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ABSTRACT
For a number of random constraint satisfaction problems, such as
random k-SAT and random graph/hypergraph coloring, there are
very good estimates of the largest constraint density for which so-
lutions exist. Yet, all known polynomial-time algorithms for these
problems fail to find solutions even at much lower densities. To
understand the origin of this gap we study how the structure of
the space of solutions evolves in such problems as constraints are
added. In particular, we prove that much before solutions disap-
pear, they organize into an exponential number of clusters, each
of which is relatively small and far apart from all other clusters.
Moreover, inside each cluster most variables are frozen, i.e., take
only one value. The existence of such frozen variables gives a sat-
isfying intuitive explanation for the failure of the polynomial-time
algorithms analyzed so far. At the same time, our results estab-
lish rigorously one of the two main hypotheses underlying Survey
Propagation, a heuristic introduced by physicists in recent years
that appears to perform extraordinarily well on random constraint
satisfaction problems.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on discrete structures; G.3 [Probability and Statistics]: Stochastic
Processes

General Terms
Algorithms, Theory

Keywords
Random formulas, Satisfiability, Survey Propagation

1. INTRODUCTION
For a number of random Constraint Satisfaction Problems (CSP),

by now we have very good estimates of the largest constraint den-

∗Work supported by National Science Foundation Faculty Early
CAREER Development Award CCF–0546900.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

sity (ratio of constraints to variables) for which typical problems
have solutions. For example [3], a random graph of average degree
d is with high probability1 k-colorable if d < (2k − 2) ln(k − 1),
but w.h.p. non-k-colorable if d > (2k − 1) ln k. This implies that
for every d > 0, the chromatic number of a random graph with
average degree d is either kd or kd + 1, where kd is the smallest
integer k such that d < 2k ln k.

Algorithmically, it is very easy to get a factor-2 approximation
for the graph coloring problem on random graphs. The algorithm
“repeatedly pick a random vertex and assign it a random available
color” will w.h.p. succeed in coloring a random graph of average
degree d if originally each vertex has 2kd available colors. Al-
ternatively, k colors suffice when d < k ln k. In spite of sig-
nificant efforts over the last 30 years, no improvement has been
made over this trivial algorithm. Specifically, no polynomial-time
algorithm is known that k-colors random graphs of average degree
d = (1 + ε)k ln k, for some fixed ε > 0 and arbitrarily large k.

In the random k-SAT problem one asks if a random k-CNF for-
mula, Fk(n, m), with n variables and m clauses is satisfiable. It
is widely believed that the probability that such a formula is sat-
isfiable exhibits a sharp threshold. Specifically, the Satisfiability
Threshold Conjecture asserts that rk = r∗k for all k ≥ 3, where

rk ≡ sup{r : Fk(n, rn) is satisfiable w.h.p.} ,

r∗k ≡ inf{r : Fk(n, rn) is unsatisfiable w.h.p.} .

It is easy to see that r∗k ≤ 2k ln 2, since the probability that
at least one assignment satisfies Fk(n, rn) is bounded by 2n(1 −
2−k)rn, a quantity that tends to 0 for r ≥ 2k ln 2. Recently, it was
shown that random k-CNF formulas have satisfying assignments
for densities very close to this upper bound [5]. Specifically, it was
proven that for all k ≥ 3,

rk > 2k ln 2 − (k + 1) ln 2 + 3

2
. (1)

As for the k-coloring problem, the lower bound of [5] on the
largest density for which solutions provably exist is non-constructive,
based on the second moment method. Here, the gap relative to al-
gorithms is ever greater: no polynomial algorithm is known that
finds satisfying assignments in a random k-CNF formula when
r = ω(k) 2k/k, for any function ω(k) → ∞ (arbitrarily slowly).
In Table 1, we illustrate this gap for some small values of k. For
k = 3, the upper bound on r∗k comes from [12], while for k > 3
from [11, 18]. The best algorithmic lower bound for k = 3 is
from [17], while for k > 3 it is from [14].

Similar results (and gaps) exist for a number of other constraint
satisfaction problems, such as random NAE k-SAT and hypergraph

1We will say that a sequence of events En occurs with high proba-
bility (w.h.p.) if limn→∞ Pr[En] = 1.
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k 3 4 7 10 20 21
Best known upper bound for r∗k 4.506 10.23 87.88 708.94 726, 817 1, 453, 635
Best known lower bound for rk 3.52 7.91 84.82 704.94 726, 809 1, 453, 626

Best known algorithmic lower bound 3.52 5.54 33.23 172.65 95, 263 181, 453

2-coloring, regular random graph coloring, random Max k-SAT,
and others (for example, see [4]). Indeed, this phenomenon seems
to occur in nearly all random CSP in which the underlying con-
straint graph is sparse and random, making it natural to ask if there
is a common underlying cause. (The bipartite graphs where con-
straints are adjacent to the variables they bind are also known as
factor graphs.)

As it turns out, sparse random CSP have been systematically
studied by physicists in the past few decades under the name “mean-
field diluted spin-glasses”. Spins here are the variables (reflecting
the notion that variables have small, discrete domains), the term
glass refers to the fact that the system has not been allowed to re-
lax to a configuration in which spins interact in a mutually agree-
able way (reflecting that different constraints prefer different val-
ues for the variables), diluted refers to the fact that the factor graph
is sparse (reflecting that each spin interacts with only a few other
spins), while “mean field” refers to the fact that the factor graph is
random, i.e., there is no underlying geometry mandating the inter-
actions. The interest in such “unphysical” systems is partly moti-
vated by the fact that in many statistical mechanics problems where
the variables do lie on a lattice such as Z

d, for d sufficiently large
(but finite), the effect of the underlying geometry vanishes.

Perhaps more surprising is the fact that in the last few years,
motivated by ideas developed for the study of materials, physicists
have put forward a hypothesis for the origin of the aforementioned
algorithmic gap in random CSP and, most remarkably, a method
for overcoming it. Specifically, Mézard, Parisi, and Zecchina [22]
developed an extremely efficient algorithm, called Survey Propa-
gation (SP), for finding satisfying assignments of random formu-
las in the satisfiable regime. For example, their algorithm typically
finds a satisfying truth assignment of a random 3-CNF formula with
n = 106 variables and 4.25n clauses in minutes (and appears to
scale as O(n log n)). No other algorithm practically solves formu-
las of such density with n = 104.

Our original motivation for this work was to see if some (any!)
of the physically-motivated ideas underlying SP can be made math-
ematically rigorous. More generally, we believe that understanding
the geometry of the space of satisfying truth assignments in random
formulas is essential for understanding the behavior of algorithms
on them. This is particularly true for the case of random-walk type
algorithms, which we view as the first natural class to target armed
with such an understanding and for which very little is known rig-
orously, with the notable exception of [7].

We make significant progress in this goal by proving that already
much below the satisfiability threshold, the set of satisfying assign-
ments fragments into exponentially many connected components.
These components are relatively small in size, far apart from one
another, and inside each one the majority of variables are “frozen”,
i.e., take only one value. As the formula density is then increased
towards the threshold, the fraction of frozen variables in each com-
ponent tends to 1, causing the connected components to in volume
and grow further apart from one another.

