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STATISTICAL MECHANICS AND THE
PARTITION OF NUMBERS

II. THE FORM OF CRYSTAL SURFACES

BY H. N. V. TEMPERLEY

Received 24 September 1951; and in revised form 1 June 1952

ABSTRACT. The classical theory of partition of numbers is applied to the problem of deter-
mining the equilibrium profile of a simple cubic crystal. I t is concluded that it may be thermo-
dynamically profitable for the surface to be 'saw-toothed' rather than flat, the extra entropy
associated with such an arrangement compensating for the additional surface energy. For both
a two- and a three-dimensional ' saw-tooth' the extra entropy varies, to a first approximation,
in the same way as the surface energy, i.e. is proportional to Ni or N$ respectively, where N is
the number of molecules in a 'tooth'. For the simple cubic lattice, the entropy associated with
the formation of a tooth containing N atoms is estimated to be 3-3fcNt. I t is also possible to
estimate the variation of the 'equilibrium roughness' of a crystal with temperature, if its
surface energy is known.

1. Introduction. In a previous paper (9), a study was made of the phenomenon of
'Bose-Einstein condensation', and it was concluded that considerable care has to be
taken in using the Fowler-Darwin saddle-point method of integration by steepest
descents for the evaluation of the low-temperature thermodynamic properties of any
assembly of particles obeying Bose statistics. However, the only model for which
really firm conclusions could be drawn was one in which the energy-levels are equally
spaced, and it has recently become clear (C. B. Haselgrove and H. N. V. Temperley—
unpublished) that the conclusions are, in some respects, special to that model, which
does not really represent any actual physical situation. (It can be made to correspond
very roughly to a two-dimensional perfect gas, but here orthodox theory does not
predict a sharp 'condensation' phenomenon in any case.)

However, the equally spaced model can be handled very much more easily than any
other from the point of view of partition theory, both by 'elementary' algebraical
methods (see (7)) and also by the analytic (contour-integral) approach. For almost
any other spacing of levels the analytic method becomes very much more complicated,
requiring extremely heavy analysis (see, for example, Wright (10), Haselgrove and
Temperley (unpublished)), while the algebraic method becomes almost unusable. It
therefore occurred to the writer to examine whether any further physical applications
of the very ingenious ' classical' work on partitions were possible.

One is thus led to a discussion of the form assumed by a growing crystal, the growth
being supposed slow enough for each configuration to be one of approximate statistical
equilibrium. If we imagine the crystal built up molecule by molecule, it is a fair
approximation to assume that the binding energy of each molecule is the same. This
assumption is not quite correct, of course, and has eventually to be corrected by
introducing a surface energy. Thus we are describing a crystal by an internal energy
proportional to its mass, and a surface energy, which is a good approximation for
a macroscopic body, or a piece of crystal containing many molecules.

44-2



684 H. N. V. TEMPEKLEY

We consider two problems:
(a) The equilibrium shape to be expected if a cubic crystal is grown in the space

between two or three walls at right angles.
(b) The explanation of the 'saw-tooth' pattern, with 'teeth' of height equal to

several hundred Angstroms, that seems to be characteristic of a real crystal. Such
a surface, resembling in profile the surface of the sea with icebergs floating in it, is
usually called 'molecularly rough'.

1

•N, -** N2- x N,-

V/////////////77///7///7//7Z
Fig. 1.

