
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2564354

The No Free Lunch and Problem Description Length

Article · March 2003

Source: CiteSeer

CITATIONS

131
READS

178

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Discrete Mathematical Modeling of Biological Regulatory Networks View project

Darrell Whitley

Colorado State University

364 PUBLICATIONS 17,623 CITATIONS

SEE PROFILE

All content following this page was uploaded by Darrell Whitley on 29 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2564354_The_No_Free_Lunch_and_Problem_Description_Length?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2564354_The_No_Free_Lunch_and_Problem_Description_Length?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Discrete-Mathematical-Modeling-of-Biological-Regulatory-Networks?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Whitley-2?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Whitley-2?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Colorado_State_University?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Whitley-2?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Whitley-2?enrichId=rgreq-d3ac3a388672b28978201c3fa19b753a-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQzNTQ7QVM6Mjg5ODczNTQ3Mjg0NDgxQDE0NDYxMjI2NDczNzc%3D&el=1_x_10&_esc=publicationCoverPdf

The No Free Lunch and Problem Description Length
C. SchumacherDepartment of Computer ScienceUniversity of Tennessee, KnoxvilleKnoxville, Tennessee 37996 USAschumach@cs.utk.edu M. D. Vose and L. D. WhitleyDepartment of Computer ScienceColorado State UniversityFort Collins, Colorado 80523 USAfvose,whitleyg@cs.colostate.eduAbstractThe No Free Lunch theorem is reviewed andcast within a simple framework for black-box search. A duality result which relatesfunctions being optimized to algorithms op-timizing them is obtained and is used tosharpen the No Free Lunch theorem. Ob-servations are made concerning problem de-scription length within the context providedby the results of this paper. It is seen thatNo Free Lunch results are independent fromwhether or not the set of functions (overwhich a No Free Lunch result holds) is com-pressible.1 IntroductionRoughly put, the No Free Lunch theorem formalizesthe intuitive idea that all blackbox search algorithmshave identical behavior over the set of all possible dis-crete functions. Thus, on average, no algorithm is bet-ter than random enumeration in locating a global opti-mum. If algorithms are executed any given number ofsteps, every algorithm �nds the same set of best so-farsolutions over all functions [9] [5] [1].One of the criticisms of the No Free Lunch theoremis that it applies to large sets of functions and it isunclear if No Free Lunch applies to small sets or toreal world problems of practical interest. A variantform of this criticism is that many practical problemclasses have compact descriptions, whereas elements inthe set of all functions from a �nite domain to a �nitecodomain do not have (on average) compact descrip-tions. This criticism has previously been addressed byvarious researchers [5] [2], where it was observed thata No Free Lunch result holds over classes of functionsmuch smaller than the set of all functions. This paper

strengthens those observations, obtaining a sharpenedversion of the No Free Lunch theorem, and also makesmore explicit a type of duality involving functions be-ing optimized and algorithms being used to optimizethem. The paper closes with observations regardingthe No Free Lunch theorem and problem descriptionlength.2 Search Algorithm FrameworkThis section sets forth a framework for the analysisof deterministic non-repeating blackbox search algo-rithms. To streamline exposition, such search algo-rithms will be referred to simply as algorithms. Thisframework makes it possible to precisely model all pos-sible algorithms as they apply to all functions of agiven �nite domain and range.2.1 De�nitionsLet X and Y be �nite sets, let f : X ! Y be a function,and de�ne yi as f(xi). De�ne a trace of sizem (m � 0)to be a sequence of pairsTm � h(x0; y0); (x1; y1); : : : ; (xm�1; ym�1)iNote that a trace is just an ordered sequence of ele-ments from f (regarding f as a set of ordered pairs).At times the subscript of a trace will be omitted torefer to traces of arbitrary size. Let T m be the set ofall traces of size m, and let T be the set of all traces.Adopt the following notation:T0 = hiT xm � hx0; x1; : : : ; xm�1iT ym � hy0; y1; : : : ; ym�1iTm[i] � (xi; yi)T xm[i] � xiT ym[i] � yi

