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Analytical results are derived for the bond percolation threshold and the size of the giant connected com-
ponent in a class of random networks with nonzero clustering. The network’s degree distribution and clustering
spectrum may be prescribed and theoretical results match well with numerical simulations on both synthetic
and real-world networks.
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Random network models have been extensively studied
with a view to gaining insight into the structure and dynam-
ics of many social, technological, and biological networks
�1–3�. However, most analytical approaches rely on treelike
approximations of the local network structure and thus ne-
glect the presence of short loops �cycles� in the graphs. The
local clustering coefficient for a node A is defined as the
fraction of pairs of neighbors of node A which are also
neighbors of each other �4� and is typically non-negligible in
real-world networks. The degree-dependent clustering or
clustering spectrum ck is the average of the local clustering
coefficient over the class of all nodes of degree k �5,6�. The
question of how network models with nonzero ck �taken, for
example, from real-world network data� differ from ran-
domly wired �configuration-model� networks with the same
degree distribution Pk is of considerable interest.

The bond percolation problem for a network may be
stated as follows: each edge of the network graph is visited
once and damaged �deleted� with probability 1− p. The
quantity p is the bond occupation probability and the non-
damaged edges are termed occupied. The size of the giant
connected component �GCC� of the graph becomes nonzero
at some critical value of p�0: this critical value of p is
termed the bond percolation threshold pth. The bond perco-
lation problem has applications in epidemiology, where p is
related to the average transmissibility of a disease and the
GCC represents the size of an epidemic outbreak �7,8�, and
in the analysis of technological networks, where the resil-
ience of a network to the random failure of links is quantified
by the size of the GCC �9�. Analytical solutions for percola-
tion on randomly wired networks and on correlated networks
are well known �10–13�, but these cases have zero clustering
in the limit of infinite network size.

In this paper we introduce a class of networks with non-
zero clustering and demonstrate analytical solutions for the
GCC size and the bond percolation threshold. Most previous
studies of clustering effects on percolation rely on numerical
simulations using various algorithms to generate clustered
networks, e.g., �14–16�. Analytical solutions were found by
Newman �17� for a bipartite graph model of highly clustered
networks. However, the bipartite graph model �in contrast to
the model discussed here� is not amenable to fitting to a
prescribed degree distribution Pk. The bipartite graph model
of Guillaume and Latapy �18� may be fitted to real-world
data but their networks do not permit analytical solution of
the percolation problem. Serrano and Boguñá �9,19� also ob-
tained approximate analytical solutions, but only for weak

clustering cases with ck�1 / �k−1�. Trapman �20� introduced
a model of clustering in structured graphs based on embed-
ding cliques �complete subgraphs� within a random tree
structure. We show below that this model and its generaliza-
tion �21� are in fact special cases of the model presented
here. In a recent paper �22�, Newman introduced a triangle-
based model of clustered networks which may be seen as
complementary to the model presented here: we discuss this
model in detail at the end of the paper.

We consider random networks in which each node may be
part of a single clique �a fully connected subgraph�. Figure
1�a� shows a segment of such a network which contains one
3-clique �triangle�, one 4-clique, and a single node which is
not a member of a clique �for notational convenience we will
refer to such individual nodes as members of a 1-clique�.
Nodes which are members of a c-clique have c−1 edges
linking them to neighbors within the same clique. They also
have an additional k−c+1 neighbors who are not in the same
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FIG. 1. �a� Segment of a clustered random network; �b� split
into disjoint cliques with external links emphasized; �c� correspond-
ing supernodes.
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clique as themselves, where k is the node degree �with k
�c−1�. Edges which are not internal to a clique are termed
external links. In Fig. 1�b� the external links are highlighted
with thick lines, but for the purposes of the bond percolation
problem they are indistinguishable from clique edges. In net-
works of this type each node is a member of at most one
clique, and so the network can be decomposed into disjoint
cliques which are linked together by the set of external links;
see Fig. 1�b� �27�. If each clique is regarded as a supernode
�Fig. 1�c�� then realizations of the random network may be
generated by connecting together randomly chosen pairs of
the external link stubs as in the configuration model for stan-
dard random networks �12�.

