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Abstract

We review the normalized maximum likelihood (NML) criterion for selecting among compet-
ing models. NML is generally justified on information-theoretic grounds, via the principle of
minimum description length (MDL), in a derivation that “does not assume the existence of a
true, data-generating distribution.” Since this “agnostic” claim has been a source of some recent
confusion in the psychological literature, we explain in detail what is meant by this statement.
In doing so we discuss the work presented by Karabatsos and Walker (2006), who propose an
alternative Bayesian decision-theoretic characterization of NML, which leads them to conclude
that the claim of agnosticity is meaningless. In the KW derivation, one part of the NML criterion
(the likelihood term) arises from placing a Dirichlet process prior over possible data-generating
distributions, and the other part (the complexity term) is folded into a loss function. Whereas
in the original derivations of NML, the complexity term arises naturally, in the KW derivation
its mathematical form is taken for granted and not explained any further. We argue that for
this reason, the KW characterization is incomplete; relatedly, we question the relevance of the
characterization and we argue that their main conclusion about agnosticity does not follow.
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1 Introduction1

The normalized maximum likelihood (NML) criterion for the selection among a collec-2

tion of models M1, . . . ,MD in light of observed data x = (x1 . . . xn) states that, where3

possible, we should prefer the model M that maximizes the following probability,4

p∗(x|M) =
f(x|θ̂(x,M))∫

Xn f(y|θ̂(y,M))dy
(1)

where f(x|θ,M) denotes the probability of the data according to modelM with param-5

eter values θ. In this expression, X n denotes the sample space of possible data sets of size6

n, and θ̂(y,M) is the maximum likelihood estimate obtained when model M is fit to7

data y.8

The NML probability can be derived as the solution to a number of different optimality9

problems (Shtarkov, 1987; Rissanen, 2001). It plays a prominent role in the minimum10

description length (MDL) approach to statistical inference, originating from information11

theory. However, the NML distribution has also been given an interpretation from other12

statistical perspectives. Apart from the information-theoretic derivation, there are three13

other standard derivations of the NML probability (see Grünwald 2007): the prequential14

interpretation (briefly discussed in the appendix), a differential-geometric interpretation15

(in which the denominator in (1) is interpreted as a volume; see, e.g., Balasubramanian16

2005) and a Bayesian interpretation (which links (1) to Bayes factor model selection based17

on a Jeffreys’ prior). Importantly, the information-theoretic and prequential derivations18

of NML do not rely on the assumption of a “true”, data-generating distribution. In this19

sense, NML is an “agnostic” method, which suggests that it behaves robustly in situations20

in which all models under consideration are wrong, yet some are useful.21

In a recent paper, Karabatsos and Walker (2006) (KW from now on) propose an al-22

ternative Bayesian decision theoretic interpretation for the NML criterion, from which23

they argue that it is meaningless to make claims about NML being an agnostic method.24

However, there are a number of difficulties with their proposal, which we discuss in this25

paper. The plan of this paper is as follows: we begin by providing a brief discussion of the26

information-theoretic view of NML (Section 2). Following this, in Section 3, we explain in27

detail the meaning and implication of the “agnostic” property of NML. We then turn to28

the KW characterization itself (Section 4), and our concerns with it (Sections 5 and 6).29

We make some concluding remarks in Section 7. For the benefit of readers who are not30

familiar with information theory, the paper ends with an appendix in which one of the31

alternative interpretations of NML — the prequential one — is explained in some detail.32
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2 The Information-Theoretic View on NML33

The MDL principle states that we should prefer those models that allow us to compress34

the data set x to the greatest possible extent. That is, if the codelength LC(x) denotes35

the number of bits required to describe x using some code C, then we should prefer36

those models that allows us to produce short codelengths. We are able to talk about data37

compression using probabilistic language thanks to the Kraft inequality, which tells us38

that for any probability mass function f defined on a sample space X n, there exists a39

uniquely decodable code C such that, for all y ∈ X n, the codelength is given by LC(y) =40

− log f(y). Vice versa, for any uniquely decodable code C, there exists a mass function f41

that satisfies this equality. This establishes a 1-to-1 correspondence between probability42

mass functions and uniquely decodable codes. Essentially the same correspondence holds,43

after appropriate discretization, if f is a density rather than a mass function.44

The most well-known derivation of the NML distribution from the MDL perspective is45

Rissanen’s (2001) work, which slightly extends an earlier derivation by Shtarkov (1987).46

Given a model M that is parametrized by θ ∈ Θ, Shtarkov demonstrates that the NML47

probability p∗(x|M) in Equation 1 corresponds to the “best” possible coding that can be48

achieved using M. Shtarkov defines the best coding scheme that a model can achieve in49

a minimax sense, as the one that satisfies the following equality:50

p∗ = argp min
p

max
y

[
(− log p(y))−

(
− log f(y|θ̂(y,M))

) ]
, (2)

where the minimum is over all distributions p that can be defined on X n, and the maximum51

is over all possible datasets y ∈ X n. The expression in square brackets is called the regret :52

when applied to the actually-observed data x, it is the additional number of bits one53

needs to code the data x using (the code based on) p, compared to the code in M that,54

with hindsight, turns out to minimize the codelength (maximize the probability) of x.55

The latter code is invariably the code based on the ML (maximum likelihood) estimator56

f(·|θ̂(x,M)). Thus, we seek, among all distributions (codes) p on X n, the one such that57

the worst-case regret is minimized. Regarding the more general question of why it makes58

sense to solve a minimax problem of this kind, the appendix contains a brief discussion;59

but the interested reader is referred to Grünwald (2007) for an extensive discussion. For60

the current purposes, it suffices to note that a key point in the specification of this minimax61

problem is that it does not matter what probability distribution generated the data x,62

or whether such a “true” distribution even exists: the NML distribution satisfies certain63

optimality criteria that depend only on the data. We elaborate this point in detail in the64

following section. Then, in Section 4–6, we discuss the KW derivation and our criticisms65

of it.66
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3 The Role of True Distributions67

It is useful to think of hypothesis testing and model selection methods as algorithms.68

