (random network with triangles) [15]. The triadic
closure model is a growth model (nodes are added one by
one), whereas the other two generate networks of prede-
fined size N with certain constraints. More specifically, the
configuration model constrains the (joint) degree distribution
{ti, si} for the number of triangles and independent edges of
each node i, while the random network with triangles model
imposes the total number of triangles in the network as a hard
constraint. Further details on these models can be found in
Appendix A.

The networks generated by our three models are sparse
networks [i.e., the actual number of links is much smaller
than the maximum possible number N (N − 1)/2], which is
a characteristic of most real networks and those generally
used in community detection problems. As noted in Ref. [9],
for networks generated by the triadic closure model, groups
of nodes become densely connected with triangles as the
network grows. In fact for all three of our generative models
we expect regions highly concentrated with triangles to create
inhomogeneities in the network structure that are detected as
communities.

III. COMMUNITIES IN NETWORKS WITH CLUSTERING

To mimic the usual application of community detec-
tion methods in observed networks, we focus on standard
community-detection methods and do not use any information

TABLE I. Community-detection algorithms used in our analysis
(see Appendix B for details).

Label Journal (code) reference

Modularity maximization Clauset et al. [20] ([21])
Infomap Rosvall et al. [22] ([23])
Spectral (Bethe Hessian) Saade et al. [24] ([25])
SBM (uninformative priors) Peixoto et al. [26] ([27])

about which of the three generative processes described above
were used to generate the networks. Differently from previous
works [1], our goal is not to evaluate the performance of the
different algorithms, but instead we treat the communities
found in each algorithm as given, we analyze them and
compare the outcomes of different methods. This approach
of using different methods is further motivated by the No Free
Lunch Theorem [16], which stipulates that there is a trade-off
on algorithm performance, such that no one method is best for
all types of networks.

Our choice of community detection algorithms is guided
by the reviews of Fortunato [3] and Ghasemian et al. [17], as
well as the practical concern of code availability. This led us
to consider four methods, listed in Table I and summarized in
Appendix B. These methods cover the most popular classes of
methods discussed in Ref. [17].

As a first assessment of how the presence of triangles leads
to the detection of communities in a network, we investi-
gate the two most contrasting scenarios: networks with low
clustering C ≈ 0 and high clustering C = Cmax. Considering
only the triadic closure model as a generative process for
now, we generate networks with C ≈ 0 (zero probability of
closing triangles, p = 0) and with C = Cmax ≈ 0.25 (obtained
for p = 1), then apply the four detection algorithms described
above on the resulting networks. We are interested in inves-
tigating the relationship between the number of communities
Nc and the network size N . Our results in Fig. 1 show that
for networks with low clustering, only the SBM and spectral
methods result in a single detected community (the whole
network). The low-clustering case is similar to simple random
networks and our result thus reflect the robustness of these
two methods to random fluctuations (consistent with previous
findings for the SBM [7]). In contrast, the two other methods
(Infomap and Modularity) detect a number of communities
Nc that grows with N . As far as high clustering is present in
the network, all compared methods behave similarly and Nc

grows with N , but with different growth scales. Interestingly,
both the SBM and Modularity methods show similar Nc that
grows as

√
N . This scaling reflects the resolution limit of

these methods [18,19] and thus corresponds to the maximum
number of detectable communities these methods are able to
detect in the (sparse) networks generated by the triadic closure
model. Such a growth indicates that for N → ∞ both the
number of communities and the (average) number of nodes in
each community diverge, suggesting that these communities
are indeed mesoscale structures: more than a fixed number
of nodes (the microscale) but less than the network as a
whole (the macroscale). In contrast, when the number of
communities grows as N (as our numerical results suggest for
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FIG. 1. Triangles affect the number of communities. The number of detected communities Nc as a function of the size of the networks
N (number of nodes) for the triadic closure model with (a) p = 0 (low clustering) and (b) p = 1 (high clustering), for the four community
detection algorithms. The insets show a sample network obtained in each of the cases for N = 500. Error bars were computed over an ensemble
of 5 different networks. The scaling lines show that, in the high clustering case, Nc scales roughly linearly with N for the Spectral and Infomap
methods, and Nc scales as approximately

√
N for the Modularity and SBM methods.

the spectral and Infomap cases), the number of nodes in each
community remains a constant for N → ∞.

