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Abstract—SEIR (Susceptible-Exposed-Infected-Recovered) is
a general and widely-used diffusion model that can model the
diffusion in different contexts such as idea spreading and disease
propagation. Here, we tackle the problem of inferring graph
edges if we can only observe a SEIR diffusion process spreading
over the nodes of a graph. This problem is of importance in
the common case where node states can be estimated with less
cost than the edges can be found. Some applications include
inferring a contact network from disease spread data, inferring
a reference network from idea spreading, or estimating influenza
diffusion rates between U.S. states. We improve upon the existing
approaches for this problem in three ways: (1) we assume we are
provided only with the probabilistic information about the state
of each node which may also be undersampled or incomplete;
(2) we present a more general framework that better uses trace
data to model edge non-existence under SEIR model; (3) we can
infer the network at both micro and macro scales.

Experiments on both real and synthetic data show that our
method is accurate under these challenging cases at multiple
scales, and it performs consistently better than the existing
methods. For instance, we can infer a high school human contact
network at microscale by tracking influenza diffusion almost
10% better than the existing methods as well as the estimated
networks closely mimick the full range of properties of the true
network. We also estimated the strength of the influenza diffusion
between and inside the U.S. states from Google Flu Trends data
at macroscale. Estimated rates are correlated with the human
transportation rates between the states to a certain degree, and
we gain interesting insight into the influenza diffusion in U.S.
such as the importance of the less populous states in epidemics
as well as the asymmetric influenza diffusion between U.S. states.

I. INTRODUCTION

Networks are being heavily used to model and analyze
the properties of various social and biological systems. The
phenomenon of study is often modeled as a dynamic process
spreading over the network. Diffusion is special case of those
processes in which a spread (e.g., an infection) starts from
some part of the graph and spreads to other portions over
time via the edges of the graph. Some examples are virus
spreading [1], and idea spreading over Twitter [2]. A diffusion
model defines a set of possible states that the nodes of the
graph can be in as well as rules for probabilistically switching
between those states. SEIR [3], for example, is a well-known
example of a diffusion model that is often used to simulate the
spread of infection. Other widely-used SI, SIS, SIR models [3]
are special cases of the SEIR model.

In many situations, it is easier or less costly to observe the
states of the nodes than it is to observe the edges of the network

over which the diffusion process is spreading. For instance,
we might easily observe opinion diffusion on social networks
but it may not be possible to see the network due to privacy.
Similarly, it is difficult to measure the human contact network
for flu transmission [1] but it is easier to detect whether people
are ill. In other cases, we are also interested in understanding
the diffusion characteristics at macroscale since it is infeasible
and unnecessary to learn it on micro level (person-to-person
contact). For instance, we are interested in estimating the
rates of influenza diffusion between the U.S. states but not
on the person to person details of this transmission. In this
paper, we study the problem of inferring the unknown network
when all we are able to observe are traces of how the states
of node change as the diffusion spreads over the graph. In
terms of influenza diffusion, unknown network models the
contacts between humans at microscale, whereas it represents
influenza diffusion rates between U.S. states at macroscale.
Recovery of the transmission network is important in designing
better epidemic containment strategies and better vaccination
strategies.

We present CORMIN (COnvex Risk Minimization to Infer
Networks) that addresses the problem of inferring the graph
from the diffusion data in less idealized and more applicable
settings. First, we explore the case that diffusion data is not
perfectly known. This uncertainty in the diffusion data is
interpreted differently in different contexts. For instance, when
tracking the spread of a disease, measured symptoms such
as headache and fatigue only partially reveal a node’s state
since they are not perfect representatives of diffusion states
(infected, etc.). Further, the infected person does not suddenly
start showing all the symptoms but instead severity of the
symptoms increase progressively over time. In this case, we
cannot perfectly know the diffusion times but rather estimate
our degree of belief (confidence) of being at certain states.
When estimating the influenza diffusion rates between the
U.S. states at macroscale, probabilistic modeling is mandatory
since the diffusion data is an ensemble over many people,
and probabilistic data in each U.S. state is interpreted as the
percentage of people infected with influenza in that U.S. state.
Second, obtaining diffusion data is often expensive, so we may
not know status of nodes at each possible time step but rather
observe them with frequency lower than that at which the
diffusion model is operating. Lastly, we infer networks from
SEIR model and its special cases at both micro and macro
scales.

Our main innovation to tackle these challenges is to treat
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diffusion data for each node and each possible state as proba-
bilistic time series. This is in contrast to the existing diffusion-
based inference methods [4], [5], [6], [7], [8] for which a node
is in each state with either probability 0 or 1. We formulate
the graph inference problem as L1 regularized risk (expected
loss) minimization program from SEIR dynamics. When the
diffusion data is perfect, L1 regularization can be removed and
CORMIN can be run nonparametrically by adding constraints
that force at least a single edge to exist between a newly
infected node and the previously infected nodes that are
not yet recovered. We applied CORMIN to infer synthetic
networks, high school human contact network at microscale,
and to estimate influenza diffusion rates between U.S. states
at macroscale.

CORMIN is capable of inferring the graphs under many
challenging cases, and we found it to perform consistently
better than the existing methods in almost all cases due to its
probabilistic formulation even though we run the competing
methods with their best parameters. Performance of CORMIN
is not significantly affected by the probabilistic data whereas
the existing methods performance decreases even though we
apply a non-naive rounding scheme to pre-process the input
to make schemes designed for 0/1 probabilities work with
more general probabilities. For instance, CORMIN can achieve
F0.1 score around 0.7-0.8 over a human contact network if
the traces are the only prior information available about the
graph. It can also nicely model and infer the influenza diffusion
between U.S. states at macroscale that cannot be done by
the existing methods. At macroscale, we found the influenza
transmission rates between U.S. states estimated by CORMIN
on Google Flu Trends dataset to be correlated with the human
transportation rates between those states. Estimated diffusion
rates between U.S. states are asymmetric, and the diffusion
rates between less populous states are high especially when
they are close to each other.

In summary, probabilistic modeling of the observed data,
and the ability to model both edge existence and non-existence
is the main reason CORMIN outperforms the other methods on
both real and synthetic data under various challenging cases. In
contrast to the existing methods, we may also use CORMIN to
estimate the diffusion rates at macroscale via its probabilistic
formulation. CORMIN still performs reasonably well when the
noise dynamics parameters that map exact transition times to
the observed diffusion data are also unknown. In this case, it
can simultaneously estimate the noise dynamics parameters
and infer the graph which cannot be done by the existing
methods.

A. Related Work

Many existing methods [3], [9], [10] model the influenza
transmission by differential equations; they make a homoge-
nous network assumption by ignoring the effect of the network
structure in diffusion. However, this assumption is not valid
for many diffusion types at both micro and macro scales.
For instance, influenza spreads over human contact network,
and this network is mostly heterogeneous. Similarly, influenza
spreads between U.S. states at macroscale but the transmission
rates between the states are not the same. Recently, some
methods have been suggested to infer social networks from
diffusion data. Among them, both NetInf [5] and MultiTree

[7] formulate inference as a maximum likelihood problem in
terms of only the edge existence, and ConNIe [4], NetRate
[6], KernelCascade [11] and InfoPath [8] predict the edges
by estimating the diffusion probabilities. Another network
inference method makes a prior assumption about the scale-
freenees of the network [12].

