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We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We
show that even for moderate system sizes the number of clusters corresponds surprisingly well with the
theoretic asymptotic prediction. We locate the freezing transition in the space of solutions, which has been
conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction
problems.
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Satisfiability �SAT� is one of the most important problems
in theoretical computer science. It was the first problem
shown to be NP-complete �1,2�, and it is of central relevance
in various practical applications, including artificial intelli-
gence, planning, hardware and electronic design, automation,
verification, and more. It can thus be pictorially thought of as
the Ising model of computer science. Ensembles of randomly
generated SAT instances emerged in computer science as a
way of evaluating algorithmic performance and addressing
questions regarding the average case complexity.

An instance of a random K-SAT problem consists of N
Boolean variables and M clauses. Each clause contains a
subset of K distinct variables chosen uniformly at random,
and each clause forbids one random assignment of the K
variables out of 2K possible ones. The problem is satisfiable
if there exists an assignment of variables that simultaneously
satisfies all clauses, and we call such an assignment a solu-
tion to the problem. When the density of constraints, �
=M /N, is increased, the formulas become less likely to be
satisfiable. In the thermodynamical limit there is a sharp
transition from a phase in which the formulas are almost
surely satisfiable to a phase where they are almost surely
unsatisfiable. The existence of this transition is partly estab-
lished rigorously �3�. It is also a well-known empirical result
that the hardest instances are found near to this threshold
�4–6�.

Random K-SAT has attracted the interest of statistical
physicists because of its equivalence to mean-field spin
glasses �7�. Indeed, the problem can be rephrased as mini-
mizing a spin-glass-like energy function which counts the
number of violated clauses. The results and insights coming
from this equivalence are remarkable. The satisfiability
threshold and other phase transitions in the structure of so-
lutions are described in �8–10�. In particular, it was shown
that for K�3 the space of solutions for highly constrained
but still satisfiable instances splits into exponentially many
clusters and in some cases this clustering has been rigorously
confirmed �11,12�. The so-called freezing of variables in
clusters is another rich concept studied recently �13–15�.
However, a detailed understanding of how the clustering or

freezing of solutions affects the average computational hard-
ness is still one of the most interesting open problems in the
field.

Since the exact statistical physics solution of the random
satisfiability problem appeared �9,16�, dozens of directly re-
lated articles followed. Mathematicians and computer scien-
tists nowadays regard these analytical works as a rich source
of results which are mostly inaccessible to current probabi-
listic methods. Yet none of these works tried to compare the
analytical asymptotic predictions to numerical simulations
on a quantitative level and numerical investigations mostly
concentrated on performance analysis of satisfiability solv-
ers. Therefore the relevance of the asymptotic predictions for
systems of practical sizes, which in computer science are not
at the scale of the Avogadro number, remained almost un-
touched. Our Rapid Communication aims at filling this gap
and to encouraging further investigation in this direction. We
use conceptually relatively simple numerical techniques and
yet obtain nontrivial results. We present two of our most
interesting findings. The first is a quantitative comparison
between the number of clusters of solutions �glassy states�
and its analytical prediction �9,16–18�. The second is the
location of the freezing transition, which was recently sug-
gested to be responsible for the computational hardness of
the random satisfiability problem �14,19,20�, but not yet
computed in the 3-SAT problem.

In the physics of glassy systems, clusters correspond to
pure thermodynamical states and have been described in the
literature about glasses and spin glasses for more than one-
quarter of a century �7�. A formal definition of clusters in
K-SAT as extremal Gibbs measures was given recently in
�10�. We will refer to these as the cavity clusters. It is not
known, however, how to adapt this definition to instances of
finite size. In this work, we adopt a definition of clusters as
connected components in a graph where each solution is a
vertex and where edges connect solutions that differ in only
one variable.1 This definition is applicable to any finite in-
stance of the K-SAT problem. It is, however, unable to de-
scribe purely entropic barriers, and it is thus most likely not
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1This distance-1-separated clusters are in K-SAT asymptotically
equivalent to any finite-distance-separated clusters. It is, however,
not known if they are equivalent also to “any subextensive-
distance”-separated clusters.
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asymptotically equivalent to the definition of the cavity clus-
ters, yet it reproduces many of their properties.

In order to shed light on the relation between cavity clus-
ters and connected-component clusters we now introduce the
procedure called whitening and the concept of frozen vari-
ables. Whitening of a solution in K-SAT is defined in the
following way �21�: start with the solution, assign iteratively
a “�” �joker� to variables which belong only to clauses which
are already satisfied by another variable or already contain a
� variable.2 The fixed point of this procedure is called a
whitening core.3 A variable is said to be frozen in a set of
solutions if it takes only one value �either 0 or 1� in all the
solutions in the set. Note that if the satisfiability threshold is
sharp, there cannot be a finite fraction of variables frozen in
all the solutions in the satisfiable region �22�. On the other
hand, variables might be frozen in the individual clusters.
According to the cavity method �23,24� this is indeed the
case and freezing of clusters has been studied in �13–15�.