Our results are in perfect agreement with the picture hypothe-
sized by the physicists. Moreover, as we discuss below, the exis-
tence of frozen variables provides a good explanation for the origin
of the barrier faced by all analyzed algorithms on random CSP, i.e.,
“local”, DPLL-like algorithms. Finally, we show that one of the

two main assumptions underlying SP regarding the structure of the
set of solutions is essentially correct. This brings us closer to a
rigorous analysis of SP and answers affirmatively the main open
question raised by Maneva, Mossel and Wainwright in [19].

Specifically, we prove that for all k ≥ 9, the connected compo-
nents of the set of satisfying assignments of random formulas have
non-trivial cores, as assumed by SP (see Definition 9). We point
out that it is not clear whether this is true for small k. Indeed, [19]
gave experimental evidence that for k = 3, random formulas do
not have non-trivial cores. As we will see, our methods also give
evidence in that direction, suggesting that the requirement k > 3, is
not an artifact of our analysis. This gives additional motivation for
the “core-like” objects introduced in [19] whose existence would
relate to the success of SP for small k (we discuss this point further
in Section 4.1).

In the next section we give an informal discussion relating the
performance of DPLL-like algorithms on random formulas to no-
tions such as Gibbs sampling and long-range correlations. This is
meant to provide intuition for the empirical success of SP and mo-
tivate our results. We emphasize that while both the discussion and
the results are about random k-SAT, this is not strictly necessary:
our ideas and proofs are quite generic, and should generalize read-
ily to many other random CSP, e.g., graph coloring.

1.1 DPLL algorithms, Belief Propagation, and
Frozen Variables

Given a satisfiable formula F on variables v1, v2, . . . , vn it is
easy to see that the following simple procedure samples uniformly
from the set of all satisfying assignments of F :

Start with the given formula F

For i = 1 to n do:

1. Compute the fraction, pi, of satisfying assignments
of the current formula in which vi takes the value 1.

2. Set vi to 1 with probability pi and to 0 otherwise.

3. Simplify the formula.

Clearly, the first step in the loop above is meant only as a thought
experiment. Nevertheless, it is worth making the following two ob-
servations. The first is that if we are only interested in finding some
satisfying assignment, as opposed to sampling a uniformly random
one, then we do not need to compute exact marginals. For exam-
ple, if we always set vi to 1 iff pi ≥ 1/2, then we simply need
to ensure that if a variable takes the same value x in all satisfying
assignments, then x should be the majority value in its computed
marginal. The second observation is that the order in which we
set the variables does not need to be determined a priori. That is,
we can imagine that in each step we compute marginals for all re-
maining variables and that for each marginal we have an associated
confidence. To improve our chances of avoiding a fatal error, we
can then set only the variable for which we have highest confidence.

The above two elementary observations actually capture all al-
gorithms that have been analyzed so far on random formulas (and,
in fact, most DPLL-type algorithms used in practice). Observe, for
example, that both the unit-clause and the pure literal heuristics
follow immediately from the above considerations. In the case of
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unit-clause, the participation of a variable v in a unit clause c allows
us to infer its marginal with perfect confidence and thus setting v is
an “obvious” choice. In the case of a pure literal �, again we can in-
fer with certainty the majority marginal of the underlying variable
v (it is the value that satisfies �). In the absence of such obvious
choices, all DPLL-type algorithms attempt to identify a variable
whose marginal can be determined with some confidence. For ex-
ample, below are the choices made in the absence of unit clauses
and pure literals by some of the algorithms that have been analyzed
on random 3-CNF formulas. In order of increasing performance:

UNIT-CLAUSE [10]: select a random variable and assign it a
random value.

3-CLAUSE MAJORITY [9]: select a random variable and as-
sign it its majority value among the 3-clauses.

SHORT-CLAUSE[14]: select a random shortest clause c, a
random variable v in c, and set v so as to satisfy c.

HAPPIEST LITERAL [16]: select a variable whose majority
literal appears in most clauses.

Each of the above heuristics attempts to compute marginals based
on a different set of evidence, the content of which ranges from
completely empty [10], to considering all the clauses containing
each variable [16]. Correspondingly, the largest density for which
these algorithms succeed on random 3-CNF formulas ranges from
8/3 for [10] to 3.42 for [16]. UNIT-CLAUSE, in fact, succeeds for
every k as long as r < 2k/k and, as we mentioned earlier, no
algorithm is known to beat this bound asymptotically. Given that
improving upon the empty set of evidence is rather easy, it is tempt-
ing to think that by considering a larger set of evidence for each
variable one can do significantly better. For example, consider an
algorithm Ad which computes a marginal for each variable v based
on the clauses that appear in the depth-d neighborhood of v in the
factor graph. One could hope that as d grows, such an algorithm
would do very well, perhaps even reach the satisfiability threshold.

Physicists say it is not so. The hope that local algorithms could
do well on random formulas rests on the presumption that the influ-
ence exerted on a variable v by other variables, diminishes rapidly
with their distance from v in the factor graph. This corresponds to
there being “no long range correlations” in random formulas, e.g.,
the joint probability distribution of a random finite subset of the
variables should be, essentially, the product of their marginals.

Unfortunately, the existence of numerous, far-apart, connected
components of satisfying assignments can induce long-range cor-
relations among the variables, eliminating such hopes. The reason
is that if one considers the variables in the boundary of a partic-
ular tree, then at sufficiently large densities their joint behavior is
dominated by only a small number of connected components of
satisfying assignments: the ones in which most of these variables
are frozen, freeing up other variables to take multiple values and
amplify the contribution of that particular joint collection of values
to the variable marginals. In other words, in such a setting, assum-
ing that the variables in the boundary of a variable’s neighborhood
behave independently with respect to the rest of the formula, can
be very far off from the truth.

To overcome the above issue, physicists hypothesized that the
above clustering is the only significant source of long-range corre-
lations. (Very) roughly speaking, this amounts to modeling each
connected component of satisfying assignments as a subcube that
results by selecting a large fraction of the variables and freezing
them independently at random, while leaving the rest (largely) free.
Our results imply that this simplified view of clusters is not very far
off the truth.

1.2 Organization
In the next section we give mathematical statements of our main

results, both for the existence of exponentially many well-separated
clusters and for the existence of frozen variables in each cluster.
In Section 3 we outline the proof of the results on the existence of
clusters and explain their relationship to the work of Mora, Mézard,
and Zecchina [20, 21]. In Section 4 we provide some background
on Survey Propagation and explain how our results on frozen vari-
ables relate to the implicit hypothesis made by Mézard, Parisi, and
Zecchina in their derivation of Survey Propagation [22], and how
our results answer the main open question of Maneva, Mossel and
Wainwright [19]. In Section 5 we introduce the probabilistic setup
for our analysis and in Section 6 we discuss how it relates to the
case k < 8 and to the “planted assignment” model. Proving our
main result on the existence of frozen variables boils down to a
question in large deviations and an associated multi-dimensional
optimization problem. While we cannot include the solution to this
optimization problem here due to lack of space, in Section 7 we
show how we arrive at it and give an overview of how we solve it.

