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A Brief History of Statistical Models
for Network Analysis and Open Challenges

Stephen E. FIENBERG

Networks are ubiquitous in science. They have also become a focal point for discus-
sion in everyday life. Formal statistical models for the analysis of network data have
emerged as a major topic of interest in diverse areas of study, and most of these involve
a form of graphical representation. Probability models on graphs date back to 1959.
Along with empirical studies in social psychology and sociology from the 1960s, these
early works generated an active “social science network community” and a substantial
literature in the 1970s. This effort moved into the statistical literature in the late 1970s
and 1980s, and the past decade has seen a burgeoning network literature coming out of
statistical physics and computer science. In particular, the growth of the World Wide Web
and the emergence of online “networking communities” such as Facebook, Google+ ,
MySpace, LinkedIn, and Twitter, and a host of more specialized professional network
communities have intensified interest in the study of networks and network data. This
article reviews some of these developments, introduces some relevant statistical models
for static network settings, and briefly points to open challenges.

Key Words: Community discovery; Exponential random graph models; Latent net-
work structure; Maximum likelihood estimation; MCMC; Network experimentation.

1. INTRODUCTION

With the advent of widespread and enveloping online social network communities such
as Facebook, Google+ , MySpace, LinkedIn, and Twitter, it has become fashionable to
analyze and report on network data and structure (see, e.g., Watts 1999, 2003; Barabási
2002; Buchanan 2002; Christakis and Fowler 2009). Entire conferences are devoted to
the study of social media and the interactions of individuals who use them, and network
visualizations appear in newspapers and popular magazines.

Many scientific fields, especially in the social sciences, have used network repre-
sentations for their problems. The “statistically” oriented literature on the analysis of
networks derives from a handful of seminal contributions, such as those by Simmel and
Wolff (1950) at the turn of the last century, and by Moreno (1934), who in the 1930s
invented the sociogram—a diagram of points and lines used to represent relations among
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826 S. E. FIENBERG

persons, a precursor to the graph representation for networks. Luce and others developed
a mathematical structure to go with Moreno’s sociograms using incidence matrices and
graphs. Goldenberg et al. (2010) provided an extensive review of this literature and its
more modern incarnations, from which we draw the following overview. Their article also
includes extensive discussions of both static and dynamic network modeling; here we
focus simply on the static models.

2. HISTORICAL OVERVIEW OF NETWORK MODELS
AND ANALYSIS

There was early recognition of network analysis as a subdiscipline in the social science
community. The journal Social Networks began to publish in 1978 and several articles
on network analysis appeared in the Journal of the American Statistical Association in
the 1980s. The literature has burgeoned with the emergence of online social networks and
contributions to the field by social scientists and statisticians are now outnumbered by those
of computer scientists and statistical physicists.

2.1 SIZE MATTERS

What distinguishes much of the current work on networks and their analysis from that of
the twentieth century is scale. Facebook claims to have a billion users. Protein interaction
networks typically involve many hundreds or even thousands of nodes. The analysis of
cocitation networks, two decades ago, would typically involve less than 100 articles or
authors but today could include a thousand or more. And much of the current effort with
different styles of models is focused on computations with networks of such size.

The early network studies in sociology almost all dealt with relatively small sets of
subjects whose interconnections could be studied in depth, or at least whose connections
allowed communication across a small set of links in a larger network setting. Stanley
Milgram (Milgram 1967; Travers and Milgram 1969) gave the name to what is now
referred to as the “small-world” phenomenon—short paths of connections linking most
people in social spheres—and his experiments had provocative results: the shortest path
between any two people for completed chains has a median length of around 6; however,
the majority of chains initiated in his experiments were never completed! For example, in
the Boston study (Travers and Milgram 1969), only 64 of 296 chains were completed. His
studies provided the title for the play and movie Six Degrees of Separation, which ignored
the complexity of his results due to the censoring. White (1970) and Fienberg and Lee
(1975) gave a formal Markov-chain-like model and analysis of the Milgram experimental
data, including information on the uncompleted chains. Milgram’s data were gathered in
batches of transmission, and thus, these models can be thought of as representing early
examples of generative descriptions of dynamic network evolution.