The fundamental quantity describing networks of this
type is the joint probability distribution ��k ,c� giving the
probability that a randomly chosen node in the network has
degree k and is a member of a c-clique. Note ��k ,c�=0 for
k�c−1, i.e., k-degree nodes can only be members of
c-cliques if their degree is high enough to provide links to all
c−1 clique neighbors. The degree distribution Pk of the net-
work �probability that a random node has k neighbors� is
obtained from � by averaging over all cliques:

Pk = �
c=1

k+1

��k,c� = �
c

��k,c� . �1�

A node chosen at random from the set of all k-degree nodes
is a member of a c-clique with probability ��k ,c� / Pk. As a
member of a c-clique, it is part of � c−1

2 � triangles and so its
local clustering coefficient is � c−1

2 � / � k
2 �. Therefore, the

degree-dependent clustering coefficient ck is given in terms
of � by

ck = �
c

��k,c�
Pk

�c − 1��c − 2�
k�k − 1�

. �2�

The class of networks described by the joint pdf ��k ,c�
includes the well-studied configuration model �12� for which
��k ,c�=�c1Pk. This limit contains no cliques and hence the
clustering �in the infinite network size limit� vanishes. Also
contained within the class of networks is the Trapman model
�20,21� in which a fraction fk of k-degree nodes form cliques
of precisely k nodes giving ��k ,c�=�c1�1− fk�Pk+�ckfkPk.

To determine the expected size of the GCC in the dam-
aged network we choose a random node A of the network
and approximate the network as a tree structure, with the
node A at the top �root� of the tree. Each level of the tree
structure �see Fig. 2� is accessed from the level above by
traversing one external link. If a node is part of a c-clique,
the remaining c−1 clique neighbors are shown at an inter-

mediate level. Because the graph of supernodes �Fig. 1�c�� is
connected using the configuration model, this tree structure
is a locally accurate approximation to the original network is
the limit of infinite system size.

To calculate the probability that node A is part of the
GCC, we apply a tree-based approach which is generalizable
to a variety of cascade dynamics on networks �23� and is
related to work on the random field Ising model �24�. We
label nodes which are part of a connected component as ac-
tive with the remaining nodes termed inactive. All nodes of
the tree are initially considered inactive and we examine the
propagation of the active state upward through the tree �from
leaves to root� as an infection process beginning from an
infinitesimally small fraction of active nodes infinitely deep
in the tree. Consider a node at level n, e.g., node B in Fig. 2.
Initially B �and its parent at level n+1� is inactive, but sup-
pose nodes at level n−1 are active with probability q. If B
has degree k and is a member of a c-clique �e.g., k=6 and
c=4 in Fig. 2�, it has k−c+1 external links, one of which
necessarily leads to its parent at level n+1. The node B will
become active if any one of its k−c externally linked chil-
dren at level n−1 is active provided that an occupied edge
joins that child to B; thus, the probability that B is not acti-
vated in this fashion is �1− pq�k−c. The other mechanism
whereby B may be activated is via its neighbors in the
c-clique; writing Qc for the probability that the top node
�such as B� of a c-clique is activated by its clique neighbors,
we have the total probability of activation for B of 1− �1
− pq�k−c�1−Qc�. The probability Qc is calculated using the
P�m �k� functions introduced and tabulated in �17�, which are
polynomials in p giving the probability that a randomly cho-
sen node in a damaged �i.e., taking into account bond perco-
lation� c-clique belongs to a connected cluster of m nodes
�including itself� within the clique. Since node B is activated
if any one of its m−1 connected neighbors is active, we have

Qc = �
m=1

c

P�m�c��1 − �1 − q̄c�m−1� , �3�

where q̄c is the probability of a c-clique member at the in-
termediate level being activated by his level-�n−1� children:

q̄c = �
k�

��k�,c�
�
k�

��k�,c�
�1 − �1 − pq�k�−c+1� . �4�

Here ��k� ,c� /�k���k� ,c� is the degree distribution of nodes
which are members of cliques of size c and the remaining
term is the probability that a k�-degree node in a c-clique is
activated by one of its k�−c+1 children at level n−1.