2. STATEMENT OF RESULTS
We first need to introduce some definitions. Throughout, we as-

sume that we are dealing with a CNF formula F , defined over vari-
ables X = x1, . . . , xn, and we let S(F ) ⊆ {0, 1}n denote the
satisfying assignments of F .

DEFINITION 1. Given two arbitrary sets X, Y ⊆ {0, 1}n, their
distance is the minimum Hamming distance between any x ∈ X
and y ∈ Y . We will say that x, y ∈ {0, 1}n are adjacent if they
have Hamming distance 1.

• The clusters of a formula F are the connected components
of S(F ).

• The diameter of a cluster C is the maximum Hamming dis-
tance between any pair σ1, σ2 ∈ C.

Our first set of results is captured by the following:

THEOREM 2. For every k ≥ 8, there exist ak < bk < 1/2, and
r < rk such that w.h.p. in Fk(n, rn) all of the following hold:

1. Every cluster has diameter at most akn,

2. Every pair of satisfying assignments has distance either less
than akn or more than bkn, and

3. There are (1 + ζ)n clusters that have distance at least bkn
from one another, for some ζ > 0 independent of k.

Theorem 2 implies that for all k ≥ 8, at some point below the
satisfiability threshold, the set of satisfying assignments consists of
exponentially many “cluster-regions” (unions of clusters), such that
each region has small diameter (at most akn), and is well-separated
from all other cluster-regions (by a distance of at least bkn). To see
this start with any cluster C and consider the set R(C) ⊆ {0, 1}n

of truth assignments that have distance at most akn from C and the
set B(C) ⊆ {0, 1}n of truth assignments that have distance at most
bkn from R(C). Observe now that the set B(C) \ R(C) cannot
contain any satisfying truth assignments, as any such assignment
would be at distance akn < d < bkn from some assignment in C.
Thus, the set of satisfying assignments in R(C) is a union of clus-
ters (cluster-region), all of which have distance at least bkn from
any cluster not in the region.
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The picture suggested by Theorem 2 comes in sharper focus for
large k. Specifically, Theorem 3 below asserts that for sufficiently
large k, sufficiently close to the threshold, the cluster regions be-
come arbitrarily small and maximally far apart.

THEOREM 3. For every δ > 0, if r = (1 − ε(δ))rk, then for
all k ≥ k0(δ), Theorem 2 holds with ak = 1/k and bk = 1/2− δ,
where ζ > 0 is independent of δ and k.

Theorems 2 and 3 follow from considerations similar to those
first developed in [20, 21]. Indeed, part 2 of our Theorem 2 was
already proven in [20], while part 1 follows easily from part 2. The
new contribution is part 3, i.e., establishing the existence of expo-
nentially many clusters (as opposed to “at least two”). We only state
all three parts here for ease of reference and because our derivation
makes them fit well together.

Our main results in this paper come from taking an approach that
allows us to “look inside” clusters. This allows to prove, for exam-
ple, that significantly below the satisfiability threshold the majority
of variables in every cluster are frozen. We note that [20, 21] do not
give any results on frozen variables. In proving this result we also
prove that random formulas have non-trivial cores for all k ≥ 9,
thus also answering the main question of [19] (we postpone the
definition of cores until Section 4).

DEFINITION 4. The projection of a variable xi in a set of sat-
isfying assignments C, denoted as πi(C), is the union of the values
taken by xi over the assignments in C. If πi(C) 	= {0, 1} we say
that xi is frozen in C.

A strength of our approach is that it allows to prove not just the
existence, but the pervasiveness of frozen variables. Specifically,
Theorem 5 below asserts that for sufficiently large k, as we ap-
proach the satisfiability threshold, the fraction of frozen variables
in every cluster gets arbitrarily close to 1.

THEOREM 5 (Main Result). For every α > 0 and all k ≥
k0(α), there exists cα

k < rk, such that for all r ≥ cα
k , w.h.p. every

cluster of Fk(n, rn) has at least (1 − α)n frozen variables.
As k grows,

cα
k

2k ln 2
→ 1

1 + α(1 − α)
.

By taking α = 1/2 in Theorem 5 we see that for sufficiently large
k, every single cluster already has a majority of frozen variables at
r = (4/5 + δk)2k ln 2, where δk → 0, i.e., for a constant fraction
of the satisfiable regime. More generally, Theorem 5 asserts that as
k grows and the density approaches the threshold, clusters shrink
in volume and grow further apart by having smaller and smaller
internal entropy.

The analysis that establishes Theorem 5 also allows us to show

COROLLARY 6. For every k ≥ 9, there exists r < rk such that
w.h.p. every cluster of Fk(n, rn) has frozen variables.

It remains open whether frozen variables exist for k ≤ 8. As we
mentioned above, [19] reported experimental evidence suggesting
that frozen variables do not exist for k = 3. We will see that our
proof also gives evidence in this direction for small values of k.

3. CLUSTERING: PROOF SKETCH AND
RELATED WORK

There are two main ingredients for proving Theorems 2 and 3.
The first excludes the possibility of pairs of truth assignments at

certain Hamming distances. Specifically, it is easy to show that the
expected number of pairs of satisfying assignments in Fk(n, rn)
with Hamming distance z is at most Λ(z/n, k, r)n, where

Λ(α, k, r) =
2(1 − 21−k + 2−k(1 − α)k)r

αα(1 − α)1−α
.

Therefore, if for some k, r and z = αn we have Λ(α, k, r) < 1,
it immediately follows by the union bound that w.h.p. in Fk(n, rn)
there are no pairs of satisfying assignments that have distance z.
In Figure 1 we draw the function Λ (upper curve), and a related
function Λb (lower curve, to be discussed shortly), for α ∈ [0, 3/4]
with k = 8 and r = 169.
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Figure 1: Λ(α, 8, 169) and Λb(α, 8, 169) for α ∈ [0, 3/4].

We see that Λ(α, 8, 169) < 1 for α ∈ [0.06, 0.26] ∪ [0.68, 1],
implying that w.h.p. there is no pair of satisfying assignments with
Hamming distance αn in F8(n, 169n) for such α. Note that by
the results in [5], we know that F8(n, 169n) is w.h.p. satisfiable
and, thus, excluding the possibility of satisfying pairs at certain
distances is a non-vacuous statement.

Part 2 of Theorems 2 and 3 is established by applying exactly
the above line of reasoning for an appropriate choice of r < rk

and estimating the corresponding location of the two smallest roots
ak, bk of the equation Λ(α, k, r) = 1. To prove Part 1 of both
theorems, we additionally note that if a cluster C has diameter d,
then it must contain pairs of solutions at every distance 1 ≤ t ≤
d. To see this, take any pair σ1, σ2 ∈ C that have distance d,
any path from σ1 to σ2, and observe that the sequence of distances
from σ1 along the vertices of the path must contain every integer in
{1, . . . , d}. Therefore, if ak is the smallest root of Λ(α, k, r) = 1,
w.h.p. every cluster in Fk(n, rn) has diameter at most akn.