Recently, Dodds, Muhamad, and Watts (2003) studied a global “replication” variation
on the Milgram study in which more than 60,000 e-mail users attempted to reach one of
18 target persons in 13 countries by forwarding messages to acquaintances. Only 384 of
24,163 chains reached their targets but they estimated the median length for completions
to be 7, by assuming that attrition occurs at random.
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HISTORY OF STATISTICAL MODELS FOR NETWORK ANALYSIS 827

Similarly, in the 1970s, several sociologists chose to study “blockmodels” and “struc-
turally equivalent” groups of individuals again with small network datasets such as those
arising in Sampson’s (1968) study of the relationships among 18 novices in a monastery, at
the time of considerable upheaval in the Roman Catholic Church more broadly following
Vatican II. Sampson’s data have become a canonical example to illustrate new methods rang-
ing from blockmodel algorithms (Breiger, Boorman, and Arabie 1975; White, Boorman,
and Breiger 1976), to the p1 model of Holland and Leinhardt (1981) and its generalizations
(Fienberg, Meyer, and Wasserman 1985), to mixed-membership stochastic blockmodels by
Airoldi et al. (2008), and it is a centerpiece in the Hunter, Krivitsky, and Schweinberger
(2012) article in this issue. Typically, authors focus on a single extract from the Sampson
study instead of its full multivariate and longitudinal structure. Other such examples include
Zachary’s karate club network of friendships between 34 members of a karate club at a
U.S. university in the 1970s (Zachary 1977) and Lazega’s study of relationships among 72
partners and associates in a law firm, for example, see Lazega and van Duijn (1997).

2.2 SOME BASIC MODELS

Erdös and Rényi (1960) and the contemporaneous article by Gilbert (1959) introduced
the basic probability model for network analysis where all edges essentially have the same
probability of occurrence, independently from one another. Erdös and Rényi worked with
a fixed number of vertices, N, and number of edges, E, and studied the properties of this
model as E increases. Gilbert studied a related two-parameter version of the model, with N
as the number of vertices and p as the fixed probability for choosing edges. Although their
descriptions might at first appear to be static in nature, we can think in terms of adding
edges sequentially and thus turn the model into a dynamic one. In this alternative binomial
version of the Erdös–Rényi–Gilbert model, the key to asymptotic behavior is the value
λ = pN . There is a “phase change” associated with the value of λ = 1, at which point we
shift from seeing many small connected components in the form of trees to the emergence
of a single “giant connected component.” Probabilists such as Pittel (1990) imported ideas
and results from stochastic processes into the random graph literature. Aldous (1997) made
the link between stochastic processes and random graphs, giving rise to a fundamental
distribution in population genetics. See also the book by Durrett (2006).

Holland and Leinhardt’s (1981) p1 model extended the Erdös–Rényi–Gilbert model to
allow for differential attraction (popularity) and expansiveness, as well as an additional
effect due to reciprocation. Fienberg and Wasserman demonstrated that the p1 model
was log-linear in form, and this alternate representation allowed for easy computation of
maximum likelihood estimates (MLEs) using a contingency table formulation of the model
(Fienberg and Wasserman 1981a, b).

In the late 1990s, physicists began to work on network models and study their properties
in a form similar to the macrolevel descriptions of statistical physics. Barabási, Newman,
and Watts, among others, produced what we can think of as variations on the Erdös–Rényi–
Gilbert model that either controlled the growth of the network or allowed for differential
probabilities for edge addition and/or deletion. These variations were intended to produce
phenomena such as “hubs,” “local clustering,” and “triadic closures.” The resulting models
gave us fixed degree distribution limits in the form of power laws—variations on preferential
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828 S. E. FIENBERG

attachment models (“the rich get richer”) that date back to Yule (1925) and Simon (1955)
(see also Mitzenmacher 2004)—as well as what became known as “small-world” models.

The small-world phenomenon, which harks back to Milgram’s 1960s studies, usually
refers to two distinct properties: (1) small average distance and (2) the “clustering” effect,
where two nodes with a common neighbor are more likely to be adjacent. Many of these
authors claimed that these properties are ubiquitous in realistic networks. To model networks
with the small-world phenomenon, it is natural to use randomly generated graphs with a
power-law degree distribution, where the fraction of nodes with degree k is proportional
to k−a for some positive exponent a. Many of the most relevant articles are included in
an edited collection by Newman, Barabási, and Watts (2006). More recently, this style of
statistical physics models has been used to detect community structure in networks, for
example, see Girvan and Newman (2002) and Backstrom et al. (2006), a phenomenon that
has its counterpart description in the social science network modeling literature.