According to the cavity method �23,24� there is a deep
connection between frozen variables and the whitening core:
if the one-step replica-symmetric solution is correct, then on
large typical instances the set of frozen variables in the cav-
ity cluster and the non-� part of the whitening core are iden-
tical �9�. Thus the whitening cores of all solutions belonging
to one cavity cluster are identical. This also holds for the
connected-component clusters: Indeed, two solutions that
differ in a single variable have the same whitening core since
the whitening can be started from that specific variable. Fur-
ther, variables belonging to the whitening core must be fro-
zen in the connected-component cluster; the opposite impli-
cation is in general not true.

Two additional remarks about clusters are important.
First, whitening cores are sometimes wrongly identified with
clusters. Note that solutions having the all-� whitening core
typically do not belong to the same cluster. We have not
found any general argument why two different connected-
component clusters could not have the same non-all-� whit-
ening core, but we have not observed any such case in our
data. Second, it seems that all known heuristic algorithms
need an exponential time to find solutions with a nontrivial
�not all-�� whitening core; see, e.g., �14,25,26�. This moti-
vates our study of the freezing transition � f. It is defined as
the smallest density of constraints � such that all solutions
belong to frozen clusters; i.e., their whitening core is not
made from all-�. We use the whitening core instead of the
real set of frozen variables, because in small instances there
are almost always at least a few frozen variables. The exis-
tence of the frozen phase was proven in the thermodynamical
limit for K�9 near to the satisfiability threshold in �12�.
Several theoretical investigations of a related rigidity transi-
tion, where clusters which contain almost all the solution
become frozen, can be found in �13–15�. But as long as soft
clusters exist, some algorithms may be able to find them, as

shown in �20�. A related numerical study �27� investigates
the size dependence of the fraction of frozen solutions at �
=4.20�� f.

We generate instances of the random 3-SAT problem with
N variables and M clauses using the MAKEWFF program �28�.
The number of solutions is then calculated using the exhaus-
tive search method RELSAT �29�. The complete set of solu-
tions is clustered through breath first search: We order the N
solutions in binary lexical order. Further, for all the solutions
we generate all the N neighboring configurations, search
them in the list, and if found, concatenate the two in the
same cluster, resulting in an algorithmic complexity of
O�N ln2 N�, considering that ln N�N.

In order to obtain information about clusters in a typical
formula with N variables and M clauses, we count the num-
ber of solutions in A=999 such random formulas and select
the median instance in terms of the number of solutions on
which we then count the number of clusters, S. This is
repeated B=1000 times. The complexity function ��N�
= �ln S� /N is then computed as the average of the logarithm
of the number of clusters divided by the system size N. If
the median instance is unsatisfiable, it contributes a zero
value to the average; this does not have an influence on the
asymptotic value. Taking the median has two important ad-
vantages: first, we avoid rare formulas with very many solu-
tions which are numerically intractable; second, the com-
plexity converges very fast to zero in the unsatisfiable region.

The result is plotted in Fig. 1 and compared with the
asymptotic complexity function computed from the survey
propagation equations, which in 3-SAT gives a nonzero re-
sult for ��3.92 �16,18�, but is reliable only for ��4.15
�17�. The agreement is remarkably good, in particular around
the satisfiability threshold �s=4.267 �9,18�. It was discussed
in �10�, and shown numerically also in �27�, that clusters
exist even for ��3.92. We indeed do not see anything in
particular happening at �=3.92. Below the clustering transi-
tion, ��3.86, however, the largest cavity cluster should con-
tain almost all the solutions �10�. We see a corresponding

2In a general constraint satisfaction problem the whitening must
be defined via the warning propagation. Whitening is in the litera-
ture referred also as peeling �25� or coarsening �12�.

3A whitening core is also referred to as a core �12,25�, or a true
cover �27�.
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FIG. 1. �Color online� The average complexity function, loga-
rithm of the number of connected-component clusters divided by N,
for different system sizes compared to the asymptotic prediction
�16,18�, which is reliable �stable� only for ��4.15 �17�. Note that
all the numerical curves continue to lower values of � than plotted
and asymptotically will not stop at �=3.92 or at �=3.86.
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trend in the average fraction of solutions covered by the larg-
est cluster in our data. The result of Fig. 1 can also be seen as
a confirmation of the close relation between the connected-
component and cavity clusters.