These algorithms usually take as input a finite or countably infinite list M1,M2, . . . of69

models (families of probability distributions), as well as data x = (x1, . . . , xn) ∈ X n. They70

output a particular model M from the list, or, more generally, they assign a weight or71

probability to each model on the list. We now look at the role of “true” distributions, first72

(Section 3.1) in the design of such algorithms, and then (Section 3.2) in the analysis of73

such algorithms. For the specific case of MDL algorithms such as (but not restricted to)74

NML, Grünwald (2007, ch. 16 and 17) discusses these issues in far more detail.75

3.1 True Distributions in the Design of Algorithms76

For some methods, such as traditional Neyman-Pearson hypothesis testing and AIC model77

selection, the corresponding algorithms have explicitly been designed to achieve a certain78

specified performance under the assumption that one of the distributions p in one of79

the models under consideration is exactly true, i.e. the data are sampled from p. Other80

methods, such as cross-validation and NML-based model selection, do not rely on such81

an assumption in order to construct the algorithm. For instance, Shtarkov’s derivation of82

NML as the solution to the minimax problem in Equation 2 treats the observed data x83

as fixed, without invoking any assumptions about what mechanism produced those data84

in the first place.85

As an example of a procedure for which the design explicitly relies on some assumptions86

about the true generating mechanism, consider the following simple problem. Suppose we87

we want to choose between a model M1 = {f(· | µ) | µ ∈ R} and its submodel M0 =88

{f(· | µ) | µ = 0), where, for x ∈ X n, f(x | µ) is the standard normal density, extended89

to n outcomes by independence. In the Neyman-Pearson approach to this problem, we90

perform a hypothesis test with µ = 0 as the null hypothesis, and µ 6= 0 as the alternative.91

Viewed as an algorithm, such a test takes data x ∈ X n as input, and it outputs “reject92

M0,” or “accept M0”, possibly together with a p-value. For simplicity, we assume the93

significance level is fixed at 0.01. This means that the test (algorithm) has been designed94

such that the type-I error is at most 0.01: if the data are sampled fromM0, the probability95

of output “reject” is at most 0.01; moreover, among all algorithms with this property, we96

use the one for which the type-II error is minimized. Now, notice that the type-I error97

is defined in terms of the probability of obtaining a particular kind of data set if model98

M0 is true. Similarly, the type-II error describes the probability of obtaining a different99

kind of data set if (some element of) model M1 is true. The design of the algorithm thus100

crucially depends on the data being sampled either from M0 or M1. As a consequence,101

an awkward problem arises if the data are not sampled from either of the two models.102

Under such circumstances, both the accept/reject decision and the corresponding p-value103
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have no clear interpretation any more, as they are probabilities of events according to104

some distributions that we already know are not the data-generating distributions. This105

situation is by no means uncommon: in practice, we often know in advance that all106

models under consideration are, to some extent, wrong. Instead of trying to identify the107

true model, in such a situation we may want to choose the model that, hopefully, is the108

“best” in the sense that it leads to the best predictions about future data coming from109

the same source. The Neyman-Pearson test has not been designed for such a situation,110

and, as we have just seen, its outputs cannot easily be interpreted any more. In particular,111

even though we put our significance level at 0.01, we certainly cannot claim anymore that,112

by following the procedure repeatedly in a variety of contexts, only once in about a 100113

times will we encounter the situation that we reject M0 even though it leads to better114

predictions than M1.115

The example suggests that if none of our models are perfect – as is usually the case –116

then we should use statistical algorithms whose output is a function only of how well117

the actually observed sequence of data can be predicted based on the given models. To118

make this precise, we need to define what it means to “predict based on a given model.”119

This can be done in various ways. Let us consider two examples: leave-one-out cross-120

validation (LOOCV; see Browne 2000), an approach to model selection that is popular in121

the machine learning community; and NML. In LOOCV, for all outcomes xi, one predicts122

xi on the basis of the maximum likelihood (ML) estimator θ̂(x \ xi), i.e. based on all123

observed data except xi itself. The quality of predicting xi with density or mass function124

fθ is measured in terms of the log loss, defined as loss(xi, f) := − log f(xi): the smaller125

the loss, the better the prediction. According to LOOCV, we should select the modelMj126

which minimizes the sum of all prediction errors,
∑n
i=1 loss(xi, f(· | θ̂(x \ xi,Mj))). The127

NML approach is based on the same loss function, but, as explained in the appendix,128

rather than predicting by using the leave-one-out ML estimator, one sequentially predicts129

the full sequence x = (x1, . . . , xn) using the prediction strategy that is worst-case optimal130

relative to the element of M that one should have used with hindsight, the worst-case131

being taken over all possible data sequences.132

Summarizing, we may broadly distinguish between truth-dependent approaches such as133

Neyman-Pearson tests and AIC, 1 and agnostic approaches such as cross-validation and134

NML. Truth-dependent approaches are designed to give good results with high probability135

or in expectation according to some distribution p. In agnostic approaches, distributions136

1 To see that AIC is a truth-dependent approach, note that it tells us to select the model
minimizing AIC(x, d) = − log f(x | θ̂(x,Md)) + d, where d is the model dimension. While the
first term is “agnostic”, the second term (d) is truth-dependent, since it has been designed to
make AIC(x, d) an unbiased estimator of the prediction loss that can be achieved with model
Md. “Unbiased” means “giving the right answer in expectation,” the expectation being taken
under a distribution p that is assumed to be in a (suitably defined) closure of the list of models
M1,M2, . . .. We note that Bayesian inference cannot easily be put into one of the two categories:
some variations may be called truth-dependent, others may not (Grünwald 2007, ch. 17).
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are only used as predictors, and the merit of a model in light of the data x is solely137

determined by how well such distributions predict x. It is in this sense that introductory138

papers (e.g., Myung et al. 2006) describe NML as being “free” from assumptions about139

true distribution: it is an agnostic method by design.140

Having made this distinction between agnostic and truth-dependent procedures, it is141

worth considering the advantages built into the agnostic methods. Besides avoiding the142

previously-discussed problem of non-interpretable outputs, agnostic methods also have143

another advantage: when comparing a finite number of models with an agnostic approach,144

the better model must win, eventually. To explain what this means (see Section 3.2 for145

more details) consider the case of just two models, Ma and Mb. Suppose one observes146

more and more data x1, x2, . . ., the sequence being such that the best predictor of the147

data in Ma eventually keeps outperforming the best predictor of the data in Mb. Given148

such a sequence, the agnostic approaches will eventually select Ma. Specifically, for an149

agnostic approach it is guaranteed that, for all infinite sequences x1, x2, . . . such that150

min
f(·|θ)∈Ma

lim
n→∞

1

n

n∑
i=1

loss(xi, f(· | θ,Ma)) < min
f(·|θ)∈Mb

lim
n→∞

1

n

n∑
i=1

loss(xi, f(· | θ,Mb)), (3)

one has the assurance that, for all large n larger than some n0, the model Ma will be151

selected rather than Mb. Here the number n0 may depend on the particular sequence152

x1, x2, . . .: for some sequences, the better model will be identified earlier than for others.153