The similarity of the scaling of the SBM and modularity
methods in the case of high clustering, raises the question
whether not only the number but also the communities them-
selves are the same. This is investigated in Fig. 2, which
shows that the communities themselves are very similar to
each other. In particular, the adjusted mutual information
[28]—for which 0 indicates no significant similarity and
1 indicates identical communities—between the modularity
and SBM is ≈0.8 for large networks (N > 500). While the
comparison between the other methods leads to less similar
results, as expected by the different scalings in the number of
communities, all of them are statistically significant different
from 0 (p-value <10−3). This happens because the triangles
tend to concentrate at the cores of the emerging clusters, with
the nodes connected by a triangle belonging predominantly to
the same communities and different communities being less
connected to each other. This picture is seen in the networks
shown in Fig. 2. This matches the intuition discussed in the
previous section, where we assume that inhomogeneities in
the network structure caused by dense clusters of triangles
give rise to communities.

To deepen our investigation on the dependence of com-
munities on the clustering coefficient C, we explore the re-
lationship between the number of communities Nc on smooth
variations of C, from C = 0 to C = Cmax for all three gen-
erative network models described in Sec. II. The results in
Fig. 3 show that all three cases lead to qualitatively equivalent
results, corroborating our claim that the effects we describe
here are driven by the existence of triangles, and not by
idiosyncratic properties of specific network ensembles. In

terms of community detection methods, we find that the two
methods that report the existence of communities for C = 0
(modularity and Infomap) naturally show a smaller depen-
dence on C: the modularity method reports an increasing
number of communities as a function of C, while Infomap is
roughly stable. In contrast, the two methods that do not report
the existence of communities for C = 0 (spectral and SBM)
show a starker (and different) dependence on C: while for the
spectral method the number of communities grows smoothly
from C = 0 on, the SBM method shows a single community
for low values of C until a critical (model dependent) value
C = C∗ for which multiple communities are found. This
transition is further investigated in the next section.

IV. CLUSTERING TRANSITION IN THE SBM

We now explore the abrupt transition observed in Fig. 3
for the SBM method: from a single community for C < C∗
to a large number of communities (Nc ∼ √

N) for C > C∗.
For simplicity, we discuss only the triadic closure model in
this section, since similar results are observed for the other
two models. We vary the probability of closing triangles p
in the range p ∈ [0, 1], which generates networks with C ∈
[0, 0.25] (see Appendix A for the definition of the triadic
closure model). In Fig. 4 we show results for increasing
network sizes N—after rescaling the number of communities
by

√
N (the scaling observed in Fig. 1)—which confirm an

increasingly sharp (first order) transition accumulating around
the critical point p∗ ≈ 0.5 (C∗ ≈ 0.15). Phase transitions in
SBMs, and in community detection methods more generally,
have recently been found to describe the transition between
detectable and non-detectable regimes [18,29–33]. In this
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FIG. 2. Different methods identify similar communities for the clustered model. (Left) Plots of networks generated by the triadic closure
model with p = 1, with communities obtained using the SBM and modularity maximization methods. The inset emphasizes that triangles
are inside communities. (Right) adjusted mutual information between the results of the different methods for various network sizes N . The
adjusted mutual information [28] quantifies the similarity between the communities and varies between 0 (completely different communities)
and 1 (identical communities), with 0 indicating the overlap between communities expected by chance.

section we further explore the clustering transition we found
in the SBM, establishing its relationship to the detectability
transition investigated previously.