Given q, we can therefore calculate, using Eqs. �3� and
�4�, the probability of B becoming active. To close the sys-
tem of equations, we consider the parent of B at level n+1,
for whom q is the probability that one of its children
is active. Since node B has k−c+1 external links in total,
the probability of it being a child of a random level-�n+1�
node is �kc= �k−c+1���k ,c� /ze, where ze=�k�,c��k�−c�
+1���k� ,c�� is the average number of external links per
node. Combining the equations above gives the closure rela-
tion

Blevel n

level n−1

FIG. 2. Tree diagram for updating the state of node B.
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q = �
k,c

�kc�1 − �1 − pq�k−c�1 − Qc�� � G�q� . �5�

Equations �3�–�5� are solved by iterating from an infinitesi-
mally small value of q to a steady-state solution: this deter-
mines the probability �in an infinite network� that a node is
active, conditional on its parent being inactive. The final cal-
culation of the GCC size considers the node A at the top
�root� of the tree: with probability ��k ,c� this has k−c+1
direct links to the level below. By similar arguments to be-
fore, node A is active with probability

S = �
k,c

��k,c��1 − �1 − pq�k−c+1�1 − Qc�� , �6�

where q is the solution of Eqs. �3�–�5� and S is the expected
fractional size of the GCC.

Note that if we set ��k ,c�=�c1Pk, Eqs. �5� and �6� reduce
to their well-studied configuration model versions �using
Q1=0�. The bond percolation results of �20,21� for the gen-
eralized Trapman model are also a special case of Eqs.
�3�–�6�. Also of interest is the GCC size in an undamaged
network—this is obtained from our equations by setting p
=1 �for which P�m �c�=�mc�.

The bond percolation threshold is the value of p at which
the GCC size first becomes nonzero. This may be determined
from the cascade condition �21,23� G��0�=1, where G�q� is
defined in Eq. �5�. The resulting polynomial equation for p
may be written in the form

1

ze
�
k,c

�k − c + 1���k,c��p�k − c� + �zc − c + 1�Dc�p�� = 1,

�7�

where Dc�p�= p�m=1
c �m−1�P�m �c� �see �21�� and zc is the

average degree of nodes in cliques of size c: zc
=�kk��k ,c� /�k���k� ,c�.

We now describe an algorithm for generating realiza-
tions of random networks with a prescribed distribution

��k ,c�. For a large number Ñ �which is related to the
number N of nodes in the final network, see below�,
we choose Ñ random numbers ci �i=1 to Ñ� with pdf
��k��k ,c� /c� / ��k,c���k ,c�� /c�� to be the clique sizes in the
network realization. For each ci, we create ci nodes in a
complete subgraph and assign their degrees kj �j=1 to ci� by
drawing random numbers from a distribution with density
��k ,ci� /�k���k� ,ci�. Node j in clique i then has kj −ci+1
external link stubs associated with it. Having created all

Ñ cliques in this fashion, we randomly choose pairs of
external link stubs and connect them together to create
the random network �cf. Fig. 1�. The expected number of
nodes in a network generated using this algorithm is N

= Ñ / ��k,c��k ,c� /c�, which allows us to estimate the value of

Ñ needed to produce a final network of size N. For finite-
sized networks, the presence of cliques means this algorithm
is not guaranteed to give exactly N nodes in the final net-
work, but in practice we find the variation in the network
size is negligibly small for sufficiently large N.

Figure 3�a� shows a comparison between GCC sizes from
theory �from Eqs. �3�–�6�� and numerical simulations on net-
works with the Poisson degree distribution Pk=zke−z /k! and
mean degree z=3. We create nonzero clustering in the net-
works by inserting 3-cliques �triangles� and 4-cliques; spe-
cifically, we set ��k ,c�= ��1−�−���c1+��c3+��c4�Pk for
k�3. This embeds a fraction � and � of k-degree nodes in
3-cliques and 4-cliques, respectively, with the remainder as
individuals �i.e, 1-cliques�. Since nodes of degree k cannot
be part of c-cliques when c exceeds k+1, we deal with nodes
of degree k�3 as follows: ��2,c�= ��1−���c1+��c3�P2, and
��k ,c�= Pk�c1 for k=0 or 1. The case �=�=0 gives the stan-
dard configuration model network with zero clustering. We
also show results for �=0.8, �=0.1 and for �=0, �=1. Us-
ing Eq. �2�, the first of these corresponds to a global cluster-
ing coefficient C=�kPkck of 0.31, while the second case,
which contains only 4-cliques, has C=0.35. The correspond-
ing bond percolation thresholds may be calculated from the
polynomial Eq. �7� using �see �21�� D3�p�=2p2�1+ p− p2�
and D4�p�=3p2�1+2p−7p3+7p4−2p5�. The resulting values
are pth=0.349 and pth=0.422, both exceeding the configura-
tion model value of pth=1 /z=1 /3 �10,11�. Numerical simu-
lation results on networks of size N=105 are shown by the
symbols, while the curves are the theoretical predictions of
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FIG. 3. �Color online� Size of giant connected component as a
function of bond occupation probability for �a� synthetic networks
with Poisson degree distribution; �b� pretty-good-privacy network,
for p near pth; �c� as �b�, but for all p values.
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Eqs. �3�–�6�. The agreement between theory and numerics is
excellent.