In order to determine the freezing transition we start with
a formula of N variables and all possible clauses, and remove
the clauses one by one independently at random. We mark
the number of clauses Ms where the formula becomes satis-
fiable as well as the number of clauses Mf �Ms where at
least one solution starts to have an all-� whitening core. We
repeat B times �B=2�104 in Fig. 2� and compute the prob-
abilities that a formula of M clauses is satisfiable Ps�� ,N�
and unfrozen Pf�� ,N�, respectively. Due to memory limita-
tion, we can treat only instances which have less than 5
�107 solutions, which limits us to system sizes N�100. Our
results for the satisfiability threshold are consistent with pre-
vious studies in �6,22,30�. The probability of being unfrozen,
Pf�� ,N�, is shown in Fig. 2.

It is tempting to perform a scaling analysis as has been

done in �6,22,30� for the satisfiability threshold. The critical
exponent related to the width of the scaling window was
defined via rescaling of variable � as N1/	s�1−� /�s�K ,N��.
Note, however, that the estimate 	s=1.5
0.1 for 3-SAT pro-
vided in �30� is not the correct asymptotic value. It was
proven in �31� that 	s�2. Indeed, it was shown numerically
in �32� that a crossover exists at sizes of order N�104 in the
related XOR-SAT problem. A similar situation happens for the
scaling of the freezing transition, Pf�� ,N�, as the proof of
�31� applies also here.4 It would be interesting to investigate
the scaling behavior on an ensemble of instances where re-
sults of �31� do not apply. Here we concentrate instead on the
estimation of the critical point, which we presume not to be
influenced by the crossover in the scaling. We are in a much
more convenient situation than for the satisfiability transi-
tion. The crossing point for the functions Pf�� ,N� of differ-
ent system sizes seems not to depend on N, while for the
satisfiability transition its size dependence is very strong
�30�.

We determine the value of the freezing transition as
� f =4.254
0.009, which is extremely close to the satisfi-
ability threshold �s=4.267 �16�. Analytical study suggests
� f �4.25 �36�. We expect the two transitions to be separated,
� f ��s �12,14,15�, and Fig. 2 suggests so, but it is on the
border of statistical significance. However, the main motiva-
tion to study the freezing transition is its potential connection
to the onset of algorithmical hardness �14,19,20�. We thus
compare its value with the estimates of performance of the
best algorithms known for random 3-SAT. The leading sto-
chastic local search algorithms work in linear time up to �
=4.21 �26,33�. The survey propagation �SP� decimation was
estimated to work up to �=4.252 �34�; the same point was
determined as the limit of the SP reinforcement �35�. The
agreement between our location of the freezing transition
and the performance of SP supports strongly the conjecture
that the frozen phase is hard for any known algorithm. In
random 3-SAT this region is very narrow, in contrast to the
situation in K�9 SAT �12�.

The main contribution of this work is the demonstration
that the asymptotic predictions coming from the statistical
physics analysis are relevant even for instances of very mod-
erate size. In particular, we presented a numerical compari-
son between the number of connected-component clusters
and the asymptotic prediction for the complexity function in
random 3-SAT and obtain a remarkably good agreement.
Furthermore, we estimate the location of the freezing transi-
tion at � f =4.254, which is consistent with the performance
threshold of the best known algorithms. We also show that
exhaustive enumeration, despite its current size limitations,
is a powerful tool to study random optimization problems:
indeed the knowledge of the complete set of solutions allows
us to tackle questions that are complementary to those an-
swered by classical Monte Carlo methods.

The definitions of clusters and the whitening core that we
adopted are applicable to any instance of the satisfiability
problem. As such, they offer an interesting direction for fu-

4Theorem 1 of �31� applies to the freezing property where the
bystander are clauses containing two leaves.
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FIG. 2. �Color online� �a� probability that there exists an unfro-
zen solution as a function of the constraint density � for different
system sizes. The clustering �10� and satisfiability �9� transitions are
marked for comparison. �a� A 1:20 zoom-in on the critical �cross-
ing� point. Our estimate for the freezing transition is � f

=4.254
0.009. The curves are cubic fits in the interval �4,4.4�. The
arrows represent estimates of the limits of performance of the best
known stochastic local search �26,33� and survey propagation
�34,35� algorithms.
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ture research of real-world K-SAT instances. However, the
relation and eventual equivalence between the cavity and
connected-component clusters are still to be substantiated. In
addition, we observe that the properties related to clustering
are less sensitive to finite-size effects than the ones related to
the solutions themselves. This is interesting and certainly
worth further investigations. Future work could also cover
2-SAT, where the solutions are much more numerous even
for very small system sizes, or K-SAT with K�3, where
larger formulas will be needed to investigate the relevant

regions; however, the freezing transition is more separated
from the satisfiability when K grows. The numerical location
of the clustering and condensation transitions �10� is also of
interest.