We first consider the two-dimensional versions of these problems, the three-dimen-
sional cases being more complicated. We imagine that each atom is represented by
a cubical 'brick'. In the three-dimensional version of problem (a), we assume that,
as each ' brick' is added, it can only go into a position where it will touch, along faces,
three others already there. In the two-dimensional case, we fix our attention on
a particular section of the crystal, one molecule thick, and this is built up on the basis
that each 'brick', as it is added, touches two others along faces. Contact with a wall
is reckoned equivalent to contact with a neighbour, so that, in problem (a), the first
cube must go into the angle between the two walls, and the next one in one of the two
neighbouring positions and so on (Fig. 1). We assume the interaction energy pro-
portional to the number of cubes, which is very nearly correct as long as the above rules
for building up the crystal are complied with, because each molecule, as it is added,
has exactly three nearest neighbours. A surface built up according to these rules must
be molecularly smooth, but can be curved. In the three-dimensional version of
problem (6), we consider a crystal that is being built up on a plane substrate. We
abandon the assumption that each ' brick' must touch three others when it is added,
and this permits the surface to become molecularly rough, gaps in the successive layers
enabling isolated ' teeth' to appear (Fig. 2). The loss of interaction energy arising from
the fact that the molecules on the surfaces of the iceberg-Uke portions have not their
proper number of neighbours can be allowed for by introducing extra surface
energy. On the assumption of statistical equilibrium, this is to be balanced against the
gain in entropy arising from allowing the surface to assume a 'saw-tooth' pattern
rather than being nearly flat. In the two-dimensional version of this problem this gain
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in entropy will be found to be proportional to iVJ, where JV is the number of molecules
in a plane section of a ' tooth', and the extra surface energy required to form a ' tooth'
is also proportional to Ni. In three dimensions, a result of MacMahon's enables us to
prove that the gain in entropy associated with the formation of a 'tooth' containing
N atoms is proportional to N$ and to evaluate the numerical factor, while the extra
surface energy is also proportional to this. These results appear to mean that a given
shape of 'saw-tooth' profile becomes thermodynamically profitable above a tem-
perature at which the entropy gain balances the loss in surface energy. A calculation
of the' most probable' number of atoms to be expected in each' tooth' has not yet been
found possible.

Fig. 2.

2. Problem (a). The build-up of a crystal between two or three walls at right angles.
In the two-dimensional version of this problem, we consider the two walls to be along
the X and Y axes, and ask for the number of ways in which N ' bricks' can be packed
into the first quadrant, subject to the condition that each must, when it is added, make
two contacts along faces. This means that, if we count the number of bricks in each
column, starting from the origin, the number must not increase as we proceed along
the X axis, though it is permissible for two neighbouring columns to contain equal
numbers. Thus, what we seek is simply the number of ways in which N may be
represented by a Ferrers graph (Fig. 1), which is shown ((7), chap. 1) to be simply the
coefficient of zN in the enumerating generating function, f(z), defined as follows:

For large N, it is known (6) that this coefficient p(N) is given asymptotically by
12n*N ...

; e x P . / ^ - ' <2>

which leads to an entropy asymptotically equal to hn{\)*N* (the exponential factor
in. p(N) being the only significant one for large N). Further, if the method of steepest
descents is applied, which the author has shown in (9) to be legitimate for this generating
function, the statistical average number of columns containing r atoms is, by the

— 6T

general method of statistical mechanics, Nr = j^jr, where 6 is the critical value of

z determined by N = 2 y ^ s . = d^\ogf{d). The asymptotic form of f{6), when N\s
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large and 6 consequently nearly equal to unity, can be shown ((5), chap. 8) to be
/ n2 \

f(8) ~ exp I ——-=• I, and we can easily extend the argument to give the following

relation between N and 6: „ n2 6
"6 {i-ey ( )

Since Nr is known as a function of r, -we can compute the equilibrium profile of the
crystal, for r represents the height of a column, that is, the y coordinate (measured in
cube-sides) of a point on the surface of the crystal, while Nr represents the number of

V

M
Fig. 3.

cube sides that one has to travel along the x axis for y to increase or decrease by unity

(see Fig. 1). This gives us, for r and Nr large, r = y and -^-x — i=-x ft , which can be

integrated to give xlog# — log(l — 6V) = constant, which has to be taken equal to
zero in order to get an equation symmetrical in x and y, which equation is

0*4-0" = 1 . (4)
Theoretically, this curve is asymptotic to the coordinate axes; in practice values of
x and y less than unity are not of physical interest. From (3) and (4) we have:

For y = 1; x x / (-^-^) N* log N (the length of each wall covered by the crystal),

2* log 2
/A7V7U (shortest distance from the origin to theIT

For y = x; (x2 + w2)*

crystal surface).
(5)