These methods have a number of shortcomings that we
attempt to address here. They assume perfect knowledge of
diffusion events, and neglect the possibility of partially observ-
able, under-sampled probabilistic diffusion data. Further, they
cannot model the uncertainty inherent in the diffusion data.
Another shortcoming is their inability to estimate the diffusion
rates at macroscale. In this case, existing methods cannot treat
multiple nodes as a single ensemble node which is mandatory
especially for large-scale networks. Lastly, we define the
inference problem for arbitrary loss functions without making
any prior assumption about the graph structure, and show that
it can be solved optimally for certain type of loss functions.

Similar problems have been previously considered when
collective statistics instead of individual statistics are avail-
able [13], [14]. For instance, collective graphical models
are shown to be useful for estimating the bird migration
paths given collective bird location data over time instead of
individual positions [13] where they formulate inference as
an extension of maximum flow problem. They also develop
efficient approximate inference methods under more general
collective graphical models [14]. However, these methods are
based on flow conservation where latent nodes change position
without changing their states over time by interacting with
other latent nodes. Then, these methods cannot be directly
applied to our problem of estimating the connectivity structure
and influenza transmission rates at macroscale under SEIR.

II. PROBLEM FORMULATION

Let G = (V,E) be an unseen graph for which the edges E
are difficult to observe directly. Edges of G may represent
human contact events, interactions in PPI, relationships in
social network, etc. We assume a uniform prior over the edges
E since we do not have additional information about the graph
structure, or the node attributes. At each time step, each node
of G can be in one of several states S. These states represent
an abstraction of the node’s status with respect to a diffusion
process such as the spread of a virus. The model M governs
how a node’s state changes based on the states of its neighbors
at previous time steps. Here, we focus on the general and
widely-used SEIR model: the states S are Susceptible (S),
Exposed but not contagious (E), Infected and contagious (I),
and previously infected but now Recovered (R). The SI, SIS,
SIR models are special cases of the SEIR model in which some
states and transitions cannot occur. Those states are general
enough abstractions to model various forms of diffusion in
different contexts [15], [1]. The SEIR is Markovian, and it
obeys the independent cascade [16] assumption which states
that a single diffusion from one of node’s neighbors is enough
for node to become exposed.

More formally, a trace d of the SEIR diffusion process
measured at time steps Td provides us with a set of proba-
bilities {sdv(t), edv(t), idv(t), rdv(t)} for every node v ∈ V and
every time step t ∈ Td}, where xdv(t) is the probability that
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Symbol Definition

d A single trace

D Set of diffusion traces

Td Set of time points observed in D

sdv(tj), edv(tj),
idv(tj), rdv(tj)

Probabilities of v being in S, E, I, R states in trace d
at time tj

b A perfect trace: b = {bv, v ∈ V }
bv Perfect trace for node v: bv = {tbe,v, t

b
i,v, t

b
r,v}

tbe,v , tbi,v , tbr,v Exact time v passes into E, I, R in trace b

TABLE I: Notation for problem definition

node v is in state x at time t in trace d. For any node v and
time t, we assume sdv(t) + edv(t) + idv(t) + rdv(t) = 1 indicating
that v must be in one of the SEIR states. In fact, exact state
transitions of node v into E, I, R states in trace d happen
at tde,v , tdi,v , tdr,v respectively. We cannot observe these exact
state transition times, but they are related to the observed trace
d via the noise dynamics function N which is explained in
detail in Section IV-A. N provide the probability of observing
a particular probabilistic state trace for a node instead of the
true state trace. Thus, our computational problem is:

Problem 1. Infer the set of edges E given: the set of nodes
V , a collection D of traces of probabilistic node states of the
form described above, estimates of the noise dynamics N , and
a model M, such as SEIR, by which the diffusion process is
assumed to have occurred.

Notation for the problem and its input is summarized in
Table I.

Our general framework for Problem 1 is this: we write
down a set of probabilistic dynamic equations that model how
the probability of each node being in each state changes under
SEIR. This provides a theoretical trajectory through the space
of state probabilities that depends on which edges exist in
the graph and state transition times. We then formulate an
optimization problem to find the choice of edges that makes
the theoretical trajectories match the observed traces as best
as possible under the expectation of the selected loss function
over the exact state transition times.

III. DIFFUSION DYNAMICS

We introduce xuv for every pair of nodes u 6= v with the in-
terpretation that xuv = 1 if edge (u, v) should exist. Assuming
trace d is known for sorted time steps Td = t1, t2, t3, . . . , tw,
for each consecutive pair tj−1, tj of this sample, SEIR can be
thought as nonlinear discrete model and its dynamics can be
written as in (1)–(4):

sdv(tj) = sdv(tj−1) ssdv(tj) (1)
edv(tj) = edv(tj−1)

(
1− eidv(tj)

)
+ sdv(tj−1)

(
1− ssdv(tj)

)
(2)

idv(tj) = idv(tj−1)
(
1− irdv(tj)

)
+ edv(tj−1) eidv(tj) (3)

rdv(tj) = idv(tj−1) irdv(tj) + rdv(tj−1) (4)

where ssdv(tj), eidv(tj), and irdv(tj) model the S→S, E→I,
and I→R transition probabilities that will be explicitly defined

Fig. 1: Only S→E transition is being affected by G, while
trace dv provides the set of state probabilities of node v

ahead. The system of equations (1)–(4) give the probability
of each node being in each state at time tj . For instance,
according to (2), node v is exposed at time tj if it is exposed
at tj−1 and has not transitioned into infected state, or it was
susceptible at tj−1 and transitioned into exposed state. Among
the all state transitions, only S→E is exogenous; it is affected
by xuv and that dependence is captured in ssdv(tj) terms.
Figure 1 illustrates this dependence. Only the states of nodes
1, 4 may affect S→E transition for node v since there is an
edge between v and them, while trace dv provides the set of
state probabilities of node v for a restricted set of time points.