The detectability transition reflects the fact that community
detection methods are able to retrieve partitions planted in
the data only if the planted partitions are sufficiently strong

FIG. 3. Dependence of the number of communities Nc in networks with clustering coefficient C. Each curve corresponds to a different
community detection method (see legend and Appendix B). Each panel shows the results for a different network model: (a) triadic closure
model with N = 10 000 and p ∈ [0, 1]; (b) the configuration model with N = 10 000; and (c) the random graph with triangles with N = 80.
The points (error bars) correspond to averages (standard deviation) across five different networks (realizations of the network model).
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FIG. 4. Phase transition in SBM. (a) The scaled number of com-
munities Nc√

N
for networks generated by the triadic closure model with

varying probability p of closing triangles and different number of
nodes N (see legend). As the network size N increases we observe a
sharper transition, accumulating around the critical probability p∗ ≈
0.5 (C∗ ≈ 0.15). The dashed (black) line corresponds to the results of
the hierarchical SBM method [7,27]. (b) The detectability condition
d (p)—Eq. (4)—plotted as a function of p, averaged across 5 trials
of N = 10 000 triadic closure networks. Since there is some noise
in the data around the critical value d (p) = 0 (due to the algorithm
detecting one large community and a few small communities near
the threshold), we fit a line of best fit to the portion of the curve
with d (p) > 0 and extrapolate to d (p) = 0. This obtains an estimate
(red point) for the critical value p∗, which agrees with the the critical
value observed in panel (a).

(e.g., many more links within communities than across com-
munities). The previous works on detectability transitions
considered a simplified model (symmetric SBM [33]) for
which the r = 1, . . . , Nc blocks (communities) have the same
number of nodes m = N/Nc and the probability of edges
between nodes in group r and s is given by pI if r = s and
pE if r �= s. An assortative community structure is detectable
only when pI 
 pE (links internal to the communities are
much more probable thanks external links). More precisely,
the Nc symmetric communities used as a planted partition (of
a network with average degree 〈k〉) can be detected only if
(see Ref. [30] and Appendix C)

ε ≡ pE

pI
<

√〈k〉 − 1√〈k〉 − 1 + Nc
≡ ε∗, (2)

where ε∗ is a critical value.
While the existence of a regime in which (planted) commu-

nities are undetectable has been shown to exist regardless of
the community detection method [29,30], the characteristics
of the transition to the detectable regime depend on the
specific method. For the main SBM method we use here,
which considers a Bayesian setting with uninformative priors
for the number of communities Nc, the detectability transition

has been studied in Ref. [18]. The quantity we are interested
here is the number of communities Nc, which in this SBM
method is determined by minimizing the description length
� = S + L, where S is the entropy of the fitted model and
L is the amount of information necessary to describe the
model itself. Differently from the fundamental detectability
limit discussed in Refs. [29,30], the transition we observe
here corresponds to a transition from � > � | Nc=1 (single
community Nc = 1) to � < � | Nc=1 (Nc > 1). In Ref. [18] it
has been analytically derived (for E 
 N2

c ) that this happens
when the generated (planted) SBM network satisfies

〈k〉 >
2 ln Nc

I , (3)

where I = 1
2E

∑
rs ers ln (2E · ers

er es
), ers is number of edges

between nodes in blocks r and s, er = ∑
s ers, and E is the

total number of edges in the network.
We now argue that condition Eq. (3) describes also the

clustering transition we observed. Since our networks were
not generated from an SBM planted partition model, we can
only compute I above using the inferred SBM model and
check if the inequality is satisfied for these cases. We define

d (p) ≡ 〈k〉 − 2 ln Nc

I , (4)

where I and Nc are computed for the SBM model obtained
fitting a network with clustering C. Condition Eq. (3) corre-
sponds to d (p) > 0. In the bottom panel of Fig. 4 we show
the results obtained for networks generated from the triadic
closure model. We find that d (p) > 0 for all p > p∗ and
that d (p) → 0+ for p → p∗

+. This quantitatively connects the
phase transition we found to the detectability transition re-
ported previously. In this connection, the clustering coefficient
(in our network models) plays the role of the strength of the
communities (pI 
 pE in the planted SBM models). This is
in agreement with the intuition that clustering is related to the
probability of intracommunity versus inter-community links
and further supports our view that clustering is a driving factor
for the appearance of communities in networks.