These are rather artificial conditions, for we suppose that the binding energy between
a molecule and a wall is precisely the same as that between two molecules. This model
represents what might be expected if a crystal with a re-entrant angle is allowed to
grow. The first stage (Fig. 3) represents the turning of the sharp re-entrant angle into
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a concave depression. Equations (l)-(5) continue to describe the situation until the
new growth extends to the limits of the re-entrant angle (Fig. 4). After this, the process
can be followed further if we replace the generating function (1), which enumerates
partitions unrestricted both in number and size of parts, by one enumerating partitions
for which: (a) no part is larger than M, (6) no partition may contain more than
M separate parts, M being the length of the arms of the re-entrant angle (measured in
lattice distances). This function is known to be

9M(Z) = (6)

Fig. 4.

This well-known result can best be proved in the following way. The number of
partitions of N satisfying requirement (a) is the coefficient of zN in

(1+z + z2+ z3+ ...)(l+z2 + zi + zs+...)... (I+zM + z2M + z3M+...)

or — — JJT — JJ-, which is the same generating function as/(z) except that
( 1 — Zj ( 1 — 2 ) . . . ( 1 — 2 )

factors beyond 1 — zM are omitted. If, further, we require that there are to be exactly

M parts, we require the coefficient of xMzN in — r-r; ^ — JT-. , and if there
( 1 — xz) (1 — xz2)... (1 — xzM)

are to be M or less parts, we require the coefficient of xMzN in
1

This generating function in two variables can be dealt with by the familiar technique
used in (9) (expanding it in ascending powers of x, and deriving a recurrence relation
between the coefficients by replacing x by xz), which leads to expression (6). This
generating function is a polynomial, its highest term being zM2, and can therefore
safely be dealt with by the method of steepest descents, provided of course that N is
significantly less than M2, and, by processes similar to those used by Auluck and
Kothari (2), we conclude that the number of partitions in which both part magnitude
and number of parts must be less than M
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while for the other extreme case of N only slightly less than M2 we must replaced in
(7) by M2 — N. Comparing formula (7) with Auluck and Kothari's(2) formula (22)
for pM(N) (pN{v) in their notation), the number of partitions in which either restriction
(a) or restriction (b) is applied, whereas p'M{N) enumerates the partitions in which
both apply, we see that

p(N)
(pM(N)y (M2>N),

a result that we should intuitively expect, the effect on the entropy of both restrictions
acting together being double that of either of them separately. In spite of the fact that
the generating function tor p'M(N) has been much studied (see, for example, (7)), the
writer believes that asymptotic formulae such as (7) have not been deduced before.

Fig. 5.

We can also deduce results of physical interest by a very simple argument based on
symmetry considerations. In Fig. 5 the crosses, arranged in a Ferrers graph neither of
whose dimensions may be greater than M, can be fitted into the bottom left-hand corner
of a square M x M, the vacant spaces in the square (noughts) forming another Ferrers
graph fitted into the top right-hand corner of the square. We thus conclude that
PM(N) = PM(M2 — N), and equation (4), representing the profile of the statistical
mean state, can apply either to the distribution of molecules when M2 > N or to the
distribution of vacancies in the upper corner of the square when M2 > M2 — N. The
statistical profile may be expected, by symmetry, to be plane when N = \M2, concave,
as has already been shown, when N < \M2, and therefore convex when N > \M2

(Figs. 3, 4). We can thus trace the successive stages by which a re-entrant angle is
filled up, and the tendency of crystals to form plane faces and convex corners is thus,
in part at least, accounted for by entropy considerations. It is, however, an observed
fact that the surfaces of crystals as grown are not exactly plane, but are molecularly
rough and possess ' saw-teeth' many molecular diameters high even when elaborate
polishing processes are used. This suggests that such a configuration shows a gain in
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free energy over a strictly plane face and may thus be the true equilibrium one to be
expected if the rate of growth is slow enough. We shall deduce below some further
partition formulae, which the author believes to be new, which seem to throw some
light on this question. The two-dimensional problem can actually be treated without
partition theory, as is shown in §5.