In SEIR, v stays in state S at time t if it does not become
exposed by an infected neighbor until after t. Let sduv be the
probability of diffusion from u to v in trace d. If d diffuses
from u to v, diffusion from u to v happens at time tdi,u + t
where t is distributed according to given pmf pduv , and its cdf
fduv . Then, probability that node u that was infected at time
t would expose a neighbor v over interval [t′, t′′] given it has
not exposed v until t′ (pduv(t

′, t′′|t)) can be computed as in (5)
by using Bayes rule when t′′ ≥ t′ ≥ t:

pduv(t
′, t′′|t) =

P (u infected at t exposed v between t′ and t′′)
P (u infected at t has not exposed v until t′)

=
fduv(t

′′ − t)sduv − fduv(t′ − t)sduv
1− fduv(t′ − t)sduv

(5)

where fduv(∆t) is the cdf of diffusion time from u to v in
trace d, and the difference in the nominator is the probability
of exposure from u in the interval [t′, t′′]. Using (5), we can
estimate ssdv(tj) in (6) in terms of the probability of v not
having been passed the infection from any node u:

ssdv(tj) =∏
u∈V

∏
t<tj

(
1− pduv(tj−1, tj |t)

)xuv ĩ
d
u(t)

(
1−
∑

t′<tj
r̃du(t

′)
)

(6)

In other words, the probability that v remains susceptible at
time tj is estimated to be the product over all nodes u for
which xuv = 1 of the probability that u was infected at time
t < tj without recovering until tj but did not spread to v
during the interval [tj−1, tj ]. In (6), ẽdv(t), ĩdv(t) and r̃dv(t) are
boolean indicators that are 1 if v enters E, I, R in trace d at time
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Symbol Definition

sduv Probability of diffusion from u to v in trace d
pduv , fd

uv Probability, cumulative distribution of diffusion time from u to v in trace d
peiv , pirv Probability distribution of E → I, I → R transition time for v
eidv(tj), irdv(tj) Probability of E → I, I → R transition for node v at time tj
pduv(t

′, t′′|t) Probability that v changed to E during [t′, t′′] by u infected at t in trace d given u has not exposed v until t′

ssdv(tj) Probability that v does not leave state S between tj−1 and tj
ẽdv(t), ĩdv(t), r̃dv(t) Boolean indicator that is 1 if v enters E, I, R in trace d at time t
gs(a), ge(a), gi(a), gr(a) Probability of observing 4× 1 state vector a instead of perfect S, . . ., R states in any trace at any time.
αs

m, αe
m, αi

m, αr
m Dirichlet distribution parameter vector for mixture component m and states S, . . ., R

TABLE II: Table of notation for diffusion model

t respectively (tde,v = t, tdi,v = t, tdr,v = t). The probabilities
eidv(tj), irdv(tj) in (1)–(4) can be estimated by (7)–(8) in terms
of E→I / I→R transition probabilities of v, and probability of
v being E, I at time t.

eidv(tj) =

tj∑
t=t1

peiv (tj − t) ẽdv(t) (7)

irdv(tj) =

tj∑
t=t1

pirv (tj − t) ĩdv(t) (8)

A summary of the notation for the diffusion model is in
Table II.

IV. CONVEX RISK (EXPECTED LOSS) MINIMIZATION
BASED FORMULATION

Having defined the diffusion dynamics, our goal is now to
formulate the inference Problem 1. We assume that diffusion
data is given, and we have an estimate of noise dynamics
N , so xuv will be the only variables in diffusion dynam-
ics (1)–(4). Let b = {bv, v ∈ V } be a noiseless trace,
where bv = {tbe,v, tbi,v, tbr,v} and tbe,v , tbi,v , tbr,v are the exact
exposure, infection and recovery times of node v in perfect
trace b respectively. Let B be a set of noiseless traces, and
Lb : X × b → R, LB : X × B → R be real-valued loss
functions that estimate the loss (cost) of the set of edges X
given b and B respectively from the dynamic equations (1)–
(4). In our case, set of true diffusion data B is hidden, but we
observe D instead which defines the probabilities of being at
states S, E, I, R for each time step as discussed in Section II.
Given D, the most probable set of edges X ⊆ V × V can
be found by minimizing the risk (expected loss) over all
realizations of D:

R(X,D) = EB [LB ] =
∑
B

LB(X,B)P (B|D) (9)

where P (B|D) models the noise dynamics N ; it is the
probability that the set of observed traces D are generated from
the latent true diffusion data B. We assume that each trace d
is independent and noise affects each trace d independently, so
P (B|D) =

∏
d∈D P (b|d). Then, overall risk can be expressed

as:

R(X,D) =
∑
d∈D

R(X, d) =
∑
d∈D

∑
b∈Q(d)

Lb(X, b)P (b|d) (10)

where Q(d) = {(te(v), ti(v), tr(v)) : te(v) ∈ Td, te(v) <
ti(v) < tr(v) , v ∈ V } is the set of all latent valid trace
realizations that might explain the observed d.

A. Estimating P (b|d)

The noise affects each node independently, so P (b|d) =∏
v∈V P (bv|dv). From Bayes theorem, P (bv|dv) can be ex-

pressed as:

P (bv|dv) =
P (dv|bv) P (bv)∑

b∗v∈Q(d)[v]

P (dv|b∗v) P (b∗v)︸ ︷︷ ︸
P (dv)

(11)

The probability P (dv|bv) of observing dv given bv can be
expressed as in (12) since observations at each time step are
also independent:

P (dv|bv) =
∏
t<tbe,v

gs(dv[t])
∏

tbe,v≤t<tbi,v

ge(dv[t])

∏
tbi,v≤t<tbr,v

gi(dv[t])
∏
tbr,v≤t

gr(dv[t])
(12)

In (12), set of functions gx(dv[t]) for x ∈ {s, e, i, r} give
the probability of observing the 4 × 1 vector dv[t] at time
t instead of perfect S, E, I, R traces respectively. Entries of
dv[t] sum up to 1, so we model each gx(dv[t]) by a mixture
of 4-dimensional Dirichlet distributions with M components as
in (13) which may approximate any functional shape arbitrarily
well:

gx(dv[t]) =
∑
m∈M

wxm g
m
x (dv[t]) (13)

Each mixture component m for state x, trace d and time t
is distributed according to the concentration parameters αx,d,tm .
For simplicity, we assume the same concentration parameters
for every time t and trace d αx,d,tm = αxm. We also assume
mixture weights wxm to be same for every trace d. Each
Dirichlet component in (13) is explicitly written in (14) where
dyv[t] is the value of state y in dv[t], αxm[y] is the concentration
parameter for state y, and B(αx

m) is the normalizing constant:

gmx (dv[t]) =
1

B(αx
m)

∏
y∈{s,e,i,r}

(dyv[t])α
x
m[y]−1 (14)

666



On the other hand, prior P (bv) in (11) can be explicitly
written as in (15) in terms of state transition probabilities:

P (bv) = P (tbe,v)P (tbi,v|tbe,v)P (tbr,v|tbi,v)
P (bv) = P (tbe,v) p

ei
v p

ir
v (15)

where P (tbi,v|tbe,v) = peiv , P (tbr,v|tbi,v) = pirv , and P (tbe,v) =
1

|Td|+1 is uniform since we do not have any prior information
about the node transition times. Additional 1 in the denomina-
tor of P (tbe,v) models the case of v not ever becoming exposed.

The generative trace noise model expressed by (11) can
also be seen as a variant of hidden semi-markov model (seg-
ment model) [17] where there is a hidden state for every time
point in Td with 4 possible values S, E, I, R. In our case, each
state also emits a duration to model the duration of being at
a certain SEIR state, but each time step emits a distribution
over 4 states instead of a single value as in basic hidden semi-
markov model. Only a subset of state transitions are possible
at each hidden state as they are restricted according to SEIR
dynamics. Here, transition probabilities are defined by peiv , pirv
and P (tbe,v) whereas emission probabilities are from Dirichlet
distribution mixture as in (13).