For truth-dependent approaches, the guarantee that the best model will eventually be154

selected can only be given for a small subset of the sequences satisfying (3), namely those155

sequences x1, x2, . . . for which there exists a distribution f inMa∪Mb, so that x1, x2, . . .156

may be regarded as a “typical outcome” of f . In practice, however, we often have to deal157

with atypical outcomes: supposedly real-valued variables (e.g., normally distributed data)158

can very easily contain repeated values – cases where xi = xj for some i 6= j) – due159

to round-off errors and other imperfections, an occurrence that should have probability160

0 (see, e.g., Grünwald, 2007, ch. 17). More generally, real-world data sets tend to be161

riddled with data missing not at random, data entry errors, and (particularly in the social162

sciences) a host of weak correlations (e.g., Meehl 1990). The net result is that, in many163

cases, even very large empirical data sets will have some characteristics that make them164

rather atypical sequences. It is also for this reason that the predictive guarantees for the165

agnostic approaches are in practice somewhat reassuring.166

The previous remarks notwithstanding, it is worth pointing out that there is, of course, a167

weak spot in the agnostic approaches: one can measure prediction error in many different168

ways, so why should one focus on the log loss? The model that predicts best in terms of169

log loss may not be the best in terms of some other loss functions such as 0/1-loss. Indeed,170

there are approaches which try to extend MDL and related approaches beyond the log loss171

(Grünwald 2007, ch. 17); the methodology of structural risk minimization (Vapnik, 1998)172

may also be viewed in this manner. Nevertheless, there are certain properties of the log173
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loss which make it particularly attractive, such as the fact that it is the only local proper174

scoring rule (Bernardo & Smith, 1994), that it has a clear interpretation in terms of data175

compression and sequential gambling (Grünwald, 2007), and, as we discuss below, that it176

has good convergence properties in the hypothetical case in which the true distribution177

does reside in one of the models after all.178

3.2 True Distributions in the Analysis of Algorithms179

At this point, we turn to a discussion of the performance of different model selection180

algorithms. As with the previous discussion regarding the design of the methods, it is181

useful to analyze the methods under different assumptions about the nature of the data182

generating mechanism. Suppose that a method is applied to data x = x1, . . . , xn, and the183

inferred model is then used to make predictions about future data y = xn+1, . . . , xn+m.184

If the data generating machinery may change in arbitrary ways at time n + 1, then no185

method can be expected to work well. In such extreme scenarios, agnostic approaches will186

fail to make good predictions just as much as truth-dependent methods. In order for any187

method to work well, there has to be some kind of constraining mechanism which pertains188

to both x and y. It is therefore of some interest to compare the actual behavior of some189

well-known agnostic and truth-dependent model selection methods for a variety of such190

constraining mechanisms. Following Grünwald (2007), let us consider what are arguably191

the four most important cases:192

1. Mechanism satisfies Equation 3. Suppose we are to choose between two possible193

models M0 and M1, and that the constraining mechanism is such that Equation 3194

holds, either for a = 0, b = 1 or vice versa. This may be one of the weakest assumptions195

under which some form of inductive inference is possible at all. In this case, NML,196

the Bayes factor method, BIC, LOOCV and AIC will all select the best-predicting197

modelMa for all large enough samples. In such cases, for large n, the truth-dependent198

component of AIC(x, d) becomes negligible compared to its agnostic component. If,199

however, we assume that M0 is nested into M1, and Equation 3 holds with equality,200

then NML, BIC and the Bayes factor method will select M0 for large n (a form of201

Occam’s razor), whereas for many sequences, AIC and LOOCV will not. Grünwald202

(2007) argues extensively why such a version of Occam’s razor is desirable. Note that203

all this holds quite irrespective of whether the “true” data generating mechanism is204

in any of the models, or is even a probability distribution; it may just as well be205

deterministic.206

If we allow the list of models to contain an arbitrary but finite number of elements,207

then the same story still holds. However, in practice, this list is often countably infinite,208

or (equivalently, as it turns out), it is allowed to grow with n. The prototypical exam-209

ple is linear regression with polynomials, where the outcomes are pairs (Z,X), with,210

say, Z ∈ [−1, 1] and X ∈ R. Model Md prescribes that X =
∑d−1
j=0 αjZ

j + U , where211

(α0, . . . , αd−1) is a parameter vector and U is normally distributed noise with mean 0.212
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We would like to learn the best polynomial model of the data, without assuming any213

a priori bound on the degree d. In such cases, there can be data sequences for which a214

particular degree d0 leads, asymptotically, to the best predictions, yet, no matter how215

many data are observed, none of the methods will select degree d0, not even the agnostic216

ones.
217

2. True distribution in one of the models. At the other extreme, suppose we have218

the collection of models M1,M2, . . ., where the k-th model has k free parameters.219

Moreover, the data are sampled from a distribution f(· | θ,Md) that falls inside the220

d-th model. In this situation, NML and other MDL-related methods, as well as BIC and221

the Bayes factor method, perform very well in the sense that, for all d such that Md222

is on the list, for almost all f(· | θ,Md), with f(· | θ,Md)-probability 1, they output223