The results above are specific to the SBM method we use
here. We now investigate whether the clustering transition
appears also for other community-detection methods based
on the stochastic block model. In particular, a hierarchical
generalization of the SBM method (hSBM) has been proposed
and shown to overcome the detectability limit of the method
we use (which was responsible for the Nc ∼ √

N scaling
we observe) [7]. Applying this hSBM method to networks
generated from the triadic closure model, we observe (dashed
line in Fig. 4) a phase transition at the same critical value
C∗ (for C > C∗ a larger number of communities Nc ∼ N
is found). This confirms the robustness of the clustering
transition we found, which appears at the same critical value
p∗ also in an improved SBM (which overcomes previous
detectability limits and is thus more robust against over and
under-fitting [7]).

Further analytical insights on the clustering transition,
including an estimation of C∗, can be obtained considering
the symmetric SBM discussed above. This SBM is a good
approximation of the SBM we obtain fitting our networks,
e.g., for the C ≈ 0.25 (p = 1) case we obtain on average
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(standard deviation) for networks of size N = 10 000:
n ≡ N/Nc = 190(59), pI = 0.037(0.002), and pE =
0.000 02(0.000 001). In order to connect the symmetric SBM
to the triadic-closure model, we consider that the triangles
in the network (responsible for C > 0) always involve nodes
of the same community. This is justified by our results
that show that communities are precisely created by these
triangles. Using this simplifying assumption, we can compute
(see Appendix D) that Nc symmetric SBM communities will
be detected in the triadic closure model only if

p > p∗ = 1 − ε∗

ε∗(Nc − 1) + 1
= 1√〈k〉 , (5)

where p is the probability of a link closing a triangle and
ε∗ is defined in Eq. (2). This means that, regardless of the
number of (symmetric) communities Nc, detectability is ex-
pected only if the probability of a link closing a triangle is
larger than 1/

√〈k〉. In the cases studied numerically above,
〈k〉 = 4 and thus p∗ = 0.5 (which corresponds to networks
with C ≈ 0.151), in good agreement with the critical values
observed numerically in Figs. 3 and 4.

Finally, we discuss what distinguishes the clustering tran-
sition we found from the detectability transition reported pre-
viously. The main difference is that the networks we analyze
are not generated from an SBM model, as in the usual analysis
of detectability transitions. The consequences of this can be
best seen by considering what are the properties of the original
network that are reproduced by the fitted SBM model. SBM
preserves the number of nodes and edges (and thus 〈k〉), but
it fails to reproduce the clustering coefficient C of the original
network. For instance, for the maximum clustered network
obtained for the triadic closure model (C ≈ 0.25 obtained
for p = 1), the fitted SBM model shows C = 0.06 for N =
2000 (with Nc = 22 communities found) or C = 0.03 for
N = 10 000 (with Nc = 54). The vanishingly small clustering
coefficient of the fitted SBM model reflects the fact that within
each community the SBM can be viewed as a usual random
graph and the number of nodes in each community grows
as n = N/Nc ∼ √

N (because Nc ∼ √
N). In fact, C → 0 for

N → ∞ for the symmetric SBM model in the sparse regime
considered here (as shown in Appendix C). It is thus essential
to take into account that within each community the SBM
does not provide a good description of the networks we are an-
alyzing. More generally, the clustering transition we observe
is induced by a different process (the clustering coefficient or
number of triangles) than the detectability transition observed
previously for planted (symmetric) SBMs, providing a novel
result in the context of community detectability.

V. DISCUSSION AND CONCLUSION

In summary, we have investigated the relationship between
the clustering coefficient and the number of communities in
complex networks. We found that clustering is a mechanism
for the creation of communities and that networks that grow
following rules at a micro-level (e.g., to close triangles)
display an emergent appearance of mesoscale structures. The
communities we found using four different community detec-
tion algorithms show many similarities (are assortative with
similar partitions), further supporting the idea of the existence

of communities in networks with clustering. We found com-
munities even in methods that do not detect communities in
(unclustered) random networks, such as the spectral and SBM
methods we use. From the point of view of these methods, our
results show that more sophisticated assumptions are needed
in case one wants to robustly detect communities that are
intrinsically independent from the clustering coefficient.