B. Estimating Lb(X, b)

There are variety of loss functions for Lb(X, b). Here,
we are dealing with the probabilities so we use negative
log-likelihood loss (Lb(X, b) = − log (L(X|b))) where the
likelihood is defined as in (16)–(17), and the risk function
turns into (18).

L(X|b) =
∏
v∈V

 ∏
t<tbe,v

sdv(t)
∏

tbe,v≤t<tbi,v

edv(t)
∏

tbi,v≤t<tbr,v

idv(t)


(16)

L(X|b) = C
∏
v∈V

(1− ssdv (tbe,v)) ∏
t∈Td,t<tbe,v

ssdv (t)


(17)

R(X,D) =
∑
d∈D

∑
b∈Q(d)

P (b|d)

− log(L(X|b))︷ ︸︸ ︷(∑
v∈V
− log

(
1− ssdv

(
tbe,v
))

+

︷ ︸︸ ︷∑
v∈V

∑
u∈V

∑
tbi,u≤t<min(tbr,u,t

b
e,v)

− log
(
1− pduv

(
t− 1, t|tbi,u

))
xuv

)
(18)

Likelihood (16) is the multiplication of the node state prob-
abilities at each observed time point in perfect trace b under
SEIR. (17) is obtained from (16) by dynamic equations (1)–
(4) where the constant C is obtained from the state transitions
that do not involve X . Risk for negative log-likelihood loss is
written explicitly in (18) when combined with (6), and it is
convex as proven in Theorem IV.1. Its proofs can be found in
the appendix. R(X,D) (18) is convex so it can be minimized
optimally by the existing convex optimization methods [18].

Theorem IV.1. Risk R(X,D) with negative log-likelihood loss
function in (18) is convex.

C. A More Efficient Relaxation

However, minimizing R(X,D) (18) requires estimating the
expectation of the loss function over set of all possible perfect
transition time realizations defined by Q(d). This expectation
estimation can be quite time-consuming since it may require
an exponential number of summations in the worst case. To
infer graphs efficiently, we can instead optimize the relaxed
risk (R̂(X,D)) as in (19):

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

P (b|d)

(∑
v∈V
T bv +

∑
v∈V

∑
u∈V∑

tbi,u≤t<min(tbr,u,t
b
e,v)

− log
(
1− pduv(t− 1, t|tbi,u)

)
xuv

)
(19)

which is obtained by replacing each nonlinear term log(1−
ssdv(tj)) with its first-order Taylor approximation (T bv ) as
estimated in (20):

T bv =
∑
u∈V

log
(
pduv(t

b
e,v − 1, tbe,v|tbi,u)

)
(xuv − 1) (20)

We have P (b|d) =
∏
v∈V P (bv|dv) due to independence

of noise for every node, so (19) becomes:

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

∑
u,v∈V×V

P (bu|du)P (bv|dv)Mb
uv xuv

+ C (21)

where

Mb
uv = log(pduv(t

b
e,v − 1, tbe,v|tbi,u))−∑

tbi,u≤t<min(tbr,u,t
b
e,v)

log(1− pduv(t− 1, t|tbe,u)) (22)

Equation (21) is a linear function of X . In (21), each xuv
depends only on the exact state transition times of u and v
since the rest of the probabilities in P (b|d) marginalize out
when written as P (b|d) =

∏
v∈V P (bv|dv).

We can express linear Eqn. (21) more explicitly in tensor
form by (23) since expected loss for each edge (u, v) depends
only on the exact exposure time from Pv(b|d) (sender), and
exact infection and recovery times from Pu(b|d) (receiver).

R̂(X,D) =
∑
d∈D

∑
v∈V

∑
u∈V

∑
tiu∈Td

∑
tiu<t

e
v

∑
tev≤tru

(
Pd

v,e [tev]×

Pd
u,i,r

[
tiu, t

r
u

]
Md

uv

[
tiu, t

r
u, t

e
v

]
xuv

)
(23)

In (23), (|Td|+1)×1 vector Pd
v,e [tev], and (|Td|+1)×(|Td|+1)

matrix Pd
u,i,r

[
tiu, t

r
u

]
express these marginal probability dis-

tributions as defined in (24)–(25). In both equations, the
(|Td|+ 1)’th entries model the case of never transitioning into
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the corresponding state:

Pd
v,e [tev] =

{∑
tev<t1

∑
t1<t2

Pv(b = {tev, t1, t2}|d) if t ∈ Td
1−

∑
t∈Td

Pd
v,e [t] else

(24)

Pd
u,i,r

[
tiu, t

r
u

]
=

{∑
t1<tiu

Pv(b = {t1, tiv, trv}|d) if tiu < tru
0 else

(25)

(|Td| + 1)3 tensor Md
uv

[
tiu, t

r
u, t

e
v

]
in (23) defines the

coefficients for the edge from u to v to exist under the
transition times tiu, t

r
u, t

e
v ∈ (Td + 1)3 as explicitly defined

below in (26):

Md
uv

[
tiu, t

r
u, t

e
v

]
=


log
(
pduv

(
tev − 1, tev|tiu

))
if tiu < tev ≤ tru

−
∑
t<tev

log
(
1− pduv (t− 1, t|teu)

)
0 else

(26)

We can express (23) more compactly by (27) where each
xuv coefficient is inner product of third-order tensor Md

uv and
the vector Pd

v,e, and then it is sum of the entries of Hadamard
product of the resulting matrix and matrix Pd

u,i,r:

R̂(X,D) =
∑
d∈D

∑
v∈V

∑
u∈V

∑
jk

(
Pd

u,i,r �
(
Md

uv ·Pd
v,e

))
xuv

(27)

R̂(X,D) (27) is linear, convex, and it can be opti-
mized quite fast since we can estimate all xuv coef-
ficients by O(|D||V |2 max(|Td|)3) operations instead of
O(|D||V |2 max(|Td|)V ). X can be found by minimizing
R̂(X,D) optimally by Program (28)–(30):

argmin
X

R̂(X,D) + λ
∑

(u,v)∈V×V

xuv (28)

s.t.
∑

u∈V, tiu<tev≤tru

xuv ≥ 1, ∀d ∈ D, v ∈ V (29)

0 ≤ xuv ≤ 1, ∀(u, v) ∈ V × V (30)

Covering constraints (29) make sure that at least single
edge exists between the newly infected node v and the previ-
ously infected nodes that are not yet recovered for every trace
d. When the diffusion data is not perfect, (29) are removed
since we do not know tdi,u, tde,v , tdr,u from given diffusion data.
We obtain the binary solution by randomly rounding xuv .

V. POSSIBLE IMPROVEMENTS

A. Estimating Noise Dynamics Simultaneously With Graph
Inference

We may not always know the noise dynamics parameters
in Problem 1. In this case, we minimize the expected loss
to simultaneously estimate the most possible X and noise
parameters under the generative noise model described in
Section IV-A. However, their joint optimization is not convex
anymore even for negative log-likelihood loss function.