A concatenation operator k will be used to extend thesize of a trace in the following way:Tm k (x; y) � hTm[0]; Tm[1]; : : : ; Tm[m� 1]; (x; y)iDe�ne a non-repeating trace T to be a trace withunique x components, i.e. T x[i] = T x[j]) i = j.1 Acomplete trace T is de�ned to be a trace that covers thedomain, i.e. for all z 2 X there exists an i such thatT x[i] = z. Because a trace is a sequence of orderedpairs, a non-repeating trace corresponds to a function;when it is complete, the corresponding function is f .Consider a \search" operator g : T ! X which whengiven a trace as an argument returns the next pointin the search space to be examined. A deterministicblackbox search algorithm A corresponds to a searchoperator g, and takes as arguments a trace Tm and afunction f 2 YX and returns the traceTm+1 = Af (Tm) = Tm k (g(Tm); f � g(Tm))For example, the �rst two steps of deterministic black-box search algorithm A would proceed as follows:T1 = Af (T0) = T0 k (g(T0); f � g(T0))T2 = Af (T1) = T1 k (g(T1); f � g(T1))Such algorithms therefore operate in discrete stepswhere each step generates a new pair that is concate-nated into the trace. Note that the search operatorg is used to generate the x components of the trace,and that function f is used to evaluate the utilityof those points; this reects the separation between\exploration" (choosing the next point in the searchspace) and \�tness evaluation" (evaluating the utilityof that new point). Multiple applications of these al-gorithms will be abbreviated in the natural way, i.e.Amf (T0) = Tm, and in particular, A0f (T0) = T0.A non-repeating blackbox search algorithm|referredto simply as algorithm|is de�ned to be a black-box search algorithm whose range contains only non-repeating traces. The largest trace an algorithm couldgenerate is clearly a complete trace which has size jX j.After m steps, algorithm A and function f will gen-erate trace Tm from initial trace T0. In this paper al-gorithms always start from the empty trace T0, whichmay seem a limitation. However, algorithms with anarbitrary initial trace size are actually special casesof algorithms that start from the empty trace, as thefollowing illustrates: Consider algorithm A and initialtrace Tm. A corresponds to another algorithm A0 that1This paper will follow the convention that free vari-ables are universally quanti�ed.

given initial trace T0 will generate Tm after m steps,and will behave exactly as A afterwards. Designatingan initial trace is thus simulated by using a slightlymodi�ed algorithm that starts at T0. In other words,algorithms that can set all points in their traces arepowerful enough to encompass algorithms that can-not.Two algorithms A and B will be considered identicalif and only if they both generate the same completetrace for all f 2 YX , i.e.:AjX jf = BjX jf for all f 2 YX :2.2 No Free LunchDe�ne a performance vector of length m to be a se-quence of m values from Y . The performance vectorassociated with trace Tm is T ym. A performance vec-tor can thus be said to be derived from a trace, anda function and an algorithm together can be said togenerate a performance vector from T0.The length m trace Amf (T0) generated by algorithmA and function f will be abbreviated by Tm(A; f).Let Vm(A; f) denote the length m performance vectorgenerated by A and f . The size subscripts may beomitted when not needed. Note that the performancevector Vm(A; f) is closely related to Tm(A; f),Vm(A; f) = (Tm(A; f))yDe�ne an overall measure of algorithm A and set offunctions F to be a function that maps the set of per-formance vectors generated by A and F to a real num-ber. An overall measure can be used to compare theoverall performance of two algorithms on a set of func-tions, and if the two algorithms have identical overallmeasures, it can be said that they perform equallywell over F . An example of an overall measure wouldbe to take a performance vector measure M (whichmaps a performance vector to a real number), ap-ply it to every element in F and then combine theresults in some symmetric way, such as the averagePf2F M(V (A; f))=jF j.De�ne an No Free Lunch result over F to be a situa-tion where any two algorithms will have equal overallperformance with respect to the set of functions F .Four equivalent statements of the No Free Lunch the-orem are given below. Where ambiguous, the set offunctions involved is YX .NFL1: For any overall measure, each algorithm per-forms equally well.The following is the pivotal idea contained in the proof