“Md” for all large n. For an explanation of the “almost”, see Grünwald (2007). AIC and224

leave-one-out cross-validation do not share this property of statistical consistency, and225

may, with positive probability, output a model of larger dimension than the minimal226

d for which Md contains the true distribution. These results hold both if the list of227

models is finite and if it is countably infinite.
228

3. True distribution in model closure. A commonly studied situation in statistics is229

to assume that the listM1,M2, . . . is countable, and that data are sampled from some230

distribution p, which is not in any of the models of the list, but which can be arbitrarily231

well-approximated by the list, in the sense that limd→∞minf∈Md
D(p, f) = 0. Here D is232

some suitably chosen distance measure for probability distributions. In our polynomial233

example, this would correspond to the true p stating that X = g(Z) + U , where g is a234

continuous function on [−1, 1] that is, however, not itself a polynomial. In such cases,235

the best predictions can be obtained by choosing a small model at small sample sizes,236

and gradually choosing more complex models (higher-order polynomials) as the sample237

size increases. Qualitatively speaking, Bayes factor, BIC, AIC, NML and LOOCV all238

behave in this manner. But a more detailed view reveals important differences: if the239

modelsM1,M2, . . . are sufficiently regular, and the distribution p is sufficiently smooth,240

then AIC and LOOCV will converge faster than NML, BIC and Bayes. More precisely,241

suppose we fix a method and for each n, we use it to infer a model and then predict242

future data based on that model. For all methods, the expected prediction loss will get243

smaller as n increases, and it will converge to the same asymptotic optimum. However,244

the convergence is slower (by a logarithmic factor) for Bayes, BIC and NML. On the245

other hand, if either (a) the models M1,M2, . . . are not “regular”, or, (b), if the true246

p is not smooth, then AIC may fail dramatically, whereas Bayes factor, LOOCV and247

NML will still tend to converge. A common example of (a) is model selection for feature248

selection models, in which the number of considered models with d degrees of freedom249

is exponential in d (Yang 1999). An example of (b) within the polynomial setting arises250

if the function g is discontinuous, or if it tends to ±∞ at the boundaries of its domain.251

This failure of AIC is due to its truth-dependent nature: it has simply not been designed252
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to work well for true distributions that are as in situation (a) and (b).
253

4. True distribution not in model closure. Finally, consider the possibility that there254

exists a true distribution p that cannot be arbitrarily well-approximated by members255

of models M1,M2, . . ., while nevertheless, some model Md contains a useful f that is256

“close” to p in that it tends to predict data reasonably well. This case is related to but257

less general than scenario 1 above, and essentially the same facts hold. To illustrate,258

suppose for simplicity that the data are i.i.d. according to both the ‘true’ p and all f259

in all of the M1,M2, . . . under consideration, and suppose that one of the models is260

“best” in the sense that the following analogue of (3) holds: for some modelMa on the261

list,262

min
f(·|θ)∈Ma

Ep[loss(X, f(· | θ,Ma))] < min
b:b6=a,Mb on the list

min
f(·|θ)∈Mb

Ep[loss(X, f(· | θ,Mb))].

(4)
If the list is finite, say M1, . . . ,MD, and (4) holds, then, with p-probability 1, all263

methods will select modelMa for all large enough sample sizes n. This means that, the264

p-probability that a suboptimal model Mb, b 6= a is selected based on data X1, . . . , Xn265

goes to 0 with increasing n, where the exact rate at which it goes to 0 may depend266

on the precise relation between p and the various models on the list. In case that the267

models are nested and (4) holds with equality, then, once again, for large n, NML, Bayes268

factor and BIC will tend to select the smallest model Ma that achieves the minimum269

in (4), whereas, for some combinations of p and M1, . . . ,MD, AIC and LOOCV will270

not. In case (4) holds but the list is countably infinite, then there exist scenarios in271

which none of the methods work fine for large samples, i.e. they keep selecting models272

that are further than some ε from the minimum (4), no matter how large n. Here ε273

is a positive constant, and, being a constant, it does not tend to 0 with increasing n274

(Grünwald and Langford 2007). Thus, neither NML (despite its agnosticity) nor the275

Bayes factor method are guaranteed to work in such a scenario. The only methods we276

are aware of that handle such a scenario well are those developed in the structural risk277

minimization literature (Vapnik, 1998), but they tend to perform less than optimal in278

scenario 2 and 3 (Grünwald 2007).279

The upshot is that even agnostic methods may not always work well in all relevant set-280

tings. Nevertheless, we may still expect agnostic methods to be more robust than truth-281

dependent methods. Moreover, if a method that performs well in all settings 1–4 will282

ever be found, it is sure to be a method of the distribution-free kind. As an aside, Van283

Erven, Grünwald & De Rooij (2007) present an agnostic approach that combines the best284

of NML and LOOCV, and is probably the first known method that provably performs285

well in all cases discussed under settings 2 and 3 above; yet it still fails with countably286

infinite lists in settings 1 and 4.287

To summarize, in this section we have aimed to give a general overview of the role played288

by the concept of a “true distribution” for a variety of different model selection algorithms.289
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We have done so in part because we think it provides a useful expansion of the necessarily-290

oversimplified treatment given in tutorial papers (e.g., Myung et al. 2006). However, it291

also provides an appropriate foundation for our discussion of the claims made recently by292

KW. It is to this topic that we now turn.293

4 A Bayesian Decision-Theoretic View on NML294

In a recent paper, KW provide a Bayesian decision theoretic interpretation for the NML295

criterion, and use this interpretation to suggest that it is meaningless to refer to NML as296

an agnostic method. In order to characterize NML in terms of the more general Bayesian297

decision-theoretic framework, tshe derivation relies on three key premises:298

(1) Data arise from some unknown distribution (i.e., x ∼ G), and we have a prior over299

this distribution described by a Dirichlet process (DP; see Ferguson, 1973) with300

concentration parameter c→ 0 (i.e., G ∼ DP(G0, 0)).301

(2) We want to select a parameter θ̇ that belongs to one of the modelsM1, . . . ,MD, and302

in addition to the loss incurred due to the expected Kullback-Leibler discrepancy303

between f(·|θ̇,M) and the true distribution G, we suffer a “complexity penalty”304

v(M, n) that depends only on the model M from which θ̇ is drawn and the sample305

size n.306

(3) The complexity penalty v(M, n) is defined by307

v(M, n) = log
∫
Xn
f(y|θ̂(y,M))dy. (5)

KW show that under conditions (1) and (2), the optimal Bayesian choice for θ̇ is the ML308

estimator θ̂(x,Md) within the model Md that minimizes, over all d ∈ {1, . . . , D},309