To efficiently estimate both, we propose a two-step proce-
dure similar to Monte Carlo Expectation Maximization [19]. In
the first step, we estimate the optimal set of edges X given D
and the estimated noise dynamics parameters, and we estimate
the optimal noise dynamics parameters given X and D in
the second step. First step is same as solving Problem 1, and
both steps alternate until convergence to a local optimum. In
the second step, we try to find the best mixture weights wxm
assuming dirichlet distribution concentration parameters αxm
are fixed at uniformly sampled locations on a four-dimensional
grid. Optimizing for the best wxm over all latent valid trace
realizations B quickly becomes intractable for large number
of traces, so we sample set of latent traces by turning the
log-likelihoods estimated in the first step into probabilities via
exponentiation. Let B be the set of sampled latent traces, and
W = {wmx |m ∈ M, x ∈ s, e, i, r} be the set of weight
variables where wmx is weight of mixture component m for
state x. Given B, we minimize the negative logarithm of
multiplications of the probabilities for B as in:

Lp(W |X,D) =
∑
b∈B

∑
v∈V

∑
t∈T b

− log

(∑
m∈M

wmye
bvt
m

)
(31)

where y is the state of node v at time t in trace b, and ebvtm
are the coefficients estimated over fixed αxm’s by Equation (14).
Then, we solve the following Program (32)–(34) to estimate
W :

argmin
W

Lp(W |X,D) (32)

s.t.
∑
m∈M

wmx = 1, ∀x ∈ s, e, i, r (33)

wmx ≥ 0, ∀m ∈M, ∀x ∈ s, e, i, r (34)

This optimization program is not under-constrained since
we assume same mixture weights for each node which makes
a total of 4M variables. Objective (32) is convex as in
Theorem V.1 which proof follows from the fact that convexity
is preserved under addition and negative logarithm of weighted
multivariate linear function is also convex due to its positive
semidefinite hessian matrix.

Theorem V.1. Objective (32) is convex.

Program (32)–(34) can be solved optimally by exponen-
tiated gradient descent algorithm [20] since equality con-
straints (33) are non-overlapping. In this case, exponentiated
gradient updates involve:

wt+1
mx =

wtmx exp(−η∇mx(w
t
mx))

Ztx
(35)

where Ztx =
∑
m∈M wtmx exp(−η∇mx(w

t
mx)) is the state-

dependent normalization constant, parameter η > 0 is the
learning rate, and ∇mx(wtmx) is the gradient of objective (32)
with respect to wmx. Weights estimated by (35) already satisfy
the constraints (33), and this method iterates until convergence.
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B. Improvements For Special Cases of SEIR

Most of the expressions in the previous sections become
slightly easier for SI and SIR models due to fewer states,
and disappearance and modifications of the certain transitions.
For instance, (15) turns into the uniform distribution for SI
model since peiv , pirv transitions disappear, and we do not
have any prior information about the infection times. We
estimate the coefficients of the relaxed risk R̂(X,D) by
Md

uv

[
tiu, t

i
v, t

r
u

]
, Pd

v,i and Pd
u,i,r for SIR model. However,

Md
uv

[
tiu, t

i
v

]
becomes a second-order tensor (matrix) for SI

due to the disappearance of recovery times, and we use it
together with the vectors Pd

v,i and Pd
u,i to estimate R̂(X,D)

coefficients by O(|D||V |2 max(|Td|)2) operations.

C. CORMIN Speedups

We speed-up CORMIN substantially via two improve-
ments: Edge inference for each node is independent of each
other, so risk minimization problem for each node can be
solved optimally in parallel which makes CORMIN scalable
to large graphs as in [6]. Secondly, when estimating the tensor
multiplication in (27) for traces with large Td, we approximate
the resulting coefficients by building the tensors (24)–(25)
and (26) for subset of time points by sampling them via
MCMC. The coefficients estimated by ignoring subset of time
points are good approximations, as well as CORMIN can infer
graphs reasonably well in several minutes from the traces that
are sampled at a high rate.

D. Caveats

In Problem (1), we assume DM parameters between con-
secutive time steps to be independent and uncorrelated. How-
ever, noise dynamics in many realistic scenarios can be better
modeled by time-sensitive Dirichlet Mixture model where
Dirichlet mixture parameters are also correlated across differ-
ent time points. These additional dependence constraints fur-
ther reduce the solution space. We leave improving CORMIN
to handle such caveats as a future work.

VI. MACROSCALE INFERENCE

In Section (IV), we focused on inferring the exact connec-
tivity structure which may be a human-contact network at high
school or Facebook friendship network. However, we may not
be always interested in inferring the exact network structure
since (1) networks we are considering may be massively large,
and available diffusion data may not be enough for large-scale
inference over them, and (2) it is not worth inferring the every
single edge as the connectivity structure at a higher level may
be enough for our purpose. For instance, it is impossible to
infer the whole human contact network or influenza diffu-
sion network in U.S. from the available influenza diffusion
data. Additionally, understanding U.S. influenza network at
macroscale, such as inferring the diffusion rates between U.S.
states rather than between the humans, may be enough to take
preventive measures to stop epidemics.

At macroscale connectivity level, each macronode is com-
posed of micronodes as in Figure (2a), and we are rather
interested in estimating the ensemble connectivity rates be-
tween and inside the macronodes instead of between the single

(a) (b)

Fig. 2: a) The Original Network, b) The Same Network at
macroscale from our perspective

micronodes as in Figure (2b). More formally, we define a
fully connected weighted graph G = (Vm, Em) with self-
loops where Vm are macronodes, every edge (u, v) in Em
has an associated macro connectivity rate xuv that the two
random micronodes between u and v are connected, and self-
loops model the diffusion inside each macronode. Additionally,
we assume that the connectivity inside and between every
macronode pair is homogenous which is quite realistic for large
uniform macronodes.

Let ntv be the number of micronodes inside macronode v at
time t, and ntv:s, n

t
v:e, n

t
v:i, n

t
v:r be the number of micronodes

inside macronode v belonging to S, E, I, R states respectively.
Similarly, we define ptv:s =

nt
v:s

nt
v

, ptv:e =
nt
v:e

nt
v

, ptv:i =
nt
v:i

nt
v

and

ptv:r =
nt
v:r

nt
v

as the fractions of micronodes in the corresponding
SEIR states at time t, and let p̂tv:i = ptv:i − p

t−1
v:i , p̂tv:e, p̂

t
v:r

be the fraction of newly infected, exposed, recovered nodes
respectively. In this case, set of p̂tv:x for each macronode v ∈
V , each state x ∈ {s, e, i, r}, and each time step t define
the diffusion data for Problem (1) at macroscale where we do
not know exactly which micronode got infected or recovered.
This diffusion data has a natural interpretation: each p̂tv:i is the
probability that a random micronode in v has transitioned to
state I. At this scale, we estimate the ensemble connectivity
rates xuv by optimally minimizing the non-relaxed version of
the objective (18) where negative log-likelihood is modified as
follows:

− log (L(X|b)) =
∑
v∈V
−nt

b
e,v
v:e log

(
1− ssdv

(
tbe,v
))

+
∑
v∈V

∑
u∈V∑

tbi,u≤t<min(tbr,u,t
b
e,v)

−ntv:sn
tbi,u
u:i log

(
1− pduv

(
t− 1, t|tbi,u

))
xuv

(36)

where log probabilities of each macronode are also multi-
plied by the number of micronodes since micronodes are inde-
pendent and multiplications turns into a summation by taking
the logarithm. Solution is then obtained without rounding X .
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VII. EXPERIMENTS & RESULTS

A. Synthetic Networks and Trace Generation

We tested the inference performance over synthetic net-
works as follows: We generated 10 synthetic networks of 500
nodes and 5000 edges from each of DMC [21], LPA [22],
ForestFire (FF) [23] and Erdos-Renyi (RDS) models by sam-
pling uniformly through their parameters space. Each synthetic
trace was generated by choosing a source node randomly
and running the diffusion over the network until either all
nodes become recovered (or infected under the SI model)
or until the spread dies out. When a node gets infection
from multiple nodes at different times, it is infected at the
earliest infection time. Given noise ratio p between 0 and
1, we added synthetic noise as follows: For every node and
time step, we assign probabilistic state vector sample obtained
from Dirichlet distribution with concentration parameter vector
α =

[
p
4 ,

p
4 ,

p
4 , 1−

3p
4

]
where 1 − 3p

4 is the concentration
parameter for the current state. This parameter vector becomes
uniform for higher noise levels, where it becomes almost
impossible to recover the original state.

B. Real Networks

We tested CORMIN by modeling influenza spreading over
the human contact network, called Contact-static, at an Amer-
ican high school [1] as SI, SIR, SEIR. In this network, nodes
represent people and an edge exists between two people if they
are near each other. We simulated influenza spreading with
suv = 0.2, puv as weibull distribution with (λ = 9.5, k = 2.3),
and peiv , pirv as exponential distributions with λ = 0.5 and
λ = 0.2 respectively as discussed in [24]. We also inferred
the average influenza transmission rates between U.S. states
at macroscale by using the Google Flu Trends Data between
2003–2013 treating each influenza season from September
through May as an independent trace where each week is
modeled by a single time step. In this Macro-state network,
each node represents a U.S. state, edges model the influenza
transmission rates between those states, and the graph has self-
loops to model the influenza diffusion inside the states. The
probability of infection at each time step at each U.S. state is
the percentage of the people affected by influenza in that state
in the corresponding week.

C. Experiment Details

We implemented CORMIN using CPLEX. Its code, used
datasets and supplementary text are available on the web1.
Edge inference for each node is independent and can be solved
optimally in parallel which makes CORMIN scalable to large
graphs. CORMIN is reasonably fast; it can infer a graph of
500 nodes and 5000 edges from 100 traces in less than a
minute on personal laptop. We compared the performance of
CORMIN with the best performing existing methods MultiTree
[7], NetRate [6], NetInf [5] and InfoPath [8]. We run MultiTree
and NetInf giving them the exact number of edges in the
true graph although such a perfect estimate is not available
a priori. When the diffusion data is perfect, we run CORMIN
nonparametricly by using only the covering constraints, and
estimate the sparsity parameter λ in (28) by cross-validation
when the diffusion data is partially observable. In this case, we

1http://www.cs.cmu.edu/∼ckingsf/software/cormin/

performed 5 cross-validation over the diffusion data as follows:
We estimate the set of edges from the training part of the
diffusion data for 500 λ parameters between 0 and 100, and
estimate the error of observing the remaining traces over the
inferred graph for every λ. After repeating this for 5 parts, we
return the λ minimizing the total error.

When estimating the prediction score at microscale, the
edges of the unknown graphs are the positive examples and
the pairs between which no edge exists are the negatives.
Unknown graphs are sparse so we measure the performance
by both F1 = 2 precision×recall

precision+recall and F0.1 = 1.01 precision×recall
0.01 precision+recall to

put more weight on precision where precision is the fraction of
edges in the inferred network that are also present in the true
network, and recall is the fraction of edges in the true network
that are also present in the inferred network. We evaluated the
performance of CORMIN at macroscale by estimating Pearson
correlation coefficient between the inferred influenza rates and
the transportation rates between U.S. states estimated from
Gowalla dataset [25].

D. Inferring Static Human Contact Network

We inferred Contact-static by synthetic influenza traces
on SI, SIR, SEIR that are generated from the real influenza
diffusion parameters as discussed above. In these influenza
traces, infected state models the human infected with the
influenza that is also spreading it to the other people, whereas
the exposed state models the human infected with the influenza
but has not yet started spreading it to the rest of the school
network. When the diffusion data is perfect, CORMIN per-
forms the best even though it is nonparametric as in Figure 3a.
Similarly, CORMIN performs the best under SIR as in Fig-
ure 3b, and the performance difference between CORMIN and
the existing methods are greater than in Figure 3a.

The performance difference between CORMIN with the
sparsity parameter λ estimated by cross-validation and the
existing methods becomes more significant when the diffusion
data is noisy. This noisy data case is realistic: it may be too
costly to track the influenza dynamics exactly since influenza
symptoms may be confused with other symptoms, and the
diffusion data may be limited especially for novel influenza
types such as H5N1 [26] when they first appeared. According
to Figure 3a, CORMIN achieves F0.1 score of 0.7 from 350
perfect traces, and it can achieve the same score from ap-
proximately 700 noisy traces. In contrast to this performance,
the existing methods can only achieve F0.1 score of 0.5
from the same noisy traces. When plotted against increasing
noise levels as in Figure 3c, CORMIN can achieve F0.1 score
greater than 0.4 even from highly corrupted traces whereas the
existing methods are significantly affected by the increasing
noise levels, as F0.1 for all of them quickly drop below 0.2.

Diffusion data sampled at a lower rate provides less in-
formation, and this leads to a overall decrease in CORMIN’s
performance as in Figure 3d where 1

x rate means we only
observe 1 time point in every x-length interval. CORMIN’s
performance is affected by the lower sampling rates, but its
performance is still reasonable for sampling rates higher than
1
5 for SEIR across various numbers of diffusion traces. In
summary, CORMIN performs well on both perfect and partially
observable data, and its performance is less affected by the
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(a) SI perfect (b) SIR perfect

(c) SI partial (d) SEIR Heatmap

Fig. 3: F0.1 vs. number of traces for Contact-static under
(a) SI, (b) SIR from perfect data; c) F0.1 vs. noise ratio for
Contact-static under SI from 250 traces, d) F0.1 Heatmap of
number of traces vs. sampling rate under SEIR

a) 50 traces b) 200 traces

Fig. 4: 50 node subgraph of True and the Estimated Contact-
static From CORMIN under SI from a) 50 traces, b) 200 traces

noise in the diffusion data which is not the case for the existing
methods.