Proving Part 3 of Theorems 2 and 3 requires greater sophistica-
tion and leverages in a strong way the results of [5]. This is because
having Λ(α, k, r) > 1 for some α, k, r does not imply that pairs
of satisfying assignments exist for such α, k, r: in principle, the
behavior of Λ could be determined by a tiny minority of solution-
rich formulas. Hence the need for the second moment method [2,
5]. Specifically, say that a satisfying assignment is balanced if its
number of satisfied literal occurrences is in the range km/2±√

n,
and let X be the number of balanced assignments in Fk(n, rn).
In [5], it was shown that E[X]2 = Λb(1/2, k, r)n and

E[X2] < D × max
α∈[0,1]

Λb(α, k, r)n ,

for some explicit function Λb and constant D = D(k) > 0. It was
also shown that for all r < 2k ln 2− k, the maximum of Λb occurs
at α = 1/2, implying that for such k, r we have E[X2] < D ×
E[X]2. By the Payley-Zigmund inequality, this last fact implies
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that for any t ≤ E[X],

Pr[X > t] ≥ (E[X] − t)2

E[X2]
. (2)

In [5], inequality (2) was applied with t = 0, per the “sec-
ond moment method”, establishing that Fk(n, rn) has at least one
(balanced) satisfying assignment for all r < 2k ln 2 − k. If in-
stead we take t = E[X]/poly(n), we get that, in fact, with con-
stant probability, X is within a polynomial factor of its expectation
Λb(1/2, k, r)n/2. Since the property “has more than q satisfying
assignments” has a sharp threshold [13], our last assertion implies
that, in fact, for every r < 2k ln 2 − k, Fk(n, rn) has at least
Λb(1/2, k, r)n/2/poly(n) satisfying assignments w.h.p.

To prove that there are exponentially many clusters, we divide
the above lower bound for the total number of satisfying assign-
ments with the following upper bound for the number of truth as-
signments in each cluster. Recall that ak is the smallest root of
Λ(α, k, r) = 1 and let

h(k, r) = max
α∈[0,ak]

Λ(α, k, r) .

If B is the expected number of pairs of truth assignments with
distance at most akn in Fk(n, rn), it follows that B < poly(n) ×
h(k, r)n, since the expected number of pairs at each distance is at
most Λ(α, k, r)n and there are no more than n + 1 possible dis-
tances. By Markov’s inequality, this implies that w.h.p. the num-
ber of pairs of truth assignments in Fk(n, rn) that have distance
at most akn is poly(n) × h(k, r)n. Recall now that w.h.p. every
cluster in Fk(n, rn) has diameter at most akn. Therefore, w.h.p.
the total number of pairs of truth assignments in each cluster is at
most poly(n) × h(k, r)n. Thus, if h(k, r) < Λb(1/2, k, r), we
can conclude that Fk(n, rn) has at least

1/poly(n) ×
„

Λb(1/2, k, r)

h(k, r)

«n/2

clusters. Indeed, the higher of the two horizontal lines in Figure 1
highlights that h(8, 169) < Λb(1/2, 8, 169).

More formally, to establish Part 3 of Theorem 2 for each k ≥ 8,
we give r < rk such that h(k, r) < Λb(1/2, k, r). In particular,
taking r = 2k−1(1+δk) for some suitably chosen δk → 0 suffices.
For Part 3 of Theorem 3 we need to show that for every ε > 0, if
r = (1 − ε)2k ln 2, then for all k ≥ k0(ε), we have h(k, r) <
Λb(1/2, k, r). Again, this reduces to a (rather tedious) asymptotic
analysis which we omit in this extended abstract.

3.1 Related Work
The observation that if Λ(α, k, r) < 1 then w.h.p. Fk(n, rn) has

no pairs of satisfying assignments at distance αn was first made
and used in [20]. Moreover, in [21] the authors gave an expression
Λ�(α, k, r) for the expected number of locally maximal pairs of
satisfying assignments at each distance, where a pair σ, τ is locally
maximal if there is no variable which has value 0 in σ and flipping
its value in both σ and τ yields a new pair of satisfying assignments.
(If a formula has a pair of satisfying assignments at distance d,
then it always has a locally maximal pair at distance d). Clearly,
Λ�(α, k, r) < Λ(α, k, r) always, but for large k and r = Θ(2k)
the difference is minuscule for all α.

Additionally, in [20, 21] the authors derive an expression for the
second moment of the number of pairs of balanced assignments at
distance αn, for each α ∈ [0, 1]. Whenever, for some α, k, r, the
dominant contribution to this second moment comes from uncorre-
lated pairs of pairs of balanced assignments, this implies that with
constant probability Fk(n, rn) contains at least one (balanced) pair

of assignments at distance αn. We note that determining the dom-
inant contribution to the above second moment rigorously, given
α, k, r, is a highly non-trivial problem which the authors tackle
numerically for small k, and heuristically for general k, i.e., they
simply make a guess for the locus of the maximizer. In particular,
this “fourth moment” optimization problem is much harder than the
already complicated second moment analysis of [5].

Finally, the authors prove that the property “has a pair of satisfy-
ing assignments at distance q” has a sharp threshold, thus boosting
their constant probability result for having a pair of satisfying as-
signments at a given distance to a high probability one. To the
best of our understanding, these three are the only results discussed
in [21]. Combined, they imply that for every k ≥ 8, there is r < rk

and constants ak < bk < ck < 1/2 < dk, such that in Fk(n, rn):

• W.h.p. every pair of satisfying assignments has distance ei-
ther less than akn or more than bkn.

• For every d ∈ [ck, dk] · n, w.h.p. there is a pair of truth
assignments that have distance d.

We note that even if the maximizer in the second moment compu-
tation was determined rigorously and coincided with the heuristic
guess of [21], the strongest statement that can be inferred from the
above two assertions in terms of “establishing clustering” is: for
every k ≥ 8, there is r < rk, such that w.h.p. S(Fk(n, rn)) has at
least two clusters.

In contrast, our Theorem 2 establishes that w.h.p. S(Fk(n, rn))
consists of exponentially many, well-separated cluster regions, each
region containing at least one cluster. Additionally, Theorem 3 es-
tablishes that as k grows and r approaches the threshold, these re-
gions grow maximally far apart and their diameter vanishes.

4. FROZEN VARIABLES: SURVEY PROP-
AGATION AND RELATED WORK

For a cluster C, the string π(C) = π1(C), π2(C), . . . , πn(C)
is the projection of C and we will use the convention {0, 1} ≡ ∗,
so that π(C) ∈ {0, 1, ∗}n. Imagine for a moment that given a
formula F we could compute the marginals of variables over the
cluster projections, i.e., that for each variable we could compute
the fraction of clusters in which the projection is 0, 1, and ∗. Then,
by repeatedly setting variables sensibly, i.e., never setting to 1 − x
a variable whose cluster projection marginal puts all the mass on x,
we are guaranteed to find a satisfying assignment: after each step
there is at least one cluster consistent with our choices so far.