− log f(x|θ̂(x,Md)) + v(Md, n). (6)

Thus, they conclude, if the penalty term (5) is plugged into (6), then the optimal Bayesian310

choice is to select θ̇ from the model Md∗ , where d∗ is given by311

d∗ = arg mind

{
− log f(x|θ̂(x,Md)) + log

∫
Xn f(y|θ̂(y,Md))dy

}
= arg maxd p

∗(x | Md),

(7)

where p∗ is given by (1), and the second equality follows because the logarithm is a mono-312

tonically increasing function. Hence, when assumptions (1)-(3) are met, the Bayes optimal313

model coincides with the model preferred under the NML criterion. In the following sec-314

tions we critically discuss this derivation and its supposed implications. In doing so, we315
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distinguish between two major problems (Section 5) and three minor concerns (Section 6).316

We also briefly comment on another issue brought up by KW, namely the fact that for317

many models, the NML is undefined (Section 7).318

5 Major Problems319

In this section, we raise two major sources of concern with the KW derivation, namely320

that it is incomplete in an essential sense (Section 5.1), and that the main conclusion321

drawn from the derivation does not follow (Section 5.2). However, we wish to emphasize322

that our concerns do not lie with the formal aspects to the derivation itself, which appears323

to be entirely correct.324

5.1 Incompleteness of the Characterization325

In the context of discussing what conclusions can be drawn from their derivation, KW326

(p. 520) state that they have “discovered the NML criterion using Bayesian decision the-327

ory.” (emphasis added). This statement highlights one of the main problems we have328

with their characterization, namely that it does not provide any Bayesian interpretation,329

characterization or explanation of the complexity term (5). Rather, they show that any330

model selection criterion of a “fit plus complexity” format is consistent with the Bayesian331

framework, using assumptions (1) and (2) above. The specific application to NML via332

assumption (3) is not explained anywhere in their paper – it is simply introduced on p.333

519 with no justification given other than the statement that it is “[an] alternative penalty334

term . . . for model simplicity”. They do not state why this particular penalty term would335

be of interest to the statistician, even though it is clearly an essential component to NML.336

After all, it is exactly this term that distinguishes the NML criterion from many other ex-337

isting criteria such as AIC and BIC. In our view, this is not really a “discovery” at all, and338

it makes it hard to see how their characterization is helpful or informative as to the nature339

of NML itself. Indeed, the KW derivation can also be used to “discover” BIC and (as KW340

in fact point out themselves) AIC — two criteria that behave very differently from NML341

in many situations (see Section 3). This is achieved simply by replacing v(Md, n) as in (5)342

by (kd/2) log n (which yields BIC) or kd (producing AIC), where kd is the dimensionality343

of model Md. There is no particular reason given for the use of one penalty function344

over any other one. This differs from all four previously existing interpretations of NML,345

each of which derives the penalty term from some more basic considerations. 2 In short,346

2 Moreover, this is also the case for the original derivations of the AIC and the BIC. Akaike
(1973) derived AIC by correcting for a bias in the model selection procedure implied by maximum
likelihood methods, while Schwarz (1978) derived BIC by taking an asymptotic expansion of the
logarithm of the Bayesian marginal probabilities.
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it seems to us that the KW derivation is incomplete in a very fundamental sense, because347

it does not give any reason why a statistical decision-maker should adopt a complexity348

term that has the specific mathematical form specified in assumption (5).349

To illustrate the point, consider the following (highly exaggerated) example. To our knowl-350

edge, no-one has seriously proposed the use of a penalty function of the form351

v(Md, n) =

 0 if Md is Favorite Model X

∞ otherwise
(8)

but clearly, it would be straightforward to substitute this penalty function into the deriva-352

tion provided by KW and thereby “discover” a model selection criterion that always353

prefers Favorite Model X. Taking KW at face value, we would be able to say that we354

have derived the criterion using Bayesian decision theory. However, it would be entirely355

unreasonable to specify v(Md, n) in this fashion, and (we hope) no-one would accept the356

proposition that Bayesian methods actually justify this sort of behavior. Obviously, the357

problem is that we have provided no justification whatsoever for adopting this particular358

choice of v(Md, n), and so any analyses we conduct on the basis of this choice would359

be of little interest to any statistician, Bayesian or otherwise. The point here is that the360

“Bayesian discovery” of NML made by KW is of exactly the same character as the “dis-361

covery” of the criterion that always prefers model X: namely, it demonstrates that NML362

is consistent with Bayesian theory, but provides no actual reason to use it in any practical363

situation. Their derivation is so broad as to encompass any criterion of a “fit plus penalty”364

format. This, in our view, cannot be called a “discovery” in any interesting sense.365

The point of the previous example is to illustrate the importance of having some reason366

for choosing a particular penalty function. With that in mind, one way to think about367

our argument is to ask the following question: “if someone else had not already proposed368

the NML approach, would any Bayesian ever have contemplated the complexity term (5)369

in combination with this particular Dirichlet process prior?” It seems unlikely – indeed,370

KW state explicitly that it “is difficult to understand as a penalty term” (p. 520), with371

the implication that this is an inherent problem for NML. This is somewhat unfortunate,372

since the information-theoretic perspective provides a very natural interpretation of this373

term, as the minimax coding or prediction regret (Appendix A). Accordingly, we have374

a good information-theoretic reason to use NML. The problem here is that there is no375

corresponding Bayesian interpretation provided by KW. Without having been implicitly376

guided by the information-theoretic results provided by Rissanen (2001), Shtarkov (1987)377

and others, it seems highly unlikely that any Bayesian would be inclined to choose v(M, n)378

in the manner specified in (5), making KW’s (2006) derivation somewhat post hoc at best.379
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5.2 Unjustified Conclusions380

In the previous section, we raised the concern that KW’s derivation is incomplete, since381

it provides no basis for the choice of penalty function. In essence, we were arguing that382

the derivation – though technically correct – is not particularly helpful. In this section, we383

raise a different concern, namely the fact that KW appear to assert some kind of special384

privilege to their proof over other proofs, somehow invalidating the logic of previous385

justifications for the use of NML. The relevant quote from their paper is as follows: after386

completing their derivation, KW (p. 520) suggest that387

[T]he idea that NML makes no mention of a true distribution is a meaningless point.388