by Radcli�e and Surry [5], phrased more directly in thelanguage of the current framework.NFL2: For any two algorithms A and B, and forany function f , there exists a function g such thatV (A; f) = V (B; g).The following is the basis of the No Free Lunch proofgiven by Schumacher[6].NFL3: Every algorithm generates precisely the samecollection of performance vectors when all functionsare considered.Schumacher has proved in addition that V (A; f) =V (A; g) =) f = g, i.e., the collections referred to inNFL3 are actually sets [6]. This fact is a key observa-tion in demonstrating the equivalence of NFL1, NFL2,NFL3, and NFL4.As de�ned above, an overall measure is a functionof a set of performance vectors. Consider insteada weighted overall measure in which a performancevector measure M applied to each performance vec-tor is weighted according to the function that gener-ates it, i.e. W (f)M(V (A; f)), and summed over f . Aweighted overall measure is not generally subject tothe No Free Lunch theorem except in the case wherethe functions are equally weighted, i.e. certain func-tions are not deemed more important than others. Thestatement below is essentially the No Free Lunch resultgiven in Wolpert and Macready [8].NFL4: For any equally weighted overall measure, eachalgorithm will perform equally well.A corollary of the No Free Lunch theorem is that if analgorithm performs better than average on one set offunctions, it must perform worse on the complemen-tary set. This is essentially an argument for special-ization: an algorithm will perform well on a small setof functions at the expense of poor performance on thecomplementary set.An even stronger consequence which seems not to havebeen properly appreciated is that all algorithms areequally specialized. This contradicts commonly statedbeliefs (e.g. [4]) about how there can be robust gen-eral purpose algorithms, meaning that they performreasonably well on a broad class of functions at theexpense of not performing extremely well on any setof functions. Since every algorithm has precisely thesame collection of performance vectors when all func-tions are considered (NFL3), it follows that if any al-gorithm is robust, then every algorithm is, and if somealgorithm is not robust, then no algorithm can be!

3 Sharpening No Free LunchLet f : X ! Y be a function and let � : X ! X be apermutation (i.e. � is one-to-one and onto). The per-mutation �f of f is the function �f : X ! Y de�nedby �f(x) = f(��1(x)).De�ne a set F of functions to be closed under permu-tation if for every f 2 F , every permutation of f isalso in F .Let A be an algorithm with search operator g and let� be a permutation (of X). The permutation �A ofA is the algorithm with search operator �g de�ned by�g(�) = ��1(g(�x(�))) where �x(�) operates on the xvalues of trace � by applying � to each of them, whileleaving the y values untouched.THEOREM: IfTn(A; �f) = h(x0; y0); : : : ; (xn�1; yn�1)ithenTn(�A; f) = h(��1(x0); y0); : : : ; (��1(xn�1); yn�1)iProof: By induction on the length of the traces. Thebase case is true since all traces of length 0 are thesame; T0(�A; f) = T0(A; �f) = hi. Assume the induc-tive hypothesis (i.e., the equalities in the statement ofthe theorem). By de�nition,�g(Tn(�A; f)) = ��1 � g(�x(Tn(�A; f))= ��1 � g(Tn(A; �f)) = ��1(xn)Moreover, f(��1(xn)) = �f(xn) = yn. Accordingly:Tn+1(A; �f) = Tn(A; �f) jj (xn; yn)Tn+1(�A; f) = Tn(�A; f) jj (��1(xn); yn)Which completes the proof. 2COROLLARY (\Duality"): V (�A; f) = V (A; �f)This Corollary is true since, by the previous theorem,the y values are the same in both traces. This corollaryis striking in the way that it shows a correspondencebetween a permutation of an algorithm and a permu-tation of a function. The following Lemma is an easyconsequence of NFL2.LEMMA1: If the set of functions F is closed underpermutation, then there is a No Free Lunch result overF .Proof: Let A and B be arbitrary algorithms. Ifone can show the sets S1 = fV (A; f) : f 2 Fg andS2 = fV (B; h) : h 2 Fg, are equal, then any twoalgorithms will provide the same data for computing

their combined performance measures, and thereforethe same result will be obtained. By NFL2, there ex-ists a function h such that V (A; f) = V (B; h). Be-cause these two performance vectors are equal, h mustbe a permutation of f , and thus f 2 F =) h 2 F .Hence S1 � S2. The reverse containment follows bysymmetry. 2The previous lemma was an intermediate result inRadcli�e and Surry's proof of the No Free Lunch the-orem [5]. The converse of this lemma is also true.LEMMA2: If a No Free Lunch result holds over the setof functions F , then F is closed under permutation.Proof: Assume by way of contradiction that a NoFree Lunch result holds over the set F , but that Fis not closed under permutation, i.e., the functionf 2 F has a permutation g which is not in F . Con-sider an arbitrary algorithm A. Let M(V (A; f)) = 1,and let M equal zero for all other performance vec-tors generated by A. By NFL3 and the paragraphfollowing it, for every algorithm B there exists a func-tion hB (the subscript on h indicates dependence onB) such that M(V (B; k)) = 1 () k = hB . Letthe overall measure be the sum Pk2F M(V (B; k)).Note that this sum is 1 when B = A, and since aNo Free Lunch result is assumed over F , the sum is1 for every algorithm B. As f and g are permuta-tions, let f = �g. By duality, V (A; f) = V (A; �g) =V (�A; g), and thus M(V (�A; g)) = 1. Accordingly,Pk2F M(V (�A; k)) = 0 (since M(V (�A; k)) is nonzero only for k = h�A = g =2 F), a contradiction. 2Combining the previous lemmas yields the followingsharpened version of the No Free Lunch theorem:NFL: A No Free Lunch result holds over the set offunctions F if and only if F is closed under permuta-tion.4 NFL and Permutation ClosureIn this section, some consequences of the previous re-sults are illustrated.De�ne the permutation closure P (F) of a set of func-tions F � YX byP (F) = f�f : f 2 F; and � is a permutation (of X)gNote that for any sets F; F 0 of functions (from YX),P (F [F 0) = P (F) [P (F 0)By construction, P (F) is closed under permutationand therefore a No Free Lunch result holds over P (F)for any set F � YX (and hence over unions of such