Clearly, being able to perform such marginalization seems quite
far fetched given that even if we are handed a truth assignment σ
in a cluster C, it is not at all clear how to compute π(C) in time
less than |C|. Survey Propagation (SP) is an attempt to compute
marginals over cluster projections by making a number of approxi-
mations. One fundamental assumption underlying SP is that, unlike
the marginals over truth assignments, the marginals over cluster
projections essentially factorize, i.e., if two variables are far apart
in the formula, then their joint distribution over cluster projections
is essentially the product of their cluster projection marginals. De-
termining the validity of this assumption remains an outstanding
open problem.

The other fundamental assumption underlying SP is that approx-
imate cluster projections can be encoded as the solutions of a CSP
whose factor graph can be readily derived from the input formula.
Our results are closely related to this second assumption and es-
tablish that, indeed, the approximate cluster projections used in SP
retain a significant amount of information from the cluster projec-
tions. To make this last notion concrete and enhance intuition, we
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give below a self-contained, but brisk discussion of Survey Propa-
gation. For the sake of presentation this discussion is historically
inaccurate. We attempt to restore history in Section 4.1.

As we said above, even if we are given a satisfying assignment
σ, it is not obvious how to determine the projection of its cluster
C(σ). To get around this problem SP sacrifices information in the
following manner.

DEFINITION 7. Given a string x ∈ {0, 1, ∗}n, we will say that
variable xi is free in x if in every clause c containing xi or xi, at
least one of the other literals in c is assigned true or ∗.

We will refer to the following as a

coarsening-step: if a variable is free, assign it ∗.

Given x, y ∈ {0, 1, ∗}n say that x is dominated by y, written x 

y, if for every i, either xi = yi or yi = ∗.

Consider now the following process:

start at σ and apply coarsening until a fixed point is reached.

LEMMA 8. For every formula F and truth assignment σ ∈
S(F ), every sequence of coarsening steps that reaches a fixed point
reaches the same fixed point w(σ). If σ1, σ2 belong to the same
cluster C, then w(σ1) = w(σ2) � π(C).

PROOF. Trivially, applying a coarsening step to a string x pro-
duces a string y such that x 
 y. Moreover, if xi was free in x,
then yi will be free in y. As a result, if both y, z ∈ {0, 1, ∗}n are
reachable from x ∈ {0, 1, ∗}n by coarsening steps, so is the string
that results by starting at x, concatenating the two sequences of
operations and removing all but the first occurrence of each coars-
ening step. This implies that there is a unique fixed point w(x)
for each x ∈ {0, 1, ∗}n under coarsening. Observe now that if
σ, σ′ ∈ S(F ) differ only in the i-th coordinate, then the i-th vari-
able is free in both σ, σ′ and coarsening it in both yields the same
string τ . By our earlier argument, w(σ) = w(τ ) = w(σ′) = wC ,
where C ⊆ S(F ) is the cluster containing σ, σ′. Considering all
adjacent pairs in C, we see that wC � π(C).

DEFINITION 9. The core of a cluster C is the unique coarsen-
ing fixed point of the truth assignments in C.

By Lemma 8, if a variable takes either the value 0 or the value 1
in the core of a cluster C, then it is frozen to that value in C. To
prove Theorem 5 we prove that the core of every cluster has many
non-∗ variables.

THEOREM 10. For any α > 0, let k0(α) and cα
k be as in The-

orem 5. If k ≥ k0 and r ≥ cα
k , then w.h.p. in the coarsening fixed

point of every σ ∈ S(Fk(n, rn)) fewer than α · n variables take
the value ∗.

To prove Theorem 10 (which implies Theorem 5) we derive sharp
bounds for the large deviations rate function of the coarsening pro-
cess applied to a fixed satisfying assignment. As a result, we also
prove that in the planted-assignment model the cluster containing
the planted assignment already contains frozen variables at r ∼
(2k/k) ln k. Also, we will see that our proof gives a strong hint
that for small values of k, such as k = 3, and for all densities in
the corresponding satisfiable regime, most satisfying assignments
do converge to (∗, · · · , ∗) upon coarsening.

We can think of coarsening as an attempt to estimate the pro-
jection of C(σ) by starting at σ and being somewhat reckless. To

see this, consider a parallel version of coarsening in which given
x ∈ {0, 1, ∗}n we coarsen all free variables in it simultaneously.
While the first round of such a process will only assign ∗ to vari-
ables whose projection in C(σ) is indeed ∗, subsequent rounds
might not: a variable v is deemed free, if in every clause containing
it there is some other variable satisfying the clause, or a variable
assigned ∗. This second possibility is equivalent to assuming that
the ∗-variables in the clauses containing v, call them Γv , can take
joint values that allow v to not contribute in the satisfaction of any
clause. In general formulas this is, of course, not a valid assump-
tion. On the other hand, the belief that in random formulas there
are no long-range correlations among the non-frozen variables of
each cluster makes this is a reasonable statistical assumption: since
the formula is random, the variables in Γv are probably far apart
from one another in the factor graph that results after removing
the clauses containing v. Thus, indeed, any subset of variables of
Γv that do not co-occur in a clause should be able to take any set
of joint values. Our results can be seen as evidence of the utility of
this line of reasoning, since we prove that for sufficiently large den-
sities, the coarsening fixed point of a satisfying assignment is never
(∗, . . . , ∗). Indeed, as we approach the satisfiability threshold, the
fraction of frozen variables in it tends to 1.

Of course, while the core of a cluster C can be easily derived
given some σ ∈ C, such a σ is still hard to come by. The last leap of
approximation underlying SP is to define a set Z(F ) ⊆ {0, 1, ∗}n

that includes all cluster cores, yet is such that membership in Z(F )
is “locally checkable”, akin to membership in S(F ). Specifically,

DEFINITION 11. A string x ∈ {0, 1, ∗}n is a cover of a CNF
formula F if: (i) under x, every clause in F contains a satisfied
literal or at least two ∗, and (ii) every free variable in x is assigned
∗, i.e., x is ∗–maximal.

Cores trivially satisfy (ii) as fixed points of coarsening; it is also
easy to see, by induction, that any string that results by apply-
ing coarsening steps to a satisfying assignment satisfies (i). Thus,
a core is always a cover. On the other hand, checking whether
x ∈ {0, 1, ∗}n satisfies (i) can be done trivially by examining each
clause in isolation. For (ii) it is enough to check that for each vari-
able v assigned 0 or 1 in x, there is at least one clause satisfied by v
and dissatisfied by all other variables in it. Again, this amounts to
n simple checks, each check done in isolation by considering the
clauses containing the corresponding variable. The price we pay
for dealing with locally-checkable objects is that the set of all cov-
ers Z(F ) can be potentially much bigger than the set of all cores,
e.g., (∗, · · · , ∗) is always a cover, even if F is unsatisfiable.

The Survey Propagation algorithm can now be stated as follows.