The probabilistic literature on random graph models from the 1990s made the link
with epidemics and other evolving stochastic phenomena. Picking up on this idea, Watts
and Strogatz (1998) and others used epidemic models to capture general characteristics of
the evolution of these new variations on random networks. Durrett’s (2006) book-length
treatment on the topic includes a number of interesting variations on the theme. The appeal
of stochastic processes as descriptions of dynamic network models comes from being able
to exploit the extensive literature already developed, including the existence and the form
of stationary distributions and other model features or properties. Chung and Lu (2006)
provided a complementary treatment of these models and their probabilistic properties.

One of the principal problems with this diverse network literature is that, with some
notable exceptions, the statistical tools for estimating and assessing the fit of “statistical
physics” or stochastic process models are lacking. Consequently, no attention is paid to the
fact that real data may often be biased and noisy. What authors in the network literature
have often relied upon is the extraction of key features of the related graphical network
representation, for example, the use of power laws to represent degree distributions or
measures of centrality and clustering, without any indication that they are either necessary
or sufficient as descriptors for the actual network data. Moreover, these summary quantities
can often be highly misleading. Barabási (2005) claimed that the dynamics of a number
of human activities are scale free, that is, he specifically reported that the probability
distribution of time intervals between consecutive e-mails sent by a single user and time
delays for e-mail replies follows a power law with exponent −1, and he proposed a
priority-queuing process as an explanation of the bursty nature of human activity. Stouffer,
Malmgren, and Amaral (2008) demonstrated that the reported power-law distribution was
solely an artifact of the analysis of the empirical data and used Bayes’ factors to show that
the proposed model is not representative of e-mail communication patterns. See a related
discussion of the poor fit of power laws in Clauset, Shalizi, and Newman (2009).

Machine learning approaches emerged in several forms over the past decade with the
empirical studies of Faloutsos, Faloutsos, and Faloutsos (1999) and Kleinberg (2000a, b,
2001), who introduced a model for which the underlying graph is a grid—the graphs gen-
erated do not have a power-law degree distribution, and each vertex has the same expected
degree. The strict requirement that the underlying graph be a cycle or grid renders the model
inapplicable to webgraphs or biological networks. Durrett (2006) treated variations on this
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HISTORY OF STATISTICAL MODELS FOR NETWORK ANALYSIS 829

model as well. More recently, a number of authors have looked to combine the stochastic
blockmodel ideas from the 1980s with latent space models, model-based clustering (Hand-
cock, Raftery, and Tantrum 2007), or mixed-membership models (Airoldi et al. 2008), to
provide generative models that scale in reasonable ways to substantial-sized networks. The
class of mixed-membership models resembles a form of soft clustering (Erosheva, Fien-
berg, and Lafferty 2004) and includes the latent Dirichlet allocation model (Blei, Ng, and
Jordan 2003) from machine learning as a special case.

Most of the early examples of networks in the social science literature were relatively
small (in terms of the number of nodes) and involved the study of the network at a fixed
point in time or cumulatively over time. Only a few studies, such as Sampson’s examination
of the novices in the monastery, have involved the collection, reporting, and analysis of
network data at multiple points in time, thus allowing for the study of the evolution of the
network, that is, network dynamics. The focus on relatively small networks reflected the
state of the art of computation, but it was sufficient to trigger the discussion of how we
might assess the fit of a network model. Should we focus on “small-sample” properties and
exact distributions given some form of minimal sufficient statistic, as we often do in other
areas of statistics, or should we look at asymptotic properties, where there is a sequence of
networks of increasing size? If so, how should we characterize the limiting process and thus
the asymptotics? Even if we have “repeated cross-sections” of the network, if the network
is truly evolving in continuous time, we need to ask how to ensure that the continuous time
parameters are estimable.