3. Problem (b). The growth of a crystal on a plane substrate. We relax the restrictions
made in formulating problem (a) in order to permit configurations such as that shown
in Fig. 2. Restricting ourselves for the present to the two-dimensional problem, we
suppose each ' tooth' built up of rows in such a way that there is no overhang, that is,
the bottom face of each cube must touch either the substrate or a cube in the row below.
Thus, two rows with the same number of cubes must go above one another, two rows
with n and n — 1 cubes can have a vacancy at either end of the upper row and can thus
be disposed in two ways, two rows differing in length by two cubes can have one
vacancy at each end of the upper row or both vacancies at one end, and can thus be
disposed in three ways, and, generally, two rows differing in length by r cubes can be
disposed in r + 1 ways. Thus we arrive at a new generalization of the linear partition
problem, for, to find the entropy associated with the formation of a ' tooth' containing
N atoms, we ask for the number of ways in which JV can be represented by a Ferrers
graph, but allow the rows to be slid over one another as long as this can be done without
overhang. (We do not consider cases where there are gaps in the rows, for a gap in any
row necessarily implies one in all the rows above it, and thus implies the formation
of another 'tooth', whereas we are considering the entropy associated with a single
'tooth'.)

The above definition enables us to determine the generating function if we specify
the length of the 'base' of a 'tooth', the base being the row of cubes nearest the
substrate. Let hT(z) be the generating function for a tooth whose base is definitely
known to be of length r. The row above the base may have any length from zero to r.
If it is also of length r, it can be fitted on to the base in only one way, and the molecules
above it themselves constitute a ' tooth' of base r, which is enumerated by the same
generating function hr(z). If the row above the base is of length (r— 1), it, and the
molecules above it, constitute a 'tooth' of base (r — 1), which can be fitted on to the
bottom row in two ways, and such ' teeth' are enumerated by the generating function
^r_i(z). We thus obtain the following expression for hr(z):

hr(z) = z\hr{z) + 2^_x(z) + 3hr_2(z) +... + 1], (8)
the outside factor zr occurring because there are necessarily r molecules in the base,
and the successive terms in the bracket enumerate the cases where there are r, r- 1,
r — 2,..., 0 molecules in the row above the base. The corresponding relationship for
ordinary partitions, in which we only recognize one way of placing the successive rows
on top of one another to form a Ferrers graph, is

/rW = ZU(Z) +/_!<*) +/r-2(2) + • • • + 1],
which is easily seen to be satisfied by the well-known expression enumerating partitions
into parts the largest of which is r,
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I have not succeeded in finding the general form of hr(z), though it can be calculated
from (8) for any specified value of r, the first four functions being

j. i \ z i / i z2(l+z) za(l+z)2

I t is, however, possible to obtain relatively simple expressions for the complete
00

generating function h(z) = 2 hr(
z) which enumerates arrangements of cubes to form

r=0

a ' tooth', without the length of the base being specified. We write (8) in the following
w a v : ho(z) = 1, (8a)

h1(z) = z + zh1(z), (86)
h2(z) = 22 + 2z*h1(z) +z*h2(z), . (8c)
hs(z) = z3 + 32^(2) + 2z3h2(z) + z3h3(z), {8d)
ht(z) = 24 + 42*^(2) + 324A2(2) + 2zih3(z) + z*ht{z). (8 e)

Summing the right-hand sides in columns, we get

h(Z) = T^- + 7 ^ ^ (Zh(z) + Z2h2(z) + Z3h3(Z) + . . . ) .

Multiplying equations (8 6), (8 c), (8 d),... respectively by z, z2, z3,..., and again summing
the right-hand side in columns, we get

1 — 2 (1 — Z )

and the series in brackets can be evaluated by multiplying (8 6), (8c), (8d),...
respectively by z2,24,z6,... and summing in columns as before. This process can be
continued indefinitely and we conclude that

1-2 (l-2)2(l-22) (l-2)2(l-22)2(l-23)

2 4

An alternative proof of this result can be given by means of Ferrers graphs, and this
provides an interesting interpretation of each of the terms in (10). Consider, for
example, the term with numerator 24, which we can factorize into

