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a b s t r a c t

In this paper, the design of highly synchronizable, sparse and robust dynamical networks is addressed.
Better synchronizability means faster synchronization of the oscillators, sparsity means a low ratio of
links per nodes and robustness refers to the resilience of a network to the random failures or intentional
removal of some of the nodes/links. Golden spectral dynamical networks (graphs) are those for which the
spectral spread (the difference between the largest and smallest eigenvalues of the adjacency matrix) is
equal to the spectral gap (the difference between the two largest eigenvalues of the adjacency matrix)
multiplied by the square of the golden ratio. These networks display the property of ‘‘small-worldness’’,
are very homogeneous and have large isoperimetric (expansion) constant, together with a very high
synchronizability and robustness to failures of individual oscillators. In particular, the regular bipartite
dynamical networks, reported here by the first time, have the best possible expansion and consequently
are the most robust ones against node/link failures or intentional attacks.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Complex networks are ubiquitous in our everyday life (New-
man, 2003). They are formed by a large set of interconnected nodes
representing the entities of the system (Wang & Chen, 2003). In
particular, complex networked control systems represent an area
of tremendous theoretical and practical interest (Abdallah & Tan-
ner, 2007). In these systems the synchronization of all dynamical
entities (nodes) is an interesting phenomenon with multiple prac-
tical applications, such as in the synchronous transfer of signals in
communication networks (Chen & Zhou, 2006; Pavel, 2004; Ren,
2008; Su, Wang & Lin, 2009; Wu & Chua, 1995; Zhou, Lu, & Lü,
2006). Nowadays, it is well known that the structure of the net-
work, e.g., ‘small-worldness’ (Watts & Strogatz, 1998) and ‘scale-
freeness’ (Barabási & Albert, 1999), predetermines a large part of
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the dynamical processes taking place on it (Barahona & Pecora,
2002; Comellas & Gago, 2007; Lü, Yu, Chen & Cheng, 2004; Wang
& Chen, 2002).

When studying synchronization of complex networks, it is
usual to consider n identical oscillators represented by the nodes
which are interconnected pairwise by means of the active links.
Those links are considered to be equal. All communication is
considered bidirectional, in such a way that the underlying
network is undirected. Then, the time evolution of the ith oscillator
is given by

ẋi = F(xi) − σ
−
k

LijH(xj), (1)

where xi=1,2...,n is the state of the ith oscillator, F and H are the
evolution and the output functions, respectively, σ is a coupling
constant and Lij are the entries of the discrete Laplacian matrix
L = D − A, where D is the diagonal matrix of degrees and A is the
adjacencymatrix (Barahona&Pecora, 2002). In this case it has been
shown that a network exhibits good synchronizability if the ratio
Q = µ1/µn−1 is as small as possible, where µ1 and µn−1 are the
largest and the second smallest eigenvalue of the Laplacianmatrix,
respectively (Barahona & Pecora, 2002). The eigenvalue µn−1 is
frequently referred to as the algebraic connectivity of the graph
(Fiedler, 1973).
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It has been shown that both scale-free and small-world
networks display better synchronizability than regular graphs
(Barahona & Pecora, 2002; Lü et al., 2004; Wang & Chen,
2002). However, it has been observed that networks with strong
heterogeneity in the degree distribution are much more difficult
to synchronize than random homogeneous networks (Nishikawa,
Motter, Lai, & Hoppensteadt, 2003). Consequently, the necessity
for designing highly robust networks having the ability of easily
synchronize individual processes taking place at their nodes is an
urgent necessity in this field (Donetti, Hurtado & Muñoz, 2006;
Motter, Zhou, & Kurths, 2005).

One strategy that has been intensively explored in system
control theory is the use of pinning control. This strategy is useful
when the whole network cannot synchronize by itself. Then, some
controllers can be used to force the network to synchronize. The
pinning control strategy consists in applying some local feedback
injections to a fraction of the nodes (Chen, Chen, Xiang, Liu, &
Yuan, 2009; Porfiri & di Bernardo, 2008; Yu, Chen, & Lü, 2009;
Zhou, Lu, & Lü, 2008). A different approach was proposed by
Donetti et al. (2006) based on the use of entangled networks. They
obtained by a numerical optimization algorithm, some robust and
highly synchronizable networks. These networks are extremely
homogeneous, with long cycles and poor modular structure. Using
numerical optimization algorithmsDonetti et al. (2006) have found
some networks which are highly synchronizable and robust. Here
we propose a radically different approachwhich is based on the so-
called golden spectral graphs (GSGs) (Estrada, 2007). These graphs
can be built using analytical tools instead of numerical methods,
which allows the construction of infinite series of such graphs.
These graphs are also super-homogeneous, display ‘‘small-world’’
properties, good expansion properties in the graph-theoretic sense
and more importantly they have high synchronizability. The
construction of these networks in the currentwork is carried out by
means of matrix operations. Here we show some of the topological
properties of these networks including their synchronizability and
robustness to nodes/links random failures and intentional attacks.