Repeat until all variables are set:

1. Compute the marginals of variables over covers.

2. Select a variable with least mass on ∗ and assign it the
0/1 value on which it puts most mass.

3. Simplify the formula.

The computation of marginals over covers in the original deriva-
tion [22] of SP was, in fact, done via a message passing procedure
that runs on the factor graph of the original formula (more on this
in Section 4.1). Also, in [22], if a configuration is reached in which
all variables put (nearly) all their mass on ∗, the loop is stopped
and a local search algorithm is invoked. The idea is that when such
a configuration is reached, the algorithm has “arrived” at a cluster
and finding a solution inside that cluster is easy since only non-
frozen variables remain unset.
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4.1 Related Work
The original presentation of Survey Propagation motivated the

algorithm in terms of a number of physical notions (cavities, mag-
netic fields, etc.). Specifically, the algorithm was derived by apply-
ing the “cavity method” within a “1-step Replica Symmetry Break-
ing” scheme, with no reference whatsoever to notions such as clus-
ter projections, cores, or covers (in fact, even clusters were only
specified as the connected components that result when satisfying
assignments at “finite Hamming distance” are considered adjacent).
On the other hand, a very definitive message-passing procedure was
specified on the factor graph of the original formula and the com-
puter code accompanying the paper and implementing that proce-
dure worked spectacularly well. Moreover, a notion foreshadowing
cores was included in the authors’ discussion of “Warning Propa-
gation”.

Casting SP as an attempt to compute marginals over cores was
done independently by Braunstein and Zecchina in [8] and Maneva,
Mossel, and Wainwright in [19]. In particular, in both papers it is
shown that the messages exchanged by SP over the factor graph of
the input formula are the messages implied by the Belief Propaga-
tion formalism [6] applied to a factor graph encoding the set of all
covers. The first author and Thorpe [1] have additionally shown
that for every formula F , there is a factor graph GF encoding the
set of F ’s covers which inherits the cycle structure of F ’s factor
graph, so that if the latter is locally tree-like so is GF .

In [19], the authors give a number of formal correspondences
between SP, Markov random fields and Gibbs sampling and note
that a cover σ ∈ {0, 1, ∗}n can also be thought of as partial truth
assignment in which every unsatisfied clause has length at least 2,
and in which every variable v assigned 0 or 1 has some clause c for
which it is essential in σ, i.e., v satisfies c but all other variables in
c are set opposite to their sign in c. This last view motivates a gen-
eralization of SP in which marginals are computed not only over
covers, but over all partial assignments in which every unsatisfied
clause has length at least 2, weighted exponentially in the number
of non-essential 0/1 variables and the number of ∗-variables. One
particular motivation for this generalization is that while SP ap-
pears to work very well on random 3-CNF, [19] gives experimental
evidence that such formulas do not have non-trivial cores, i.e., upon
coarsening truth assignments end up as (∗, . . . , ∗). This apparent
contradiction is reconciled by attributing the success of SP to the
existence of “near-core” strings allowed under the proposed gener-
alization.

While [19] provided a framework for studying SP by connect-
ing it to concrete mathematical objects such as cores and Markov
random fields, it did not provide results on the actual structure of
the solution space of random k-CNF formulas. Indeed, motivated
by the experimental absence of cores for k = 3, the authors asked
whether random formulas have non-trivial cores for any k. Our
results, establish a positive answer to this question for all k ≥ 9.

5. THE PROBABILISTIC FRAMEWORK
Theorem 5 follows from Theorem 10 and Lemma 8. To prove

Theorem 10 we say that a satisfying assignment σ is α-coreless if
its coarsening fixed point w(σ) has at least αn ∗-variables. Let X
be the random variable equal to the number of α-coreless satisfying
assignments in a random k-CNF formula Fk(n, rn). By symmetry,

E[X] = 2n ·
„

1 − 1

2k

«rn

· Pr[0 is α-coreless | 0 is satisfying] .

(3)
Observe that conditioning on “0 is satisfying” is exactly the same

as “planting” the 0 solution, and amounts to selecting the m = rn

random clauses in our formula, uniformly and independently from
amongst all clauses having at least one negative literal. We will see
that for every k ≥ 3, there exists tαk such that

Pr[0 is α-coreless | 0 is satisfying] =

8><
>:

1 − o(1) if r < tα
k ,

o(1) if r > tα
k .

(4)
We will see that t1k ∼ (2k/k) ln k, i.e., for densities up to that point,
w.h.p. a fixed satisfying assignment does not have any frozen vari-
ables. We find it interesting (and speculate that it’s not an accident)
that all analyzed algorithms work up to densities just below t1k, i.e.,
up to some r < c 2k/k, where only the constant c increases with
the sophistication of the algorithm.

To prove E[X] = o(1) we will derive a strong upper bound for
the probability in (4) when r > tαk . Specifically, we will prove
that Pr[0 is α-coreless | 0 is satisfying] < e−f(r)n for a function
f such that for all r ≥ cα

k ,

2 ·
„

1 − 1

2k

«r

· e−f(r) < 1 . (5)

Thus, by (3), for all such r we have E[X] = o(1) and Theorem 10
follows.

5.1 Coarsening as Hypergraph Stripping
Given any CNF formula F and any σ ∈ S(F ) it is easy to see

that w(σ) is completely determined by the set of clauses U(σ) that
have precisely one satisfied literal under σ. This is because af-
ter any sequence of coarsening steps applied to σ, a clause that had
two or more satisfied literals under σ, will have at least one satisfied
literal or at least two ∗ and thus never prevent a variable from being
free. Therefore, to coarsen a truth assignment σ it is enough to con-
sider the clauses in U(σ). Let us say that a variable v is unfrozen if
there is no clause in which it is the unique satisfying variable and let
us say that a clause is unfrozen if it contains an unfrozen variable.
It is now easy to see that coarsening σ is equivalent to starting with
U and removing unfrozen clauses, one by one, in an arbitrary order
until a fixed point is reached, i.e., no unfrozen clauses remain. Vari-
ables occurring in any remaining (frozen) clauses are, thus, frozen
in w(σ) (to their value in σ), while all other variables are assigned
∗. This view of coarsening as repeated removal of clauses from
U(σ) will be very useful in our probabilistic analysis below.

To estimate Pr[0 is α-coreless | 0 is satisfying] we consider a
random k-CNF formula with rn clauses chosen uniformly among
those satisfying 0. To determine w(0), by our discussion above, it
suffices to consider the clauses in our formula that have precisely
one satisfied (negative) literal. The number of such clauses is dis-
tributed as

m = Bin

„
rn,

k

2k − 1

«
.

It will be convenient to work in a model where each of these m
clauses is formed by choosing 1 negative literal and k − 1 positive
literals, uniformly, independently and with replacement. (Since
m = O(n), by standard arguments, our results then apply when
replacement is not allowed and the original number of clauses is
rn − o(n).) We think of the k literals in each clause as k balls; we
paint the single satisfied literal of each clause red, and the k − 1
unsatisfied literals blue. We also have one bin for each of the n
variables and we place each literal in the bin of its underlying vari-
able. We will use the term “blue bin” to refer to a bin that has at
least one blue ball and no red balls. With this picture in mind, we
see that the ∗-variables in w(0) correspond precisely to the set of
empty bins when the following process terminates:
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1. Let v be any blue bin; if none exists exit.
%Identify an unfrozen variable v if one exists.