2^ 1

The first factor enumerates partitions into exactly four parts, while the second
enumerates partitions into three or less parts. Fig. 6 shows a typical arrangement of
molecules to form a ' tooth' of height four units, and the dotted line breaks up this
arrangement into two Ferrers graphs, the right-hand graph containing exactly four
parts, while the left-hand graph in this instance contains three parts, but might
equally well contain two or one. The possible graphs on the right-hand side of the
dotted line are enumerated by the first factor above, while those on the left-hand side
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are enumerated by the second factor. The two factors multiplied together thus
enumerate all possible combinations of two Ferrers graphs satisfying these conditions,
and thus al l ' teeth' of height four units. If we make the convention that the dotted
line is always to be drawn as far to the left as possible while the other conditions are
satisfied, then each 'tooth' can only be broken up into two graphs in one way, so that
each arrangement is counted exactly once. Summing over all possible heights of
'tooth', the result (10) follows, h(z) enumerating 'teeth' of which neither the height
nor the base is specified, while each term in (10) enumerates ' teeth' of a certain height.

XXX
XX-xxxxxxxxxxxxxxxxxxxxxxxxxxxx

Fig. 6.

For a ' tooth' of fairly large height, h, the generating function becomes practically
equal to zh[f(z)]2, where/(z) is defined by equation (1). The number of ways in which
a tooth containing N molecules (N > h) can be formed can be shown, by the method
of steepest descents, to be proportional to exp (2n*J$N), and the equilibrium profiles
of the two halves of the ' tooth' can be discussed by an extension of the argument
leading to equation (4), which remains correct if the x and y axes are taken to be
respectively along the substrate and along the dotted line in Fig. 6. 6 is, however, now

n2d
related to N by the equation N ~ — ^2 instead of by (3), because the generating

3(1—0)
function is approximately [/(z)]2 instead of/(z).

Expression (10) is not suitable for analytical work if the height of the 'tooth' is not
specified, but it is natural to suspect a close connexion between the generating function
h(z) and [/(z)]2. We prove in the appendix the relation

A(z)-l = [/(z)]2(z-z3 + z6-z1 0+. . . ) , (11)
the indices in (11) being the successive triangular numbers. The series in brackets
approaches the value \ as z->-1, and therefore has a negligible effect on the entropy

/ n2 \
resulting from a generating function containing /(z), which behaves like exp I— A

as z -*• 1, so that we can safely replace h(z) by [/(z)]2 for the purpose of calculating
entropies.

I t is of interest to compare numerically the gain in entropy due to the formation of
a 'tooth' with the probable value of surface energy loss. Suppose that a two-dimen-
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sional section of a ' tooth' consists of a rough triangle, containing N atoms, spaced
at a lattice distance 2 A., so that its height and semi-base are both of the order of
2Ni A. The entropy associated with the formation of such a section of a ' tooth' is

-7- kNi, where k is Boltzmann's constant. The increase of surface energy associated

with the formation of the section is approximately 8(̂ /2 — 1) ̂ /2 N* x 10~16 x 8, where
S is the surface energy in ergs/cm.2. If the crystal is formed at room temperature it is
thermodynamically profitable for such 'teeth' to form on a flat surface provided that
kT> 1-26 x 10~16#, which means that S must not exceed 300 ergs/cm.2. Physically,
the condition is that kT is comparable with the energy to remove one molecule.
Little is known of the surface energies of solids, but values of this order of magnitude
have been calculated, and experimentally verified, by M. M. Nicolson (unpublished).
However, he worked with the alkali halides and the oxides of the alkaline earths,
which have melting-points of the order of thousands of degrees. Nothing seems to be
known about the surface energy of a crystal in contact with a saturated solution, or
with its liquid at its melting-point.