Our main numerical finding is that the number of com-
munities found by inferring an SBM shows a transition from
a single community to multiple communities at a critical
clustering coefficient C∗. Relating this to previous work on the
detectability of communities we find that this phase transition
shows similar scalings but also differences, as the fitted SBM
models do not reproduce the high clustering found in the
original networks.

Our results demonstrate that communities in networks
appear even when the generative process of the network is
based on only local information, such as the process of closing
triangles. This result is in agreement with the findings of
Refs. [8,9]. Our results go beyond these previous findings
because we considered a wider class of network models and
community detection methods. In fact, the previous works
focused on modularity [8,9] and the Infomap method [9]
which are now known to be problematic in the detection
of the number of communities because of their tendency to
find communities even in random networks. Our finding that
triangles induce communities also in methods robust to such
random fluctuations (SBM and spectral), is thus essential to
connect these micro-structures to communities. Interesting
future lines of research include the generalization of these
findings to other types of motifs and attempts to quantify
the role of motifs in the communities found in real networks
(e.g., considering community detection methods based on
generative models that include clustering).
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APPENDIX A: NETWORK MODELS

a. The triadic closure model, adapted from the basic model
of Bianconi et al. [9], takes on three parameters; the number
of nodes in the network, N , the probability of triadic closure
p, and the number of links created with each new node, m. It
is a growth model, initialized with a small connected Erdös-
Rényi random network. At each time step, a new node is added
to the network with m links. The first link is attached to a
random node of the network. Any subsequent links follow the
triadic closure rule: with probability p, a link is made to a
node neighboring a node already connected to the new node,
thus closing a triangle. With probability 1 − p, a link is chosen
at random from any node not already connected to the new
node. This process continues until the network is grown to
the desired size N . As p increases, the density of triangles in
the network increases, implying that the parameter p can be
viewed as a tuning mechanism for the clustering coefficient of
the network. We use m = 2 and p ∈ [0, 1].
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b. The configuration model is extended from the version
developed by Newman [13] and Miller [14]. It generates
networks with a given joint degree sequence {ti, si}, with ti
representing the number of triangles in which node i features,
and si representing the number of additional edges of node
i not belonging to these triangles. In our version of the
algorithm, the joint degree sequence follows a doubly Poisson
distribution,

pst = e−μ μs

s!
e−ν νt

t!
, (A1)

where ν is the average number of triangles per node and μ is
the average number of independent edges per node. Following
the method outlined by Ref. [13], this distribution leads to an
analytical derivation of the global clustering coefficient

C = 2ν

2ν + (μ + 2ν)2
, (A2)

with an upper bound given by Cmax = 1
1+〈k〉 , where 〈k〉 =

μ + 2ν is the average degree of the network. We can therefore
generate networks with a given C by setting μ and ν for a fixed
value of 〈k〉 and sampling from Eq. (A1).

c. Random network with triangles considers the ensemble
of networks with a fixed degree sequence (in our case all nodes
have degree k = 4) and a fixed number of triangles N�. We
sample networks from this ensemble using the multicanonical
sampling method of Fischer et al. [15], which is essential to
ensure that the sampled networks are a random choice (over
all possibilities in the ensemble) and are also independent
from the sampled networks with different N�.

APPENDIX B: COMMUNITY-DETECTION METHODS

a. The modularity method identifies the partition of the net-
work that maximizes the Newman-Girvan modularity func-
tion [20]. Our chosen algorithm implements the Newman
method for identifying the optimal partition with respect to the
modularity (quality) function, which is initialized by assign-
ing each node to its own community. At each step, the algo-
rithm inspects each community pair (connected by at least one
link) and joins the pair that achieves the greatest increase in
modularity. This process is repeated until no further increase
in the modularity function is achievable, with the resulting
partition determining both the number of communities and
assignment of nodes into communities.

b. The Infomap method follows a similar process (specif-
ically, using the Louvain method), but instead the goal is to
minimize the map equation [22]. The map equation offers an
information-theoretic approach to community detection.