sets). It bears mentioning that in particular NFL1,NFL2, NFL3, and NFL4 are valid with respect toP (F). Not only do all algorithms display equal behav-ior over P (F) for some overall measure of performance(NFL1), they also generate exactly the same set of per-formance vectors (NFL3) and therefore have identicalcollections of objective function values at every timestep.An equivalence relation � may be de�ned with respectto permutations. Functions f and g are said to beequivalent, denoted by f � g if and only if there existsa permutation � (of X) for which f = �g. Similarly,algorithms A and B are said to be equivalent, denotedby A � B if and only if there exists a permutation �(of X) for which A = �B.Let the equivalence class of function f be denoted by[f], and let the equivalence class of algorithm A bedenoted by [A]. To simplify notation, let A denote aset of algorithms, let F denote a set of functions, andde�ne V (A;F) and V (A; f) as followsV (A;F) = fV (A; f) : f 2 FgV (A; f) = fV (A; f) : A 2 AgSince [f] = P (ffg), NFL applies; therefore, for anygiven algorithms A and B,V (A; [f]) = V (B; [f])It follows immediately from the de�nitions that if Fis closed under permutation and f 2 F then [f] � F .Therefore the case above (i.e., F = [f]) is the �nestlevel of granularity at which a No Free Lunch result canhold. Moreover, any set F of functions closed underpermutation is a disjoint union of equivalence classes,thus No Free Lunch results hold only over unions ofequivalence classes.By de�nition and duality,V ([A]; f) = fV (�A; f) : � is a permutationg= fV (A; �f) : � is a permutationg= V (A; [f])Bringing NFL into the picture yields the result thatfor any given algorithms A and B,V ([A]; f) = V (A; [f]) = V (B; [f]) = V ([B]; f)It follows that for any given algorithm A and any givenfunction f , the following are identical:� The average performance over all algorithms usingfunction f .

� The average performance over an arbitrary equiv-alence class of algorithms using function f .� The average performance over all functions in theequivalence class [f] using algorithm A.Moreover, the phrase \average performance" can bereplaced with \set of performance vectors" in the listabove. Whereas most No Free Lunch results have beenexpressed in terms of some measure of performance, allalgorithms in fact display exactly the same behaviorover any set of functions closed under permutation inthe sense that the performance vectors are identical.5 NFL Equivalence Class ExamplesIn this section, some extreme examples of permutationclosure are presented. These examples not only illus-trate applications of NFL, but also set the stage fordiscussing the notion of problem description length.For conciseness, a function will be represented by alist of its output values (i.e., as a sequence; the pointsof the domain are implicitly the indices into the se-quence).The smallest permutation closures correspond to func-tions that return a single value. For example,f = h0; 0; 0; 0i =) [f] = ffgSuch problems are in some sense uninteresting froma search point of view, since a single evaluation auto-matically determines the maximum and minimum ofthe evaluation function.The smallest sets corresponding to a permutation clo-sure where the evaluation functions display variabilityare needle-in-a-haystack functions. Such a function fhas the same evaluation (call it 0) everywhere exceptat one point in the domain, where a better evaluationis found (call it 1). Since there is exactly one point inthe space with a di�erent evaluation, the size of [f] isjX j. For examplef = h0; 0; 0; 1i =)[f] = fh0; 0; 0; 1i; h0; 0; 1; 0i; h0; 1; 0; 0i; h1; 0; 0; 0igAn interesting class of functions is the set of decisionproblems which return Boolean values (Y = f0; 1g).Note that NP-Complete problems are frequently de-�ned as particular decision problems. This class isin one-to-one correspondence with the set of lengthN = j X j binary strings, and is therefore equal to itspermutation closure. It is moreover a disjoint union of