4. The three-dimensional case. A result of MacMahon ((7), p. 241) enables one to
calculate the entropy associated with a crystal growing in a three-dimensional right-
angled corner, the molecules being placed according to the rules laid down for problem
(a) above (p. 685). By an extremely ingenious but very complicated argument he shows
that the generating function enumerating such arrangements (three-dimensional
Ferrers graphs) is

The entropy associated with the number of possible arrangements of N molecules
can be obtained (V. Nanda, unpublished) by the method of steepest descents,

2£/3)
the asymptotic form of the generating function as z -> 1 being , where £ is the

(!-z)
Riemann zeta function and the relation between N and 6, the position of the saddle-

point, being N~ ———g, and the corresponding entropy term is 3.2-*[£(3)]*&ZV*.

A.more precise result has already been obtained by Nanda (unpublished), who has
considered.the same generating function in a different physical context. The apparently
simple form of expression (12) suggests that a very simple derivation should be
possible, but this is an illusion, though Chaundy (3) has given a shorter derivation.
The problems of deriving an equation analogous to (4), and of determining the rigorous
generating function, appropriate to the three-dimensional version of problem (6),
seem likely to prove very difficult.

It does, however, seem possible to arrive at a reasonably accurate estimate of the
extra entropy associated with a three-dimensional 'tooth', containing N atoms, by
two independent arguments which give results that agree fairly closely. In the first
place consider a' tooth' in the form of a triangular prism of length 4p A., the base and
height of the triangle being 4p and 2pA. respectively. With a lattice spacing of 2 A.,
each triangular layer contains p2 molecules, and so is associated with an extra entropy
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—y£- by the two-dimensional theory given above. There are 2p layers, so that the
v^ 4)bra2

total number of atoms will be 2p3, and the total entropy —j£—. This suggests an
entropy of JcN* 4.3^71 or <L-5kN% in the three-dimensional case, on the assumption that
the typical three-dimensional' tooth' is not too far removed in shape from a wedge.
An error also arises from the fact that we have neglected the correlation between the
sizes of neighbouring triangular layers required by our assumptions, so this value is
probably an over-estimate.

A more reliable estimate can be obtained by modifying the figure 3.2-*[£(3)]*&2V*
that follows from MacMahon's generating function (12), and gives us a lower limit as it
enumerates just those three-dimensional ' teeth' which are bounded by two vertical
planes at right angles. We have already found that the generating function (10) can
be replaced effectively by the square of the generating function (4), because of the
possibility of representing the general two-dimensional arrangement by means of two
Ferrers graphs put 'back to back' in the manner shown in Fig. 6. Similarly, we can
infer with some confidence that the generating function enumerating three-dimen-
sional ' teeth' is effectively the fourth power of MacMahon's generating function, four
of his arrangements fitting together along their plane faces to make a three-dimen-
sional 'tooth'. However, not every 'tooth' can be 'sliced up' in this fashion, while
others can be 'sliced up ' in a variety of different ways to make four MacMahon
arrangements, so that the (1-1) correspondence which exists in the two-dimensional
case does not hold here. On the other hand, neither of these uncertainties is likely
to introduce an error as great as a factor of 2V, in either direction, in the number of
possible arrangements for a given N, so that the error in the entropy is unlikely to be
as large as MogiV, which is negligible compared with kN*. (For example, the number
of different ways in which a given ' tooth' can be so ' sliced up ' cannot possibly exceed,
and is probably very much less than, the number of cubes in the bottom layer, which
is less than or equal to N.) The entropy that follows from a generating function
[ra(z)]4, where m(z) is MacMahon's generating function (12), is

<Da(JV)~3|£(3)]*Jfctf*~3-3Jfetf». (13)

This agrees reasonably well with the first value, which we considered to be an
over-estimate, while the value 2-21cN* that follows from MacMahon's generating
function (12) is an under-estimate.