We thank S. Mertens for sharing the data from �18�. We
also gratefully acknowledge T. Joerg, F. Krzakala, M.
Mézard, and F. Ricci-Tersenghi for many precious discus-
sions and comments. This work was partially supported by
FP6 program EVERGROW. J.A. thanks KITPC-CAS for
hospitality.

�1� S. A. Cook, in Proceedings of the 3rd STOC, edited by M. A.
Harrison, R. B. Banerji, and J. D. Ullman �ACM, New York,
1971�, pp. 151–158.

�2� C. H. Papadimitriou, Computational Complexity �Addison-
Wesley, 1994�.

�3� E. Friedgut, J. Am. Math. Soc. 12, 1017 �1999�.
�4� P. Cheeseman, B. Kanefsky, and W. M. Taylor, in Proceedings

of the 12th IJCAI, edited by J. Mylopoulos and R. Reiter �Mor-
gan Kaufmann, San Mateo, CA, 1991�, pp. 331–337.

�5� D. G. Mitchell, B. Selman, and H. J. Levesque, in Proceedings
of the 10th AAAI �AAAI Press, Menlo Park, CA, 1992�, pp.
459–465.

�6� S. Kirkpatrick and B. Selman, Science 264, 1297 �1994�.
�7� M. Mézard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory

and Beyond, of Lecture Notes in Physics, Vol. 9 �World Sci-
entific, Singapore, 1987�.

�8� G. Biroli, R. Monasson, and M. Weigt, Eur. Phys. J. B 14, 551
�2000�.

�9� M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
�2002�.

�10� F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian,
and L. Zdeborová, Proc. Natl. Acad. Sci. U.S.A. 104, 10318
�2007�.

�11� M. Mézard, T. Mora, and R. Zecchina, Phys. Rev. Lett. 94,
197205 �2005�.

�12� D. Achlioptas and F. Ricci-Tersenghi, in Proceedings of 38th
STOC, edited by J. Kleinberg �ACM, New York, 2006�, pp.
130–139.

�13� G. Semerjian, J. Stat. Phys. 130, 251 �2008�.
�14� L. Zdeborová and F. Krzakala, Phys. Rev. E 76, 031131

�2007�.
�15� A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, J. Stat.

Mech.: Theory Exp. �2008� P04004.

�16� M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 �2002�.
�17� A. Montanari, G. Parisi, and F. Ricci-Tersenghi, J. Phys. A 37,

2073 �2004�.
�18� S. Mertens, M. Mézard, and R. Zecchina, Random Struct. Al-

gorithms 28, 340 �2006�.
�19� F. Krzakala and J. Kurchan, Phys. Rev. E 76, 021122 �2007�.
�20� L. Dall’Asta, A. Ramezanpour, and R. Zecchina, Phys. Rev. E

77, 031118 �2008�.
�21� G. Parisi, e-print arXiv:cs.CC/0212047.
�22� R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L.

Troyansky, Nature �London� 400, 133 �1999�.
�23� M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 �2001�.
�24� M. Mézard and G. Parisi, J. Stat. Phys. 111, 1 �2003�.
�25� E. N. Maneva, E. Mossel, and M. J. Wainwright, J. ACM 54

�4�, 17 �2007�.
�26� S. Seitz, M. Alava, and P. Orponen, J. Stat. Mech.: Theory

Exp. �2005� P06006.
�27� L. Kroc, A. Sabharwal, and B. Selman, in Proceedings of the

23rd UAI �AUAI Press, Arlington, VA, 2007�, pp. 217–226.
�28� Found at http://www.cs.rochester.edu/kautz/walksat/.
�29� R. J. Bayardo and J. D. Pehoushek, in Proceedings of the 17th

AAAI �AAAI Press, Menlo Park, CA, 2000�, pp. 157–162.
�30� R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L.

Troyansky, Random Struct. Algorithms 15, 414 �1999�.
�31� D. B. Wilson, Random Struct. Algorithms 21, 182 �2002�.
�32� M. Leone, F. Ricci-Tersenghi, and R. Zecchina, J. Phys. A 34,

4615 �2001�.
�33� J. Ardelius and E. Aurell, Phys. Rev. E 74, 037702 �2006�.
�34� G. Parisi, e-print arXiv:0301015.
�35� J. Chavas, C. Furtlehner, M. Mézard, and R. Zecchina, J. Stat.

Mech.: Theory Exp. �2005� P11016.
�36� F. Ricci-Tersenghi �private communication�.

JOHN ARDELIUS AND LENKA ZDEBOROVÁ PHYSICAL REVIEW E 78, 040101�R� �2008�

RAPID COMMUNICATIONS

040101-4