3. CONDITIONALLY INDEPENDENT EDGES AND DYADS

For a binary graph with conditionally independent edges, each edge outcome Xij can
be expressed as a Bernoulli binary random variable with probability of existence pij . The
simplest of this class of network models is the Erdös–Rényi–Gilbert random graph model
(Erdös and Rényi 1959, 1960; Gilbert 1959) (sometimes referred to as the Erdös–Rényi
model, or “the” random graph model), in which any given edge exists with probability p.
This model extends immediately to directed graphs, where the existence of any edge has
the same probability p, irrespective of the direction.

The beta model is the natural extension to the Erdös–Rényi model, which allows for
heterogeneous edge probabilities:

log
P (Xij)

1− P (Xij)
= βi + βj , (1)

and there has been a flurry of articles recently on its properties, for example, see Diaconis and
Sly (2011). The minimal sufficient statistic is the degree sequence, and Rinaldo, Petrovic,
and Fienberg (2011) established conditions for the existence of the MLEs of the {βi}.

The p1 model of Holland and Leinhardt (1981) begins with a directed version of the beta
model and proposes that three factors affect the outcome of a dyad with directed edges:
(1) the “gregariousness” α of an individual, that is, how likely one is to have outgoing ties;
(2) the “popularity” β of an individual, that is, how likely one is to have incoming ties;
and (3) “reciprocity” ρ, that is, the tendency to which the two arcs in a dyad are identical,
taking into account their existing characteristics. Given a parameter for the overall density

D
ow

nl
oa

de
d 

by
 [

In
st

itu
t F

ue
r 

Po
lit

ik
 G

es
ch

ic
ht

e]
 a

t 0
9:

45
 1

8 
D

ec
em

be
r 

20
12

 



830 S. E. FIENBERG

of edges θ , the form of the joint likelihood is

logP (X = x) ∝ θx++ +
∑
i

αixi+ +
∑
j

βjx+j + ρ
∑
ij

xij xji , (2)

where K(ρ, θ, α, β) is a normalizing constant to ensure that the total probabilities add
to 1. The minimum sufficient statistics are the in-degree and out-degree for each node and
the number of dyads with reciprocated edges. Holland and Leinhardt (1981) presented an
iterative proportional fitting method for maximum likelihood estimation for this model and
discussed the complexities involved in assessing goodness of fit. Fienberg and Wasserman
(1981a) provided a contingency table and log-linear representation of this simple version of
p1 and extended the model to allow for node-specific reciprocation where we replace ρ by
ρ + ρi + ρj . The log-linear formulation also led to various generalizations for characteriz-
ing multidimensional network structures, for example, by Fienberg, Meyer, and Wasserman
(1985).

A natural extension of thep1 model is the case of tightly linked “blocks” of nodes, within
which the α parameters are equated or at least taken to be exchangeable and similarly for
the β parameters, suggesting an equivalence between members of the same block. The
inference for and discovery of “communities” in networks has become especially popular
in recent network literature in a variety of different applications; see Newman (2004) for
an example. See the further discussion of blockmodels in the next section.

3.1 ENSEMBLE MODELS AND TOPOLOGICAL MOTIVATIONS—ERGMS

Rather than focusing on the dyads as independent units, some classes of models consider
topological features of interest in the network as the main measure of the model. The best
known of these is the exponential random graph model, or ERGM, introduced by Frank and
Strauss (1986), also referred to as the p∗ class of models (Anderson, Wasserman, and Faust
1992), which extends the p1 class of model by adding statistical summaries of topological
relevance. For example, the number of three cycles or triangles in a graph is equal to

T (x) =
∑
i,j,k

xij xjkxki . (3)

We can then add an additional parameter into the likelihood of Equation (2), for which
the triad count (3.1) is the corresponding multiplier, as in

P (X = x) ∝ exp

⎛
⎝τT (x)+ ρm+ θx++ +

∑
i

αixi+ +
∑
j

βjx+j

⎞
⎠ . (4)

Due to the computational intractability of the normalizing constant for Equation (4), which
is of the form K(τ, ρ, θ, α, β), Strauss and Ikeda (1990) introduced a pseudolikelihood
approximation that built on independent logistic regression components. A trio of articles
building on their pseudolikelihood procedures for ERGMs by Wasserman and Pattison
(1996), Pattison and Wasserman (1999), and Robins, Pattison, and Wasserman (1999) led
to the widespread use of ERGMs in a descriptive form for cross-sectional network structures
or cumulative links for networks. Much of the recent literature on ERGMs uses Markov
chain Monte Carlo (MCMC) methods for implementing maximum likelihood estimation of
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HISTORY OF STATISTICAL MODELS FOR NETWORK ANALYSIS 831

the model parameters (Snijders 2002). Additionally, these models often have degenerate or
near-degenerate solutions, as explained by Handcock et al. (2003) and Rinaldo, Fienberg,
and Zhou (2009). Hunter, Krivitsky, and Schweinberger (2012) gave further details for
these models and Handcock et al. (2008) provided software for fitting them.