2. Remove any ball from v.
%Remove the occurrence of v in some (unfrozen) clause c.

3. Remove k − 2 random blue balls.
%Remove the other k − 2 unsatisfied literals of c.

4. Remove a random red ball.
%Remove the satisfied literal in c.

Note that the above process removes exactly one clause (1 red ball
and k − 1 blue balls) in each step and, therefore, if we pass the
condition in Step 1, there are always suitable balls to remove. To
give a lower bound on the probability that the process exits before
m steps (thus, reaching a non-trivial fixed point), we will give a
lower bound on the probability that it exits within the first i =
αm steps, for some carefully chosen α = α(k, r) ∈ (0, 1). In
particular, observe that if the process does not exit within the first i
steps this means that:

At the beginning of each of the first i steps

there is at least one blue bin. (6)

In order to bound the probability of the event in (6) it will be
convenient to bound the probability of the same event occurring in
the following simplified process. The point is that this modified
process is significantly easier to analyze, while the event in (6) is
only slightly more likely for the values of k, r of interest to us.

(a) Let v be any blue bin; if none exists go to Step (c).

(b) Remove any ball from v.

(c) Remove a random red ball.

LEMMA 12. The event in (6) is no less likely in the modified
process than in the original process.

We prove Lemma 12 below. To bound the probability of the
event in (6) in the modified process we argue as follows. Let q
be the number of bins which do not contain any red ball after i
steps and let b be the original number of blue balls in these q bins.
If b < i, then after b steps of the modified process every non-
empty bin will contain at least one red ball, since up to that point we
remove precisely one blue ball per step. Therefore, the probability
of the event in (6) is bounded above by the probability that b ≥ i.
To bound this last probability we observe that the red balls in the
modified process evolve completely independent of the blue balls.
Moreover, since we remove exactly one red ball in each step, the
state of the red balls after i steps is distributed exactly as if we had
simply thrown m − i red balls into the n bins.

So, all in all, given a random k-CNF formula F with rn clauses,
conditional on 0 satisfying F and for a fixed α ∈ (0, 1), the prob-
ability that the coarsening process started at 0 fails to reach a fixed
point within i steps is bounded by the probability that b ≥ i, where

b = Bin
“
(k − 1)m,

q

n

”
, where (7)

m = Bin

„
rn,

k

2k − 1

«
, and (8)

q = Occ (m − i, n) , (9)

where Occ(x, y) is the distribution of the number of empty bins
when we throw x balls into y bins.

As a result, given k, r, our goal is to determine a value for i
that minimizes Pr[b ≥ i]. Before we delve into the probabilistic
calculations, in the next section we comment on how our analysis
relates to the planted assignment problem and to the existence of
non-trivial cores for small values of k.

PROOF OF LEMMA 12. Consider a process which is identical
to the original process except with Step 3 removed. We will call
this the intermediate process. We begin by proving that the original
and the intermediate processes can be coupled so that whenever
the event in (6) occurs in the original process it also occurs in the
intermediate process.

First, observe that the evolution of the red balls in both processes
is purely random and therefore can be assumed to be identical, i.e.,
we can think of the original process as making a genuine random
choice in Step 4 and the intermediate process as mimicking that
choice. (We think of all balls as carrying a distinct identifier.) Sim-
ilarly, we can assume that originally, the placement of the blue balls
in bins is identical for the two processes.

Let us say that a pair of blue ball placements is good if in every
bin the set of blue balls in the original process is a subset of the set
of blue balls in the intermediate process. Clearly, whenever we are
in a good configuration, since the placement of the red balls is iden-
tical in the two processes, any choice of bin and ball of the original
process in Steps 1,2, respectively is an available choice for the in-
termediate process. Moreover, if the intermediate process mimics
these choices, this results is a new good pair of blue ball place-
ments. Therefore, since the original pair of blue ball placements is
good, if the event in (6) occurs in the original process it also occurs
in the intermediate process.

Next, we compare the intermediate process to the modified pro-
cess observing that they are identical except that in the event that
we run out of bins containing only blue balls the intermediate pro-
cess stops, while the modified process carries on. Therefore, we
couple the two as follows: the modified process mimics the inter-
mediate process for as long as the event in (6) does not occur, and
makes its own random choices afterwards. Therefore, if the event
in (6) occurs in the intermediate process it also occurs in the modi-
fied process.

6. THE PLANTED ASSIGNMENT MODEL
AND SMALL VALUES OF K

Conditional on 0 being satisfying, analyzing w(0) is exactly the
same as working in the “planted assignment model” and analyzing
the core of the cluster containing the planted assignment. This is
rather easy to do if we are content with results holding with proba-
bility 1 − o(1). Specifically, by (7),(8),(9) and standard concentra-
tion results it follows immediately that if i = αm then w.h.p.

m = λ · n + o(n), where λ =
rk

2k − 1
(10)

q = γ · n + o(n), where γ = exp (−λ(1− α)) (11)

b = β · n + o(n), where β = (k − 1)γλ . (12)

With these conditionals in place, we can in fact go ahead and de-
termine the mean path of the coarsening process using the method
of differential equations [23], i.e., the number of red and blue balls
after each step, up to o(n). In particular, this allows us to prove that

THEOREM 13. For every k ≥ 3, there exists a critical value
t1k such that if r < t1k then w.h.p. w(0) = (∗, . . . , ∗), while if
r > t1k then w.h.p. a bounded fraction of the variables in w(0),
and therefore in C(0), are frozen.
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In the table below we give the value of t1k for some small values
of k (rounding to two decimals). By lower/upper below we mean
the best known lower/upper bound for satisfiability threshold.

k 3 4 5 6 7
Lower 3.52 7.91 18.79 40.62 84.82
Upper 4.51 10.23 21.33 43.51 87.88

t1k 5.72 11.58 21.75 40.13 73.88
uk 6.25 12.34 22.90 41.95 76.84

We see that for k = 3, 4, 5, the probability that 0 has a non-
trivial coarsening fixed point conditional on being satisfying, tends
to 0 for all densities in the satisfiable regime. Clearly, conditioning
on “0 is satisfying”, is not the same as picking a “typical” satisfying
assignment. Nevertheless, the gap between t1k and the best thresh-
old upper bound for k = 3 is sufficiently large to strongly suggest
that below the satisfiability threshold, most satisfying assignments
do arrive at (∗, . . . , ∗) upon coarsening. This is consistent with the
experimental results of [19], who first raised this possibility.

We now comment on the couple of simplifications of the original
process that we introduced in the previous section in order to get a
process that is easier to analyze. As we showed, these simplifica-
tions only increase the probability of the event in (6) and it is natural
to wonder if this increase is significant, allowing for the possibility
that our analysis can be made much sharper. Below we give evi-
dence that this is not the case. In particular, if each of m, q, b is
within o(n) of its expected value, then the inequality b ≥ i in the
modified process is equivalent to

r <
2k − 1

k
· ln

`
k−1

α

´
1 − α

≡ uk(α) .