c. The spectral method we have chosen utilizes the spectral
properties of the Bethe Hessian matrix [24]. The number
of communities corresponds to the total number of negative
eigenvalues, while the community partition is embedded in
the corresponding eigenvectors.

d. The SBM method we considered performs community
detection by inferring the parameters of a non-hierarchical
degree-corrected stochastic block model (SBM) [26]. The
algorithm we choose uses a Markov chain Monte Carlo tech-
nique to infer the SBM parameters that maximize the posterior
distribution P(b|G) that an observed network G was generated

by a given partition b. Importantly, the model selection part
of the method can distinguish between statistically significant
community structure and randomness, to avoid overfitting the
number of communities.

APPENDIX C: SYMMETRIC SBM MODEL

The simplified SBM model we consider has Nc identical
blocks with fixed block size n = N/Nc. The within block
probability of links is pI and the across block probability is
pE , identical to all blocks. We are interested in the case of
fixed average degree

〈k〉 = npI + (N − n)pE = N

Nc
[pI + pE (Nc − 1)]. (C1)

a. Detectability transition. Following Ref. [30], the planted
transition is detectable if

|N pI − N pE | > Nc

√
〈k〉.

Combining this result with Eq. (C1) we retrieve Eq. (2).
b. Clustering. The (average) clustering coefficient is de-

fined as

C̃ = 1

N

N∑
i=1

Ci, where Ci = 2�i

ki(ki − 1)
, (C2)

where ki is the degree of node i and �i is the number of trian-
gles containing node i. We now estimate C̃ for the symmetric
SBM model. First, we approximate ki by 〈k〉. Next, consider
a triangle containing i, as well as two other nodes j and k.
To determine �i, we consider four cases: either i, j, and k
are in the same block [contributing p3

I (n − 1)(n − 2) ≡ �a

triangles], i and j (i and k) are in the same block but k ( j) is
in a different block [contributing pI p2

E (n − 1)(N − n) ≡ �b

triangles], j and k are in the same block but i is in a different
block [contributing p2

E pI (N − n)(n − 1) ≡ �c triangles], or
i, j, and k are all in distinct blocks [contributing p3

E (N −
n)(N − n − 1) triangles]. Combining this with the simplifying
assumption that Ci is the same for all nodes i, we obtain

C̃ ≈ 2(�a + �b + �c)

〈k〉(〈k〉 − 1)
. (C3)

From Fig. 1 we know that n = N/Nc ∼ √
N . Since 〈k〉 is fixed

for all N—sparse network, see Eq. (C1)—it follows that pI ∼
1/n ∼ 1/

√
N and pE ∼ 1/N . Considering these scalings, we

see that �a,b,c → 0 when N → 0 and thus C̃ → 0 for N → 0
in Eq. (C3).

APPENDIX D: TRANSITION IN THE TRIADIC
CLOSURE MODEL

We assume that a symmetric SBM model with Nc commu-
nities is used to describe the network obtained by the triadic
closure model defined in Appendix A. In the triadic closure
model, nodes have typically ki = 〈k〉 = 2m links and links
close triangles with a fixed probability p. Each link will be
internal to the community of the given node either if it closes a
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triangle (with probability p) or (with probability 1 − p) if it is
connected by chance to a node of the same community (prob-
ability 1/Nc, assuming the existence of Nc symmetric groups).
The total probability of being internal is thus p + (1 − p)/Nc.
The expected number of links internal to the same group of
the node is eI = 2m[p + (1 − p)/Nc] and the number of links
external to the group is eE = 2m(1 − p)Nc/(Nc − 1) (such
that eI + eE = 2m = 〈k〉). The symmetric SBM probabilities

are computed dividing the expected number of links of the
node by the number of nodes in each group as pI = eI/n and
pE = eE/[n(Nc − 1)], thus leading to

ε ≡ pE

pI
= 1 − p

pNc + 1 − p
, (D1)

which is independent of m. Introducing Eq. (D1) in Eq. (2) we
obtain Eq. (5).
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