If we move back to the undirected network setting and treat the nodes symmetrically,
then Equation (4) reduces to Frank and Strauss’ (1986) homogeneous Markov random
graph model:

P (X = x) ∝ exp

(
n−1∑
k=1

θkSk(x)+ τT (x)+ ψ(θ, τ )

)
x ∈ X , (5)

where {Sk} and T are count-specific, minimal sufficient statistics structures, such as edges,
triangles, and k-stars:

number of edges: S1(x) =∑1≤i≤j≤n xij ,

number of k-stars (n− 1 ≤ k ≥ 2): Sk(x) =∑1≤i≤n

(
xi+
k

)
,

number of triangles: T (x) =∑1≤i≤j≤h≤n xij xih xjh,

θ = {θk} and τ are the parameters, and ψ(θ, τ ) is the normalizing constant. Note that
there is a hierarchical dependence structure to the parameters of the Markov random graph
model of Equation (5), with edges being contained in 2-stars, and 2-stars being contained
in both triangles and 3-stars, etc. The statistical attractiveness of the Markov random graph
model comes in part from its “usual graphical model” interpretation in terms of conditional
independence, when one moves from the standard graph representation to an edge graph
representation, where the edges become nodes, and the new edges correspond to k-stars in
the original graph. How to exploit this interpretation and Markov structure for theoretical
and computational purposes remains an open problem.

One of the more subtle ideas surrounding network models is well captured by the
structure of ERGMs. For ERGMs that go beyond dyadic independence, there is no
simple generative process that allows us to write the likelihood function as a product of
independent components. Thus, we are, in essence, in an n = 1 situation. In the real world,
however, we often only observe a piece of a full network, and possibly only a sample. The
question then arises as to whether inferences from a subnetwork using ERGMs generalize
to the full network. Conversely, if an ERGM describes the full network, will it also be
appropriate for a subnetwork? Stumpf, Wiuf, and May (2005) answered these questions in
the negative for scale-free networks and Wiuf and Stumpf (2006) provided a more general
characterization. Shalizi and Rinaldo (in press) addressed these questions for ERGMs.
They said that a model is projective when the same parameters can be used for the full
network and for any of its subnetworks. They demonstrated that ERGMs are projective
essentially only for models involving dyadic independence, and that Markov random graph
models and other ERGMs involving parameters that lead to the counting of triangles are
not projectable. The Shalizi–Rinaldo results also explain the sense in which one can or
cannot get the consistency of maximum likelihood estimation for ERGMs.
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832 S. E. FIENBERG

4. SOME ALTERNATIVE APPROACHES TO ERGMs

The network modeling literature has a multiplicity of techniques and approaches that go
beyond ERGMs. We describe a few of these briefly.

From the 1970s onward, for example, see Lorrain and White (1971), Breiger, Boorman,
and Arabie (1975), and White, Boorman, and Breiger (1976), there has been a near obsession
with blocks or community structure within networks. A blockmodel relies on the intuitive
notion of the structural equivalence of sets of nodes, that is, based on their connectivity.
Blockmodels are typically characterized as having dense ties within a collection of nodes
(a block) and sparse ties between blocks, that is, people within a community interact more
than between communities. More general versions are essentially framed as a partition of
the nodes in the graph such that the resulting blocks, either within or between, are either
dense or sparse, for example, see Bickel and Chen (2009). When the edges or dyads in
directed networks are taken to be independent, these stochastic blockmodels are simply
variants of those we described in the preceding section and, while implicit in earlier work,
they are explicit in Holland, Laskey, and Leinhardt (1983). For a description of the extensive
related literature on the search for community structure, see Goldenberg et al. (2010).