In the table above we give the value of uk = minα uk(α) for
some small values of k. As we can see, these values are quite
close to t1k and get relatively closer as k is increased. In other
words, considering the modified process does not cause too big a
loss in the analysis. Indeed, taking e.g. α = 1/ ln k, already gives
uk → (2k/k) ln k, which is consistent with the physics prediction
that t1k → (2k/k) ln k.

Of course, if one is interested in establishing that certain prop-
erties of w(0) hold with exponentially small failure probability, as
we do, then conditioning as above is not an option. One has to do
a large deviation analysis of all the underlying variables and their
interactions in the coarsening process and determine the dominant
source of fluctuations. This is precisely what we do with respect to
the event b ≥ i in the modified process.

7. LARGE DEVIATIONS
It is well-known that if np > 0 then for every δ ≥ −1,

Pr[Bin(n, p) = (1 + δ)np] ≤ F (np, δ) ,

where

F (x, y) = exp(−x[(1 + y) ln(1 + y) − y]) .

A similar large deviations bound was shown in [15] for the number
of empty bins in a balls-in-bins experiment (Theorem 3). That is,
for every δ ≥ −1,

Pr[Occ(m,n) = (1 + δ)e−m/n] ≤ F (ne−m/n, δ) .

7.1 Application
Write r = λ(2k − 1)/k and fix δ, ε, ζ ≥ −1. Write ρ =

λ(1 + δ)(1 − α) in order to compress the expressions below. The
probability that

m = (1 + δ)E[m]

= (1 + δ)
rk

2k − 1
· n

= (1 + δ)λ · n (13)

q = (1 + ζ)E[q|m]

= (1 + ζ) exp

„
−m − i

n

«
· n

= (1 + ζ)e−ρ · n (14)

b = (1 + ε)E[b|q, m]

= (1 + ε)(k − 1)m · q

n

= (1 + δ)(1 + ε)(1 + ζ)λ(k − 1)e−ρ · n , (15)

is bounded by

F (λn, δ)·F (e−ρn, ζ)·F ((1+δ)(1+ζ)λ(k−1)e−ρn, ε) . (16)

We will write this as e−nΩ, where

Ω ≡ λω(δ) + e−ρω(ζ) + λ(k − 1)(1 + δ)(1 + ζ)e−ρω(ε) ,

with ω(x) = (1 + x) ln(1 + x) − x.
Conditional on the events in (13)–(15) we see from (15) that the

condition b ≥ i becomes B ≥ 0, where

B ≡ (1 + ε)(1 + ζ)(k − 1)e−ρ − α .

For any fixed k, r and α define Φ ≡ {(δ, ζ, ε) : B ≥ 0}. Thus,

Pr[0 is α-coreless | 0 is satisfying] < exp(−n·min
Φ

Ω)×poly(n)

and to prove that the expected number of α-coreless assignments
in o(1), it suffices to prove

min
Φ

Ω > ln 2 + r ln(1 − 2−k) ≡ s . (17)

7.2 Optimization Overview
To establish (17) it is enough to prove that the maximum of B

in the variables δ, ζ and ε under the condition Ω ≤ s is negative.
Considering that the function B is monotone in the three variables
δ, ζ and ε, the maximizer of B in the region Ω ≤ s has to be
on the boundary, that is for Ω = s. The maximum of B under
the condition Ω = s corresponds to the extremum of the function
G = B − μ(Ω − s), where μ is a Lagrange multiplier.

From the above we can derive

LEMMA 14. For any fixed k, r and α ∈ (0, 1), at the extremum
of the function G, the following assertions hold: ε is non-negative;
ζ is non-negative; δ is non-positive.

We next prove some bounds on δ and ε, at the maximizer.

LEMMA 15. Fix any r, k, α ∈ (0, 1). At the maximizer of B,

δ0 ≡ −
r

2s

λ
≤ δ ≤ 0

ε <
1 − α

k − 1
+

ln 3

λ(1 + δ0)(k − 1)
≡ ε0 .
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Thus, the stationary point of G must occur in the region Λ =
{(δ, ε) : δ0 ≤ δ ≤ 0, 0 ≤ ε ≤ ε0}. Using these bounds, we derive
analytical results for our optimization problem for all k ≥ 14. For
9 ≤ k ≤ 13, the stationary point of G is found numerically.

7.3 Proving the existence of frozen variables
for k ≥ 14 analytically

For any fixed values of δ and ε, the requirement B ≥ 0 implies

ζ ≥ α eρ

(k − 1)(1 + ε)
− 1 . (18)

Plugging this lower bound in the second term of Ω, we see that the
requirement Ω = s implies

α

(k − 1)(1 + ε)

»
ln

„
α eρ

(k − 1)(1 + ε)

«
− 1

–
+ e−ρ ≤ s . (19)

Therefore, it suffices to find λ and α such that (19) cannot be satis-
fied by any δ0 ≤ δ ≤ 0 and 0 ≤ ε ≤ ε0. This is certainly true if a
lower bound to the l.h.s. of (19) makes such an equation unsatisfied,
that is if

α

(k − 1)(1 + ε0)

»
ln

„
α eλ(1+δ0)(1−α)

(k − 1)(1 + ε0)

«
− 1

–
+ e−λ(1−α) > s

and the term within the squared brackets above is positive. Thus,
to summarize, it suffices to find λ and α such that

α
h
ln

“
α eλ(1+δ0)(1−α)

(k−1)(1+ε0)

”
− 1

i
(k − 1)(1 + ε0)

> s − e−λ(1−α) > 0 .

For this we perform the change of variable λ = c k ln 2 and use
Lemma 15 to introduce simpler bounds for δ and ε, which hold for
all c ≥ 4/5 and k ≥ 2, namely |δ0| ≤ k−1/2 and ε0 ≤ 2/(k − 1).
Using these simpler bounds and solving with respect to c, we get

c ≥
1 + α

k+1

h
1 − ln

“
α

k+1

”i
/ ln 2

1 + α(1 − α) 1−1/
√

k
1+1/k

≡ gc(k, α) .

For any fixed α ∈ (0, 1), gc(k, α) is a decreasing function of k.
Moreover, it is easy to see that as k → ∞

gc(k, α) → 1

1 + α(1 − α)
,

implying the desired result for all k ≥ k0(α).

Indeed, this analysis allows us to prove that for all k ≥ 14, there
exists a choice of α such that minΦ Ω > s for some r < rk.
Specifically, we first rescale the lower bound for rk from (1) as

τk ≡ 2k ln 2 − (k+1) ln 2+3
2

(2k − 1) ln 2
=

1

1 − 2−k
− (k + 1) ln 2 + 3

2(2k − 1) ln 2
,

and observe that τk is increasing in k. It is not hard to check that the
function gc(14, α) dips below τ14 for a certain range of α, implying
that the left endpoint of the range is an upper bound on the fraction
of unfrozen clauses. For larger values of k things only get better
since gc(k, α) is decreasing with k, whereas τk is increasing.
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