We have discovered the NML criterion using Bayesian decision theory and have, as a389

component of this procedure, explicitly introduced the notion of a true distribution390

function.391

Importantly, this is the main conclusion of the paper. The premise here appears to be392

that “NML can be derived when we assume that a true distribution exists”, from which393

they draw the conclusion that “previous derivations that did not need this assumption394

are meaningless”.395

We have four problems with this statement. Firstly and most importantly, it is hard to396

see how this conclusion can possibly follow from the premise. Nothing in KW’s derivation397

falsifies the logic of the previous constructions provided by Shtarkov and Rissanen, so to398

the extent that those derivations were valid previously, they remain so now. Accordingly,399

there is still a perfectly good reason to use NML even if no data-generating distribution400

exists (see Section 3). While we agree that NML can be derived when a true distribution401

is assumed, it is hardly meaningless to observe that we can derive NML without having402

to make this assumption.403

Our second problem is somewhat related to the first, in that one of the strengths of404

the original NML proof is that it makes only very weak assumptions (though, even so405

they are sometimes violated; see Section 7), implying that NML may be used in a broad406

range of situations. By contrast, the three conditions that apply to KW’s derivation are407

fairly restrictive, and would only justify the use of NML in a few specific situations: for408

instance, KW require that our prior beliefs about the true data-generating distribution be409

captured by the statement G ∼ DP(G0, 0), whereas no such restrictions are required for410

Rissanen’s or Shtarkov’s proofs to hold. Thirdly, as argued previously in Section 5.1, the411

KW derivation is incomplete in a fashion that other derivations are not, so in our view it412

would be preferable to use one of the other proofs to justify the use of NML. Finally, as413

we will discuss in Section 6, there are some doubts as to how reasonable the underlying414

assumptions are, so unlike the other derivations of NML that hold quite generally, the415

KW approach does not necessarily apply in practical situations.416
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Similarly, though it is somewhat tangential to their derivation, KW also note that NML417

sometimes corresponds to the Bayes factor approach to model selection with Jeffreys’418

prior, and write (on p. 519)419

Bayes factors are recognized as being based on a 0-1 loss function which implicitly420

assumes that one of the models under consideration is the true model. This contradicts421

one of the key ideas for NML, namely that it is free from assumptions of a true model.422

The first criticism of the previous statement still applies here: neither Rissanen’s deriva-423

tion, nor the prequential derivation given in the appendix, require the existence of a true424

distribution or a 0/1-loss function. The fact that there is also a Bayesian derivation that425

does assume these things and establishes a correspondence to Jeffreys’ prior is irrelevant;426

it simply does not make the various other derivations meaningless or false.427

6 Minor Issues428

We proceed to discuss some minor concerns about the KW derivation, relating to the429

specification of the prior, the characterization of the decision problem, and inconsistencies430

with the assumptions used in previous work. Unlike the problems raised in the previous431

section, none of these issues should be taken to be strong criticisms of the paper, so much432

as minor caveats. We consider each of these in turn.433

6.1 Specification of the prior434

The KW paper relies on a Bayesian decision-maker who places a Dirichlet process (DP)435

prior (Ferguson, 1973) to describe his or her prior beliefs about an unknown probability436

distribution G. The DP prior is used to place a “nonparametric” prior over G, in which437

one seeks to avoid making restrictive assumptions about the family of distributions to438

which G might belong. From a Bayesian perspective, the nonparametric approach requires439

us to select a prior distribution that has broad support across the space of probability440

distributions. The DP prior serves this purpose, and specifies a distribution over random441

probability measures, parametrized by the base distribution G0 (corresponding roughly442

to one’s initial guess about G), and a concentration parameter c. However, although443

the DP has full (weak) support, it concentrates (with probability 1) on a set of discrete444

distributions (e.g., Sethuraman, 1994), which tends to limit its usefulness as a generic prior445

in some cases (e.g., Petrone & Raftery, 1997). In some contexts, however, the restriction446

to discrete distributions is actually quite useful, and for this very reason the DP has447

become a popular choice for specifying priors over countable mixtures (e.g., Escobar &448

West 1995).449
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It is important to note that KW use the DP in the general sense, using the limiting DP450

prior with c → 0 to describe the prior belief about a generic unknown distribution G.451

The result is that, as they note, they rely on a prior that concentrates with probability452

1 on point-mass distributions. This reliance plays an important role in their subsequent453

derivation: under this limiting prior, the Bayesian predictive distribution for future data454

converges to the empirical distribution of x (e.g., Ghosh & Ramamoorthi, 2003, Theorem455

3.2.7). This in turn implies that the Bayesian maximum utility parameter estimate under456

Kullback-Leibler loss is equivalent to the frequentist MLE θ̂(x,M) (as discussed by KW).457

Obviously, this does not hold for other values of c, since in general the predictive distri-458

bution under a DP prior is a weighted mixture of G0 and the empirical distribution. In459

short, although technically correct, the correspondence that they establish holds only for460

this rather odd special case; a case that KW appear to have chosen primarily to ensure461

that their Bayesian parameter estimation procedure mimics a frequentist one. 3
462

6.2 Specification of the decision problem463

A second issue relates to the manner in which KW specify the decision problem. The464

Bayesian decision procedure described by KW equates the utility of a model with the465

utility of its best parameter value. This manner of setting up the problem is highly biased466

towards complex models, since in its simplest form it reduces to picking the model that467

can provide the best fit in a maximum likelihood sense. In order to redress this, they468

then introduce a complexity penalty into the utility function, as suggested by Kadane469

and Dickey (1980). We note that such an approach, while certainly correct, is by no470

means standard Bayesian practice. In a standard Bayesian textbook, Berger (1985, p.471

284) argues that one of the advantages of the Bayesian approach is that it automatically472

takes model complexity into account, without the need for any explicit penalties (Mackay473