5. An alternative treatment of the two-dimensional problem. I am grateful to Prof.
L. Onsager for pointing out that the generating function for the two-dimensional
problem can, subject to the assumptions already mentioned, be evaluated exactly.
The result obtained is not quite equivalent to (10), which is the generating function
for a single 'tooth', whereas the generating function for an entire boundary can be
written down as follows:

We may imagine the boundary to be built up from left to right, vertical colums of
'bricks' being added one at a time. Then, when we add the (m+ l)th column, three
situations are possible: (a) the top of the (m+ l)th column may be level with that of
the mth, (6) the top of the (m+ l)th column may be above that of the mth, (c) the top
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of the (TO + l)th column may be below that of the with. In case (a) the addition of the
mth. column has added one horizontal cube face, but no vertical cube face, to the
boundary. In cases (6) or (c) one horizontal face and km vertical faces have been added,
lcm being the difference in height of the (m + l)th and with columns. The factor in the
generating function associated with the extension of the boundary by one horizontal
step is thus x + x(y + y2 + ya + m.m)+x(y + y2 + y3+^jt

Case (a) Case (6) Case (c)

where the index of x counts the horizontal boundary faces while that of y counts the
vertical ones. In cases (6) and (c) we have to sum over all possible values of km, the
height of the mth ' step', so that the complete factor in the generating function is

xy xy a;(l+w) , ,
x + T-Z-+T

JL-=—. —, (14)
1-2/ 1-?/ 1-2/ v '

and the generating function for a boundary containing I horizontal faces is the Ith.
power of this expression. Since only forward steps are allowed in the horizontal
direction, this expression describes possible configurations of a boundary that is free
from 'overhang' as defined above (p. 689). To obtain the statistical mechanical
partition function for a boundary containing I horizontal faces, we simply have to
replace x and y by z, where z = e~E/kT and E is the energy per exposed cube face. The

partition function for a boundary of I steps is thus zr( 1 , and the corresponding free

energy of such a boundary is therefore

^ j ' (15)

whereas that of a boundary consisting simply of I horizontal faces is just IE.
There is thus always a gain in free energy if the boundary is allowed to become

rough, and there is no prediction of a sudden transition temperature. We arrived at an
apparent transition temperature above (p. 692) by assuming a definite shape for the
average 'tooth', a triangle of height equal to half its base, whereas the average shape
is itself a function of temperature. We can calculate the average vertical height of
a 's tep ' quite simply from expressions (14) or (15)—it is simply the average index of

z in the expression , so that we have

T- d. (l+z\ 2z

which increases steadily from zero to infinity as the temperature rises. The tem-
perature at which km is unity, so that the average boundary is inclined at 45° to the
horizontal, and the ' teeth' would have the approximate profile assumed above
(p. 692), is given by z = ^2 — 1 or E = OSSkT. This is not the same as the temperature
calculated above, which is that at which a flat surface and one with '45° teeth'
would have equal free energies. The temperature at which the '45° tooth' is the most

4$ x 10~16

likely profile is — 7— , since E = 4S x lO"16 for a lattice spacing of 2 A. This

temperature is appreciably higher than the former value, as one might expect.
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A direct comparison of the two calculations is possible if we calculate the entropy
associated with I horizontal lattice distances. At the temperature at which 2 = /̂2 — 1,
the most probable profile is a ' tooth' of base I and height \l, containing JZ2 atoms. The
estimated entropy associated with this was 2n.3~ik(^l2)i = 1-81&Z, while, from
equation (15) we have

dF „ . (l+z\ llrr.dz 2 / J2 \ llcTdz 1

the agreement between these two quite distinct methods of estimating the entropy
being very satisfactory.

It should be mentioned that expression (14) has an alternative interpretation in
terms of the Ising model of a ferromagnet. I t can be interpreted as the generating
function associated with a boundary drawn between a ' plus' and a ' minus' domain
in the two-dimensional square lattice, x representing the Boltzmann factor associated
with replacing a like vertical pair of nearest neighbours by an unlike one, y being the
equivalent factor for horizontal pairs. The boundary described by (14) has the property
of never cutting itself, but it is not quite the most general boundary with this property,
because we have completely forbidden backward steps in the x direction. If expression
(14) becomes equal to unity, it means that a boundary can be drawn right across the
lattice at no cost in free energy, which must mean that long-range order has broken
down. The condition that (14) becomes unity is, in fact, precisely equivalent to the
condition for the critical temperature in a plane square Ising lattice

sinh {2JjkT) sinh (2J'jlcT) = 1

(Onsager (8)). This method can also be applied to the plane hexagonal and honeycomb
lattices, for which it again locates the known critical temperature precisely, provided
that two of the three interactions are equal. A further application has been made to
the plane-square lattice with second nearest neighbour interaction (considered by
Domb and Potts (4), using an expansion method), and gives values for the critical
temperature in close agreement with those estimated by them; no closed expressions
for the partition function being known for this case.