CORMIN can reasonably reveal the human contacts as in
Figure 4 which shows the random 50 node subgraph of both
estimated and the true contact networks from 50 and 200
diffusion traces respectively. In Figure 4, gray edges represent
the edges that are correctly predicted by CORMIN, red edges
represent the edges that are in the true contact network but
not in the estimated network, and the blue edges represent
the edges that are in the estimated network but not in the
true contact network. In terms of nodes, red nodes represent
the students, green and black nodes represent the teachers and
the school staff respectively. According to Figure 4, students
are densely connected with each other, and the most of the
mispredicted connections are between the students instead of
between the rest of the people.

Networks inferred by CORMIN closely mimick the full
range of properties of the true network even from a lim-
ited number of traces. Comparison of some of the met-
rics of Contact-static estimated from 50 traces, and the
true Contact-static can be seen in Table III. For instance,
we know that human contact network has scale-free degree
distribution with exponent 2.254, and the network estimated
by CORMIN has similar exponent 2.072.

Estimated Truth
Modularity [27] 0.67 0.73

Scale-free exponent 2.072 2.254
Assortativity 0.141 0.121

Avg. Clustering Coefficient 0.23 0.261
Diameter 10 8

TABLE III: Metrics of true and estimated Contact-static net-
works from 50 traces

E. Estimating Influenza Diffusion Rates Between U.S. States

We estimated the average influenza diffusion rates between
U.S. states at macroscale from Google Flu Trends data as
described in Section VII-B without rounding the resulting
xuv . Google Flu Trends data shows the number of weekly
infections at each U.S. state between 2003-2013. Here, each
node in the network represents a U.S. state, and we treat each
influenza season from September to May as an independent
trace. Google Flu Trends data is incomplete so we completed
the missing data for states at each week as the average of the
neighbouring states.

True diffusion rates are unknown but we compared the
inferred influenza rates with the transportation rates estimated
from Gowalla dataset [25]. Estimated ensemble diffusion rates
between the most populated 16 U.S. states are shown in
Figure 5. Diagonal entries are the diffusion rates inside U.S.
states, and we found influenza diffusion rates inside the most
populated states such as New York, Illinois and Texas to be
the highest as well as between the nearby states. We estimated
the diffusion rates between the northern states to be higher
than the diffusion rates for the southern states. However, one
may approach these results with caution since the diffusion
rates estimated over Google Flu Trends data may be a slight
overestimate as discussed in [28].

We estimated the Pearson correlation coefficient between
the estimated influenza diffusion rates and transportation rates
to be 0.32 which shows that the transportation is one of
the major contributors in influenza transmission between U.S.
states as discussed previously [29]. We also found influenza
diffusion between U.S. states to be fairly asymmetric where
we define the asymmetry of the rate matrix as the average of
the absolute differences between diffusion rates of every pair
of entries the symmetric entries, and estimated it as 0.15 for
our rate matrix.

To quantify the degrees of importance of U.S. states in
influenza diffusion, we estimated the hubs and authorities
values (HITS) for U.S. states on the inferred network by [30].
In general, a good hub represents a U.S. state that diffuses
influenza to many other U.S. states, and a good authority
represents a U.S. state that gets influenza from other states
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Fig. 5: Estimated Influenza transmission rates between the
most populated 16 U.S. states over Macro-state

without much spreading it to the other states. Table IV shows
the hubs and authorities scores of some U.S. states.

Hubs Authorities Hubs Authorities
California 0.058 0.060 Illinois 0.068 0.071

Texas 0.052 0.052 Pennsylvania 0.073 0.071
Michigan 0.066 0.070 Massachusetts 0.071 0.068
Florida 0.060 0.056 Washington 0.074 0.068

TABLE IV: Hubs and Authorities scores of some U.S. states
on CORMIN estimated macroscale network

In general, almost all states tend to have close hub and
authority scores. We found some of the northern states such
as Washington and Massachusetts as well as some mid U.S.
states such as Virginia to have higher hub scores whereas the
most of the southern states either have slightly higher authority
scores or they have close hub and authority scores. Overall,
we may think the top-scoring hubs as diffusion accelerators
whereas the top-scoring authorities slow down the epidemics.
Depending on whether a state is a hub or an authority, we may
take different types of measures to prevent or slowdown the
epidemics at macroscale.

F. Inferring Synthetic Networks

CORMIN performs consistently better than the existing
methods on inferring synthetic networks grown via different
growth models from different diffusion models as seen in Ta-
ble V. Scores in bold represent the cases where CORMIN per-
forms reasonably better than the existing methods. CORMIN
performs significantly better than the existing methods on
inferring graphs grown via FF and LPA. All methods perform
similar on inferring RDS networks, and they perform the worst
on inferring DMC networks. This lower performance can be
explained by the loopy structure of DMC networks. In general,
CORMIN can easily achieve F1 score greater than 0.5 in all
models except DMC. Table V shows the performance only
from 250 traces but CORMIN’s performance is consistent
across different number of traces and conditions.

(a) Running Time (b) Affect of sampling rate

(c) Affect of spreading probability suv

Fig. 6: a) Comparison of running time of CORMIN and the
existing methods, b) F0.1 vs. 1

Sampling Rate from 250 traces
over Contact-static, c) Affect of spreading probability suv on
inferring Contact-static from 250 traces

G. Scalability and Performance under Other Challenging
Cases

CORMIN infers graphs faster than the existing methods
when the data is perfect as in Figure 6a which shows the mean
running time as well as the standard deviation from 20 runs
over graphs of different sizes on a single CPU computer. It
runs slower when the diffusion data is partial, but this running
time is still reasonable considering it is capable of modeling
the probabilistic data, and it can infer networks better than the
existing methods. CORMIN infers Contact-static in less than
a minute from 500 traces on a personal laptop.

CORMIN is also scalable to very large graphs since convex
risk minimization can be done independently for each node.
For instance, CORMIN can optimally infer graphs having
hundred thousands of nodes in less than 3 minutes by using
100 processors since it can be parallelized without losing the
optimality of the relaxation.

CORMIN infers Contact-static better than the existing
methods when the data is undersampled as in Figure 6b. In
this plot, x axis shows the inverse of the sampling rate; 0
corresponds to the perfectly known case, and y means we
only observe 1 time point in each y-length interval. Diffu-
sion data sampled at a lower rate provides less information,
but CORMIN can tolerate such missing information up to
a certain sampling rate as it is still more accurate than the
existing methods. However, at sampling rates lower than 1

16 ,
all methods start to perform similarly and worse since almost
all the diffusion information is lost. CORMIN is more robust
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FF LPA DMC RDS
SI SIR SEIR SI SIR SEIR SI SIR SEIR SI SIR SEIR

CORMIN 0.62 0.57 0.61 0.59 0.5 0.61 0.45 0.44 0.49 0.52 0.53 0.55
MultiTree 0.54 0.47 0.46 0.51 0.43 0.45 0.44 0.34 0.45 0.49 0.35 0.4

NetInf 0.52 0.45 0.46 0.50 0.42 0.47 0.4 0.41 0.47 0.47 0.33 0.38
NetRate 0.45 0.5 0.43 0.52 0.42 0.44 0.41 0.39 0.47 0.45 0.28 0.36

TABLE V: F1 vs. growth and diffusion models for synthetic graphs inferred using 250 traces (No noise added)

to noise as shown previously in Figure 3c, and it consistently
performs the best under different probability of diffusion (suv)
parameters as in Figure 6c.