In the historical overview in Section 2, we mentioned two Bayesian variations on this
theme, involving latent space models (Hoff, Raftery, and Handcock 2002) and mixed-
membership stochastic blockmodels (Airoldi et al. 2008). In the latent space approach, the
nodes in the network are embedded in a low-dimensional Euclidean space with placement
set as a function of covariates, and then with clustering added on to determine the blocks
(Handcock, Raftery, and Tantrum 2007). MCMC is the mechanism for estimating the
posterior distribution. The mixed-membership stochastic blockmodel approach is similar
to the latent structure model approach in a way, but the nodes are now set in a low-
dimensional simplex, where the vertices are the counterpart of blocks or clusters and
every node has a membership vector that describes what proportion of it belongs to each
vertex. The data-generating process for the mixed-membership stochastic blockmodel is
the following:

1. For each node p ∈ N ,

(a) sample mixed membership �πp ∼ DirichletK (�α).

2. For each pair of nodes (p, q) ∈ N ×N ,

(a) sample membership indicator, �zp→q ∼ multK (�πp),

(b) sample membership indicator, �zp←q ∼ multK (�πq),

(c) sample interaction, Y (p, q) ∼ Bern(�z�p→qB�zp←q).

The matrix B in (c) above provides the block structure involving K blocks. A key feature of
this model is the fact that the group membership of each node is context dependent, that is,
each node may assume different membership when interacting with or being interacted by
different peers in the network. Statistically, each node is an admixture of group-specific
interactions. The two sets of latent group indicators are denoted by {�zp→q : p, q ∈
N } =: Z→ and {�zp←q : p, q ∈ N } =: Z←. The pairs of group memberships that underlie
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HISTORY OF STATISTICAL MODELS FOR NETWORK ANALYSIS 833

interactions need not be equal; this fact is useful for characterizing asymmetric interaction
networks. We can enforce quality when modeling symmetric interactions.

MCMC works for small numbers of nodes but approximations are necessary for the
mixed-membership model approach to scale. In particular, the variational approximation
approach by Airoldi et al. (2008) scales easily to thousands of nodes. Deciding on the ap-
propriate number of blocks, K, can be done in a natural fashion in the Bayesian framework,
but unless one uses an automated approach such as the maximum a posteriori (MAP) rule
to choose K—methods for choosing K are computationally intensive. There are also time-
varying versions of the mixed-membership stochastic blockmodels, although they tend to
treat time as discrete and look at network structure in a sequence of epochs, for example,
see Kolar et al. (2010).

For networks generated from a stochastic blockmodel, Rohe, Chatterjee, and Yu (2011)
bound the number of “misclustered” nodes using spectral clustering methods. Their asymp-
totic results allow the number of clusters in the model to grow with the number of nodes.

The primary purpose of this section has been to single out statistically valid, model-
based approaches to incorporate block structure into network models as opposed to the
computationally oriented ones, especially those in the literature on “community structure”
in network settings.

5. SOME CHALLENGING NETWORK RESEARCH PROBLEMS

Goldenberg et al. (2010) listed a number of open and challenging research problems in
the domain of statistical models. What follows is a somewhat related description of five
areas I think are especially worthy of statistical attention and which have either direct or
indirect links to computation and/or visualization.

5.1 VISUALIZATION TIED TO STATISTICAL MODELS

One of the more popular ways to visualize network adjacency data is force-directed
simulation algorithms that assign forces among the set of edges and the set of nodes, for
example, as if the edges were springs and the nodes were electrically charged particles (di
Battista et al. 1999; Kaufmann and Wagner 2001). The simulation applies forces to the
nodes, pulling them closer together or pushing them further apart, until the computation
achieves a steady state.

A related spring-like approach exploits some variant of multidimensional scaling to find
a “good” visualization layout, for example, see Eades (1984). Yet other approaches use
general purpose clustering algorithms. While each approach has a different form of visual
appeal, none of them are tied to the kinds of models we review in this article. Developing
effective visual displays linked to classes of statistical models such as ERGMs remains a
major challenge.