These results are of interest in that they show that, for these simple models in which
computation is possible, the ' boundary tension', or free energy of a domain boundary,
remains finite until the critical temperature is actually reached, instead of vanishing
at some slightly lower temperature.

6. Conclusion. I t thus seems quite possible that the formation of' teeth' on a crystal
may be explicable purely on entropy considerations, the greater number of ways of
realizing a rough surface compensating for the extra surface energy, so that a rough
surface is the true equilibrium one at all temperatures. It may well be that, by the
time the crystal has cooled to a temperature at which the equilibrium roughness is
small, the mobility of the molecules has fallen to a low value. One may conclude
further that the ' teeth' on the same surface should be nearly equal in size, because
•ZV| + ̂ t assumes a maximum value for Nx = N2 if iVi +-ZV2 is fixed. A more speculative
possibility is that one may ultimately be able to calculate the equilibrium number of
molecules in a 'tooth', left undetermined by the theory in its present state.
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I should like to thank Miss V. E. Marting for suggesting this problem, and for
helpful discussions. I should also like to thank Dr F. C. Auluck for his very helpful
discussions on the theory of partitions, and Prof. L. Onsager for suggesting the
alternative treatment of the two-dimensional case.

Note added in proof. During the working out of the ideas reported in this paper,
various papers, by F. C. Frank and others, have brought forward theoretical and
experimental evidence that crystal growth occurs preferentially in the neighbour-
hood of "screw" dislocations, and that a single such dislocation may initiate
growth over an entire face. The present paper only attempts to predict the
equilibrium form of a face after growth has ceased for a long time.

I t is perhaps worth pointing out that equation (8) is equivalent to the simpler
recurrence relation

(1 - zr) hr(z) = 2zhr_1{z) - hr_2(z), r^2,

and that an expansion of the generalized generating function h(y, z) = 2 VrK(z) is

r

possible by the same method that was used to derive (10).
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APPENDIX

Proof of equation (11). We have, by adding terms up from the left, the following

result: 2z-z2 • 2z2-z4 2z3-z6
 =

1 + (1_2)2 + (1_Z)2(1_Z2)2 + (1_Z)2(1_Z2)2(1_Z3)2+-"=L/(2)J ,

which may also be written

2* , 2z2 2z3 = I 7 ( Z ) 1 2 + 2

L-zWl-zVSQ-z2) (1-Z)2(1-Z2)2(1-Z3) '
(Al)

^ ^ ( 1 - z ) 2 (1 - z ) 2 ( 1 - z 2 ) 2 (1 - z ) 2 ( 1 - z 2 ) 2 (1 -z3)2"

The following identity is also well known

j(et0)Z) _ JL __—. = i + _5f!__| zJtl—- + ...,

and a similar result holds iovf(e~ie, z).
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2n ' ~ (I-2zrcos0 + z2T)
I 0 r = l

Putt ing the integrand into partial fractions, treating cos 6 as the variable, and using

the result 1 f«» dO 1 _

-2z'cos 6+

z2

we find 1 + - - +
(1 )2 + 573+. . .
(1— z)2 (1— z) 2 ( l— z2)2

= [f (z)]2 [(I-z)-z(l-z2) + z1+2(l-z3)-zl+2+3(l-zi)+ ...]. (A3)

Subtracting equation (A 3) from (A 1) we obtain equation (11) of the text.
At my suggestion, Auluck(l) has studied the type of two-dimensional packing in

which each molecule is midway between its neighbours of the rows below and above it,
this leading to a plane hexagonal lattice in which each atom has six nearest neighbours.
He finds that the generating function given in equation (10) of the text is replaced by

Z Z Z

1 +

(the powers in the numerators being now the triangular numbers) which also leads to
an entropy of the order of kNi associated with the formation of a ' tooth' containing
N molecules.
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