(2003) refers to this as the “Bayesian Occam’s razor”). Indeed, this does happen under474

standard parametric priors and standard utility functions (possibly, but not necessarily475

of the 0/1-type; see, e.g. Bernardo & Smith 1994, ch. 6). However, by associating model476

utility with maximum likelihood parameter utility, KW are unable to take advantage of477

one of the most useful features of Bayesian inference, and are forced to reintroduce it via478

the unexplained penalty function v(M, n).479

3 Moreover, although it appears in the model-selection procedure described by Equation 1, when
using MDL one would generally not use the MLE as one’s optimal parameter choice within the
selected model. This point is particularly important and we will return to it in Section 6.3.
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6.3 Incompatibility with assumptions of the original derivation480

A third point to make is that KW’s characterization actually discards a number of the481

existing parallels between MDL and Bayesian methods. As discussed, the NML criterion482

originally arose as a specific instance of the broader MDL approach to inductive inference,483

which is in fact closely related to Bayesian inference (see Grünwald 2007, p. 531-550). Just484

as in the Bayesian approach, MDL inference invariably starts by putting a distribution on485

observables. In the NML version of MDL discussed here, one actually puts a uniform prior486

π(d) = 1/D on the model set {M1, . . . ,MD} (and indeed when one compares countably487

infinitely many models, the prior on the model index d becomes essential in the MDL488

approach; see Grünwald, 2007, p. 406 & p. 423). One then associates each modelMd with489

a distribution on X n, in this case the NML distribution p∗(x | Md) given by (1). Thus,490

under the more typical Bayesian characterization of NML, the criterion may be interpreted491

as advocating a “maximum posterior model”Md under a uniform prior distribution on d.492

Accordingly, the NML criterion (as with other versions of MDL) already has a Bayesian493

flavor, with the NML distribution p∗(x | Md) playing a role similar to the Bayesian494

marginal distribution p(x | Md) =
∫

Θ p(x | θ,Md) dw(θ), for some prior distribution495

w. In fact, although we do not do so here, it is not too difficult to construct cases in496

which the Bayesian marginal probability corresponds to the NML probability more or497

less exactly (this can be made to hold for any sample size n, with the usual convergence498

to a Jeffreys’ prior as n → ∞). These relationships, however, are completely lost in the499

KW derivation, because KW decouple the two terms that comprise the NML criterion.500

In their approach, the numerator f(x|θ̂(x,M)) arises as a consequence of the DP(G0, 0)501

prior, while the denominator
∫
Xn f(y|θ̂(y,M))dy is a consequence of the loss function.502

The fact that the denominator is in fact the integral of the maximized likelihood in the503

numerator (hence giving rise to the name normalized maximum likelihood, and making504

p∗(· | Md) a distribution over possible data sets) actually becomes irrelevant in KW’s505

approach.506

In much the same manner, it should be noted that in MDL approaches to density es-507

timation relative to a parametric model Md, one generally does not use a maximum508

likelihood estimator (this is explained further in the final paragraph of the appendix).509

Instead, MDL’s information-theoretic derivations lead one to adopt either a truncated510

ML estimator (in “two-part MDL”) or a predictive distribution (in “predictive MDL”)511

corresponding to a Bayesian predictive distribution relative to Md and some smooth512

prior on the model Md which varies from case to case. For example, with the Bernoulli513

model, the ML estimator after observing n biased coin tosses with h heads and n−h tails,514

would be p(heads) = h/n, whereas the predictive MDL estimator would be a smoothed515

version thereof, p(heads) = (h + 1
2
)/(n + 1) (Grünwald, 2007, section 15.4). It is then516

surprising to see that KW’s derivation is based on a special nonparametric prior under517

which the Bayesian predictive distribution coincides with the maximum likelihood es-518

timate. Whereas most Bayesians, when working with a fixed parametric model, would519
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prefer using a Bayesian predictive distribution based on a smooth prior defined relative520

to modelMd, and MDL prescribes the use of the same or similar predictive distributions,521

KW rederive NML using a different predictive distribution.522

Summarizing, KW have discarded two facts which already make MDL inference closely523

related to mainstream Bayesian inference: the fact that the NML distribution is a dis-524

tribution, and the fact that MDL estimates/predictive distributions often coincide with525

Bayesian predictive distributions, but not with ML estimators. Of course, discarding these526

facts does not introduce any errors into their derivation, but it does mean that they are527

missing some of the very key components of the original work.528

7 Concluding Remarks529

Our main goal in this paper has been to discuss some of the problems associated with530

the KW derivation of NML probabilities, and to elaborate on the claim that NML does531

not depend on the assumption of a true distribution. However, we would like to end the532

paper by noting that there is one serious issue in which we agree with KW’s position: the533

NML approach has some technical difficulties which (at least in the simple form presented534

here), make it useless for many practical model selection tasks. The main problem is that535

the integral in the denominator diverges for some of the simplest and most often used536

parametric models, including the normal location and scale families. This issue has in fact537

been known since 1996 and is the subject of considerable discussion in the literature (see538

Grünwald 2007, ch. 11). Although it is not central to their derivation, the issue is briefly539

raised by KW (on p. 520), so it is worth explicitly stating that we agree that this is a540

genuine, and quite serious, issue with the NML approach.541

More generally, we suspect that it may be the case that some researchers (including542

us) have at times overemphasized the importance of NML within the MDL framework,543

perhaps giving the impression that the two are equivalent. Given this possibility, it is544

important to note that the central idea in MDL is to base statistical inference on uni-545

versal coding (see Grünwald 2007, for an extensive discussion): as it happens, the NML546

method is only one of at least five good methods for constructing universal codes, so the547

MDL framework is much broader than NML (only two of the 19 chapters in Grünwald’s548

(2007) book deal primarily with NML, for instance). That said, because it has certain549

optimality properties which the other methods lack, NML has tended to be the preferred550

method in recent years. However, in those cases where NML cannot be applied, the other551

methods usually still can. Importantly, one of these five types of universal codes is based552

on Bayesian marginal likelihoods, and so it should be no surprise that there is generally a553

close correspondence between Bayesian and MDL methods. Nevertheless, this correspon-554

dence is of quite a different type than the KW derivation suggests.555
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A The Prequential Interpretation of NML620

Suppose we want to predict a sequence of outcomes x = (x1, x2, . . . , xn) where each xi is621

an element of some space X . The xi are given to us one at a time. At each point in time i,622

we want to predict the next outcome xi, and, as we have already observed x1, . . . , xi−1, we623

can use these previous outcomes to guide our prediction. We assume that our predictions624

are probabilistic, i.e. they take the form of a probability distribution on X , identified with625

its density or mass function f . We measure the loss of predicting with f when the actual626

outcome is xi by loss(xi, f) := − log f(xi). This loss function arises naturally in data627

compression and gambling (Grünwald 2007), but, being the only so-called “local proper628

scoring rule” (Bernardo & Smith, 1994), it is also frequently used in Bayesian statistics,629

where it is known as the “logarithmic score”.630
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A sequential prediction strategy S is a function that maps from the union of sample spaces631

∪n≥0 X n to the set P of distributions on X where the distributions are again identified632

with their densities or mass functions. That is,633

S : ∪n≥0X n → P .