equivalence classes [f1]; : : : ; [fN] wherefi = h 1 : : : 1| {z }i times ; 0; : : : ; 0ij [fi] j = �Ni �As a �nal example, consider functions that are one-to-one and onto. This class of functions also equalsits permutation closure. Without loss of generality,X = Y and such functions are permutations. Thereis a single equivalence class, namely [I] where I is theidentity function, and its size is N ! (where N =jX j).6 Problem Description LengthThe average description length for functions that aremembers of a permutation closure is discussed in thissection. Although this is only done for select cases,the cases illustrate the extremes in average descriptionlength.Whitley [7] has previously made (a variation on) theobservation that given any permutation � (on X), thepermutation closure [�] is the set of all N! permuta-tions, and the average description length for its mem-bers is
(N lnN) bits, where N = jX j.A more general observation is that given any set F offunctions, the average description length of membersin P (F) is
(ln k) bits, where k = jP (F) j.An interesting question is: when is the the averagedescription length over the members of some permu-tation closure polynomial and when it it exponential?A correct, but somewhat circular answer, is that theaverage description length is polynomial when ln k ispolynomial. Nevertheless, we can still use this idea toexamine average description length for examples whichprovide bounding cases.It has already been noted above that the average de-scription length for permutations is
(N lnN) bits.Note, moreover, that an explicit de�nition of a per-mutation (as a sequence, as described in the previoussection) would take O(N lnN) bits; there are N im-ages (positions in the sequence) to de�ne, and eachtakes O(lnN) bits (since there are N points in therange). Therefore, on average, the permutation clo-sure [�] contains incompressible functions; the averagedescription length of a member is the same order ofmagnitude as the size of an explicit de�nition (as asequence).At the other extreme is the permutation closure [f] ofa needle-in-a-haystack function f (described above).

Explicit de�nition of a member (of [f]) requires
(N)bits, whereas the average description length is O(lnN)bits. Therefore members of this permutation closureare highly compressible.These two extreme cases illustrate that No Free Lunchresults are independent from whether or not the set offunctions (over which a No Free Lunch result holds) iscompressible.7 ConclusionsNo Free Lunch theorems in various equivalent formsare reviewed. A duality result is proven and used toobtain a sharpened No Free Lunch theorem, in thesense that both necessary and su�cient conditions areobtained.It is proven that the permutation closure of a singlefunction is the �nest level of granularity at which aNo Free Lunch result can hold. The average descrip-tion length of members of permutation closures is com-puted (for select cases) and is related to compressibil-ity. It is seen that No Free Lunch results are inde-pendent from whether or not the set of functions (overwhich a No Free Lunch result holds) is compressible.References[1] J. Culberson. On the Futility of Blind Search. Evo-lutionary Computation, 6(2):109{127, 1999.[2] T. English. Practical implications of new results inconversation of optimizer performance. In Schoe-nauer et al., editor, Parallel Problem Solving fromNature, 6, pages 69{78, 2000.[3] Thomas English. Information is Conserved in Opti-mization. IEEE Trans Evolutionary Computation.[4] David Goldberg. Genetic Algorithms in Search,Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989.[5] N.J. Radcli�e and P.D. Surry. Fundamental lim-itations on search algorithms: Evolutionary com-puting in perspective. In J. van Leeuwen, editor,Lecture Notes in Computer Science 1000. Springer-Verlag, 1995.[6] C. Schumacher. Fundamental Limitations ofSearch. PhD thesis, University of Tennessee, De-partment of Computer Sciences, Knoxville, TN,2000.

[7] D. Whitley. Functions as permutations: regardingno free lunch, walsh analysis and summary statis-tics. In Schoenauer et al., editor, Parallel ProblemSolving from Nature, 6, pages 169{178, 2000.[8] David H. Wolpert and William G. Macready. Nofree lunch theorems for search. Technical ReportSFI-TR-95-02-010, Santa Fe Institute, July 1995.[9] David H. Wolpert and William G. Macready. Nofree lunch theorems for optimization. IEEE Trans-actions on Evolutionary Computation, 4:67{82,1997.

View publication statsView publication stats

https://www.researchgate.net/publication/2564354