VIII. CONCLUSION

In this paper, we present a convex risk minimization based
approach to infer unknown graphs under SEIR models from
probabilistic, partially observable diffusion data. We show
improved graph recoverability under both uncertain and perfect
node states at multiple scales; our method is capable of re-
covering the influenza transmission network at microscale and
transmission rates at macroscale. The performance advantage
of our method can be explained by its better modeling of both
edge existence and nonexistence from diffusion data, better
handling uncertain data, bounding the number of edges by
using covering constraints for perfectly known diffusion data,
and its ability to formulate the inference problem at multiple
scales. We believe that our model-based inference method
can also be extended to the other similar biological network
inference problems.
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[1] M. Salathè, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman,
and J. H. Jones, “A high-resolution human contact network for
infectious disease transmission,” Proceedings of the National Academy
of Sciences, vol. 107, no. 51, pp. 22 020–22 025, 2010.

[2] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th International
Conference on World Wide Web, WWW ’10. New York, NY, USA:
ACM, 2010, pp. 591–600.

[3] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,
vol. 42, no. 4, pp. 599–653, 2000.

[4] S. Myers and J. Leskovec, “On the convexity of latent social network
inference,” in Advances in Neural Information Processing Systems 23,
2010, pp. 1741–1749.

[5] M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’10. New York, NY, USA: ACM, 2010, pp. 1019–1028.

[6] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering the
temporal dynamics of diffusion networks,” in Proceedings of the 28th
International Conference on Machine Learning, 2011, pp. 561–568.

[7] M. G. Rodriguez and B. Schölkopf, “Submodular inference of diffusion
networks from multiple trees,” in Proceedings of the 29th International
Conference on Machine Learning (ICML-12), 2012, pp. 489–496.

[8] M. Gomez Rodriguez, J. Leskovec, and B. Schölkopf, “Structure and
dynamics of information pathways in online media,” WSDM ’13. New
York, NY, USA: ACM, 2013, pp. 23–32.

[9] R. M. Anderson and R. M. May, Infectious Diseases of Humans
Dynamics and Control. Oxford University Press, 1992.

[10] N. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications. London: Griffin, 1975.

[11] N. Du, L. Song, A. J. Smola, and M. Yuan, “Learning networks of
heterogeneous influence.” in NIPS, 2012, pp. 2789–2797.

[12] A. Defazio and T. S. Caetano, “A convex formulation for learning scale-
free networks via submodular relaxation,” in NIPS, 2012, pp. 1259–
1267.

[13] M. S. Elmohamed, D. Kozen, and D. R. Sheldon, “Collective inference
on markov models for modeling bird migration,” in Advances in Neural
Information Processing Systems 20, 2007, pp. 1321–1328.

[14] D. Sheldon, T. Sun, A. Kumar, and T. Dietterich, “Approximate in-
ference in collective graphical models,” in Proceedings of The 30th
International Conference on Machine Learning, 2013, pp. 1004–1012.

[15] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web, vol. 1, no. 1, 2007.

[16] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03. New York, NY, USA: ACM, 2003, pp. 137–146.

[17] K. P. Murphy, “Hidden semi-markov models (hsmms,” Tech. Rep.,
2002.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[19] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, “An introduction
to mcmc for machine learning,” Machine Learning, vol. 50, no. 1-2,
pp. 5–43, 2003.

[20] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient
descent for linear predictors,” Information and Computation, vol. 132,
no. 1, pp. 1 – 63, 1997.

[21] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani, “Modeling
of Protein Interaction Networks,” Complexus, vol. 1, no. 1, pp. 38–44,
2003.

[22] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explanations,” in
Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, KDD ’05. New York, NY,
USA: ACM, 2005, pp. 177–187.

[24] J. Wallinga and P. Teunis, “Different epidemic curves for severe acute
respiratory syndrome reveal similar impacts of control measures,”
American Journal of Epidemiology, vol. 160, no. 6, pp. 509–516,
2004.

[25] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11. New York, NY, USA: ACM,
2011, pp. 1082–1090.

[26] R. Liu, V. R. S. K. Duvvuri, and J. Wu, “Spread pattern formation
of H5N1-Avian influenza and its implications for control strategies,”
Mathematical Modelling of Natural Phenomena, vol. 3, pp. 161–179,
1 2008.

[27] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23,
pp. 8577–8582, 2006.

[28] D. Lazer, R. Kennedy, G. King, and A. Vespignani, “The parable of

ACKNOWLEDGMENT 

This work has been partially funded by the US National 
Science Foundation (CCF-1256087, CCF-1053918) and US 
National Institutes of Health (R21HG006913 and 
R01HG007104). C.K. received support as an Alfred P. Sloan 
Research Fellow. 

673



Google Flu: Traps in big data analysis,” Science, vol. 343, no. 6176,
pp. 1203–1205, 2014.

[29] D. Balcan, V. Colizza, B. Gonalves, H. Hu, J. J. Ramasco, and
A. Vespignani, “Multiscale mobility networks and the spatial spread-
ing of infectious diseases,” Proceedings of the National Academy of
Sciences, vol. 106, no. 51, pp. 21 484–21 489, 2009.

[30] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, Sep. 1999.

IX. APPENDIX

Theorem IV.1. Risk R(X,D) with negative log-likelihood loss
function in (18) is convex.

Proof:

We need to prove the convexity of the each additive term
w.r.t. X to prove the convexity of R(X,D) (18) for negative
log-likelihood loss. There are two types of terms involving X:
− log

(
1− pduv(t

b
e,u, t− 1, t)

)
xuv and − log

(
1− ssdv

(
tbe,v
))

.
Among them, − log

(
1− pduv(t

b
e,u, t− 1, t)

)
xuv is convex

since it is a linear function of X . The other term
− log

(
1− ssdv

(
tbe,v
))

can be explicitly written in (37):

− log
(
1− ssdv

(
tbe,v
))

= − log

(
1− exp

∑
u∈V, tb

i,u
<tbe,v

wu xuv

)
(37)

where wu are defined in (38) for every u ∈ V, tbi,u < tbe,v:

wu = log
(
1− pduv(t

b
i,u, t

b
e,v − 1, tbe,v)

)
(38)

(37) is convex since its Hessian when expressed in (39):

H =
exp

∑
u∈V, tb
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<tbe,v

wu xuv(
1− exp

∑
u∈V, tb
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 (39)

is Positive semidefinite (PSD) as it can be expressed as
Z yT y where:

y = [w1, w2, . . . , wn] (40)

Z =
exp

∑
u∈V, tb

i,u
<tbe,v
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1− exp

∑
u∈V, tb

i,u
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wu xuv

)2 ≥ 0 (41)
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