Graphical displays are more often artifacts of the algorithms used as opposed to illumina-
tion about models and their interpretation. Methods such as mixed-membership stochastic
blockmodels and latent space models do point a natural pathway toward visualization, but
we need a systematic way to think about model-based or model-associated visual network
displays.
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5.2 STATISTICAL PROPERTIES OF MLES AND OTHER NETWORK MODEL

ESTIMATORS AND ASSESSING GOODNESS OF FIT

Given that the basic network models described in Section 3 have been in use for several
decades, it is surprising that their statistical properties did not develop somehow in parallel.
As we noted, it has only been very recently that we have seen a number of new theoretical
results for network models of practical relevance: (1) Chatterjee, Diaconis, and Sly (2011)
on asymptotics for the simple beta model; (2) Rinaldo, Petrovic, and Fienberg (2011)
on the existence of MLEs for the beta and p1 models; and (3) Shalizi and Rinaldo (in
press) on the consistency of maximum likelihood estimation for ERGMs. The algebraic
statistics representation by Petrović, Rinaldo, and Fienberg (2010) and Fienberg, Petrović,
and Rinaldo (2011) that draws on the polynomial structure of p1 models is a potential
first step toward new approaches to assessing model fit. But there remain many important
open questions regarding the properties of statistical approaches to network modeling that
require attention.

One might not think that such work bears highlighting in a journal devoted to com-
putational issues, but the fact is that many of the methods proposed for scaling statistical
estimation to large networks may compute answers that make little or no sense, because
the likelihood function is poorly behaved and maximized on or near the boundary.

5.3 NETWORK EXPERIMENTATION

A key challenge is to develop the next generation of statistical methods and software
tools for the design and analysis of experiments when observations are not independent
due to network interactions and influences. Unfortunately, almost all of formal statistical
theory for randomized experiments assumes that experimental units are independent, and
that one unit’s outcomes are unaffected by another unit’s treatment assignment, referred to
as the stable unit-treatment value assumption (SUTVA), for example, see Cox (1958) and
Rubin (1980).

Networks by their very nature involve dependence among the nodes as we have illustrated
in the presentation above, that is, the units in a network are dependent even if they are
linked by independent or conditionally independent edges. We expect treatments randomly
allocated to nodes to propagate via network links and network dynamics over time. Thus,
we expect substantial violations of SUTVA and treatment interference. As a consequence,
we ask: what does randomization buy us in experiments on networks? Or alternatively,
how should one design a network-based experiment with randomization so that we can
statistically analyze the results?

In as yet unpublished work by several different authors, there are suggestions for how
to approach this using ideas from cluster experimentation and hierarchical modeling of
spillover effects, but we need much more focused attention on the issue. There are many
empirical issues associated with network experimentation that require focused statistical
attention as well.
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5.4 DYNAMIC NETWORK-BASED MODELS FOR TRANSACTIONAL DATABASES THAT

INCORPORATE GEOGRAPHY AND OTHER MEASURES OF LOCALITY

More often than not, commercial and large-scale research data arise in a networked
environment, especially in today’s digital online world, but where the network structure is
latent. What we observe is either manifestations of links, for example, e-mail messages, or
transactions attributable to individuals locatable in time and/or space. In such circumstances,
we are often interested in measuring the latent network structure, for example, see Eagle,
Pentland, and Lazer (2009) and Crandall et al. (2010), as well as its influence on some other
phenomenon, for example, purchase behavior (Ugander et al. 2012). This type of modeling
needs to be better rooted in the context of latent versions of some of the models described
or referred to in this article.

5.5 NETWORK PRIVACY

A review of network challenges would be remiss without at least a brief reference to the
issue of privacy and network data. Network privacy is a topic that is regularly in the news,
in part because of GPS (global positioning system) location tracking of cell phones, and
in part because of the concern that current large-scale social networks offer little of it and
that users of them have little understanding of how their data are used by the owners of the
network for commercial purposes as well as by other users who are able to access what
should be private information directly or indirectly (Backstrom, Dwork, and Kleinberg
2007). Rather than providing yet another long list of references on the topic, we simply
note that this is an active area of research that is made especially difficult precisely because
of the dependence of the nodes in the network, and nodes with high numbers of in-degrees
or out-degrees, that is, high levels of linkage, are especially vulnerable to attack. But if
network data are to be shared in some form as part of the study of social networks, we wish
to avoid having the protection of privacy of individuals so badly distort the inferences one
can reach from the released data, so that little is to be learned from their analyses.
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