One of the motivations for the introduction of the � net-
works is the ability to obtain analytical results for networks
with given degree distribution Pk and clustering spectrum ck.
Equations �1� and �2� constrain the distribution ��k ,c� to fit a
desired Pk and ck, which may be measured, for example, in a
real-world network. However, these constraints still permit
significant freedom in choosing ��k ,c�. It is convenient
therefore to consider a parametrization of ��k ,c� which al-
lows straightforward fitting to given network data. We sup-
pose that the distribution of clique sizes c occupied by nodes
of degree k is given by a binomial distribution, defining

��k,c� = Pk� k

c − 1
	gk

c−1�1 − gk�k−c+1, �8�

for c=1 to k+1. This distribution clearly satisfies Eq. �1� and
it distributes the probability mass corresponding to the
k-degree nodes over the c-clique sizes via the single param-
eter gk. The relationship between the parameters gk and the
clustering spectrum ck is remarkably simple; substituting pa-
rametrization �8� into Eq. �2� yields ck=gk

2. Thus, form �8�
for � may immediately be fitted to the Pk and ck of a real-
world data set by setting gk=
ck.

Figures 3�b� and 3�c� show the results of applying param-
etrization �8� to match the degree distribution and clustering
spectrum of the connected component of the pretty-good-
privacy �PGP� network �25�. The PGP network is highly
clustered, with ck�1 / �k−1� for most k �9�. Numerical cal-
culations of the GCC size in this network are shown by the
symbols on Figs. 3�b� and 3�c�; also shown are the theoreti-
cal predictions for the zero-clustering �configuration model�
case and the results of Eqs. �3�–�6� with parametrization �8�.
The effects of clustering on the percolation threshold are
well captured by the � theory; see Fig. 3�b�. Note that here,
in contrast to the example in Fig. 3�a�, clustering acts to
decrease the percolation threshold: Eq. �7� gives pth
=0.0236, which is less than half the configuration model
value of 0.0559. The � theory gives quite a good approxima-
tion to the actual GCC size for bond occupation probabilities

of p up to about 0.5 �Fig. 3�c��; however, the behavior at
larger p values is less accurate, with the predicted GCC in
the undamaged �p=1� network being substantially smaller
than its true value. This inaccuracy may be attributable to
excessive clustering being induced by parametrization �8� for
the large p case.

In summary, we have introduced a class of clustered ran-
dom networks with arbitrary degree distribution and cluster-
ing spectrum and analytically determined the size of the
GCC and the bond percolation threshold. Numerically gen-
erated networks show excellent agreement with the theoreti-
cal results and we have demonstrated the applicability of the
theory by fitting to the pretty-good-privacy network to pro-
duce accurate predictions of the GCC size for small p. We
have used a cascade-based approach here in preference to a
generating function method, because �as we show in a sub-
sequent paper� this approach generalizes to give analytical
results for k-core sizes, Watts’ threshold decision model, and
other cascading dynamics on clustered networks �23�.

It is instructive to compare our �-theory networks with
the clustered network model recently introduced by Newman
�22�. In his model, a k-degree node may be a member of up
to k /2 disjoint triangles �3-cliques� and thus have a local
clustering coefficient of up to 1 / �k−1�. In contrast, nodes in
the �-theory networks can be members of only a single
clique, but using large cliques can give arbitrarily high clus-
tering. The restriction ck	1 / �k−1� imposed on Newman’s
model networks inhibits a direct fit to most real-world net-
works in contrast to our results in Fig. 3. It would be inter-
esting to explore the possibility of modeling networks with
multiple cliques per node �as in �22�� while allowing the
cliques to be larger than triangles �as here�. Indeed, a general
model of this type is proposed in �26� but it seems unlikely
that easily computable analytical solutions, as found here and
in �22�, can be obtained in this more general setting.
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