In other words, a strategy S maps each possible sequence of arbitrary length (i.e., each634

element of ∪n≥0 X n) to a probabilistic prediction (i.e., an element of P ) for the next635

outcome. Thus S(x1, . . . , xi−1) = q means that somebody who uses strategy S will, upon636

observing sequence x1, . . . , xi−1, predict the next observation using the distribution q. If we637

adopt the standard convention that Xi denotes the ith random variable and xi denotes its638

observed outcome, then we would say that strategy S predicts that Xi | x1, . . . , xi−1 ∼ q.639

When the actual outcome xi is then observed, we would suffer the loss loss(xi, q) =640

− log q(xi). We define the loss of strategy S as the sum of its individual losses:641

loss(x1, . . . , xn, S) :=
n∑
i=1

loss(xi, S(x1, . . . , xi−1)).

In a seminal paper, Dawid (1984) called such strategies prequential forecasting systems ;642

for this reason we also call the following interpretation of NML “prequential”.643

LetM be a statistical model, i.e. a family of distributions on X n. Each distribution f(· | θ)644

in M can be used as a sequential prediction strategy Sθ in a straightforward fashion. To645

do so, we observe that x1, . . . , xi ∈ X i for all i, and so we can define646

Sθ(x1, . . . , xi) := f(Xi+1 = · | x1, . . . , xi, θ).

That is, the (i + 1)-st outcome is predicted using the conditional distribution for this647

outcome, given all past outcomes x1, . . . , xi. If the model assumes that data are i.i.d.,648

then the parameter set θ produces the simple prediction strategy Sθ(x1, . . . , xi) = f(· | θ),649

in which the predictions for each variable Xi+1 are the same, irrespective of the previously650

observed outcomes. For simplicity, we will henceforth assume that this simplification holds651

for the model M under consideration.652

Among all strategies Sθ corresponding to some f(· | θ) ∈ M, the best predictor for653

any given full sequence x = (x1, . . . , xn) is given by Sθ̂(x), where θ̂(x) is the maximum654

likelihood distribution for x. To see this, note that for each Sθ, the loss incurred on x is655

n∑
i=1

− log f(xi | θ) = − log
n∏
i=1

f(xi | θ) = − log f(x | θ),

so that the higher f(x | θ), the smaller the loss. The loss is minimized for θ̂(x), which is656

thus optimal among all f(· | θ) ∈M with hindsight. In reality, we do not have hindsight:657
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we do not know θ̂(x) until we have seen all xi, so we cannot expect to predict, for all658

x ∈ X n, as well as θ̂(x). But we can design a prediction strategy which, for each x, is659

almost as good as θ̂(x), in the sense that the additional loss it incurs overs θ̂(x) is as660

small as possible in the worst case over all x. Thus, we look for a prediction strategy S661

such that662

max
x∈Xn

[
loss(x, S)− loss(x, Sθ̂(x))

]
(A.1)

is as small as possible. The expression between square brackets is called the prediction663

regret of strategy S relative to model M. It is straightforward to show that, whenever664

M is such that a minimax optimal strategy minimizing (A.1) exists, then, for all i, all665

x1, . . . , xi ∈ X i, its predictions S(x1, . . . , xi) coincide with p∗(Xi+1 = · | x1, . . . , xi) where666

p∗ is the NML distribution (1). In other words, the NML distribution can be thought667

of as a sequential prediction strategy that achieves the minimax optimal regret under668

logarithmic score. We emphasize that, even if the data are i.i.d. according to each f(· | θ),669

they are certainly not i.i.d. according to p∗: p∗(Xi+1 | x1, . . . , xi) will strongly depend670

on x1, . . . , xi, and will essentially behave like a smoothed version of the ML estimator671

f(· | θ̂(x1, . . . , xi)).672

Thus, if we use NML to select between a finite number of models M1, . . . ,MD, we are673

effectively, for each Md, sequentially predicting x1, . . . , xn using the strategy that is op-674

timal relative to Md, and in the end we select the model whose predictions yield the675

smallest total loss. Thus, we select the model that allows for the best possible sequential676

prediction of unseen data. As will be clear from the discussion in Section 3.1, this scheme677

is quite reminiscent of leave-one-out cross-validation with a logarithmic score. The precise678

relationship is discussed by Grünwald (2007, ch. 17).679

Finally, we note that, just as there is an MDL approach to model selection, there also680

exist MDL methods for prediction and density estimation. One standard way to define681

such MDL predictions and estimates based on a sample x1, . . . , xi is in fact based on682

the “prequential” setup above. The distribution f(· | θ) ∈ M that is imagined to have683

generated the data is estimated as p∗(Xi+1 = · | x1, . . . xi), i.e. the conditional distribution684

of xi+1 according to the NML distribution p∗, defined relative to some n� i. As we have685

said before, in general p∗(Xi+1 | x1, . . . xi) is not the maximum likelihood distribution f(· |686

θ̂(x1, . . . , xi)). It is a complicated distribution that can usually be very well approximated687

by the predictive distribution based on Jeffreys’ prior (for large enough i, this predictive688

distribution is well-defined even if Jeffreys’ prior is improper). The goal in MDL is to design689

an estimator that, when used for sequentially predicting outcomes, predicts nearly as well690

as the ML estimator for the final sample x1, . . . , xn. This goal, however, is not achieved by691

predicting the individual xi+1 based on the ML estimator for x1, . . . , xi. Therefore, MDL692

parameter estimation is, in general, quite different from ML parameter estimation.693
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