2. Preliminary definitions

Let G = (V , E) be a simple connected graph of order n = |V |.
As usual A stands for the adjacency matrix of the graph and its
associated spectrum is denoted by

sp(A) = {λ
m1
1 > λ

m2
2 > · · · > λ

md
d }, n =

d−
i=1

mi,

where λi is the ith eigenvalue with mi multiplicity. Let s(G) =

λ1 − λd be the spread, g(G) = λ1 − λ2 the spectral gap and
w(G) = λ2 − λd the width of the ‘‘bulk’’ part of the spectrum of G.
In the case of regular networks, i.e., those having the same degree
for every node, the Laplacian eigenvalues are related to the ones of
the adjacency matrix as µj = λ1 − λn−j+1

The expansion constant or isoperimetric number (Mohar, 1989)
is a measure of how efficiently connected a network is and it is
defined as follows

φ(G) = inf


|∂S|
|S|

, S ⊆ V , 0 < |S| ≤
|V |

2
< +∞


, (2)

where |∂S| denotes the boundary of S, which is the number of links
that connect a node in S with a node in V − S. The subset S is
selected to be at most half the number of nodes in the network.
For good expansion networks (GENs) this constant should always
be larger than a given positive number ε. It is known that a network
has GE if the gap between the largest λ1 and second largest λ2
eigenvalues of the adjacency matrix g(A) = λ1 − λ2 is sufficiently
large. The expansion constant and the spectral gap are related by
the well-known Alon–Milman inequality (Alon & Milman, 1985),

g(A)

2
≤ φ(G) ≤


2λ1g(A). (3)

Thus, the larger the spectral gap, the larger the expansion constant
of the graph. Among the graphs with larger spectral gap there is
a family of graphs named Ramanujan graphs (Lubotzky, Phillips, &
Sarnak, 1988). They are defined as the d-regular graphs for which
λ2 ≤ 2

√
d − 1, where λ2 is the maximum of the non-trivial

eigenvalues of the graph λ(G) = max|λi|<d |λi|. These graphs,
which are the best possible expanders, have found applications
in network design, complexity theory, derandomization, coding
theory and cryptography. The interested reader is referred to the
excellent review (Hoory, Linial, & Wigderson, 2006).

It is well known that in the case of random networks the
largest eigenvalue grows much faster than the second largest one:
limn→∞(λ1/n) = p with probability 1, while for any ε > 1/2,
limn→∞(λ2/nε) = 0. A similar relation holds for the smallest
eigenvalue as well. This means that the spectral gap grows very
fast while the bulk of the spectrum is concentrated in a semi-
circle demarked by w(A) = λ2 − λd. Similar situations have
been observed for ‘‘small-world’’ graphs as well as for ‘‘scale-free’’
networks (Farkas, Derényi, Barabási, & Vicsek, 2005). In the case of
the bulk part of the scale-free graphs the spectral density is triangle
like instead of semi-circular.

3. Motivations

The main motivation for the current work is the seminal result
of Barahona and Pecora (2002) showing that a network exhibits
good synchronizability if the ratio Q = µ1/µn−1 is as small
as possible. We are interested here only in regular networks.
Consequently, the spectral ratio can be expressed in terms of the
eigenvalues of the adjacency matrix of the network as

Q =
λ1 − λd

λ1 − λ2
, (4)

where the numerator is the spectral spread s(G) and the
denominator the spectral gap g(G) of the network. Then, in order
to design highly synchronizable networks we need to reduce Q
by decreasing the spectral spread and increasing the spectral gap.
A simultaneous change of both parameters, e.g., increasing the
spectral spread and decreasing the gap, produces a shrink of the
spectral width w(G) = λ2 − λd. Consequently, we would like to
represent the spectral ratio Q in term of the three main spectral
parameters we have defined in the previous section: spectral
spread, gap and width. This can be easily done if we consider
networks which are neither complete nor empty. In a complete
network every pair of nodes are connected and w(G) = 0. In the
empty network there are no links and g(G) = 0. For any other
network w(G) ≠ 0 and g(G) ≠ 0 and we can multiply and divide
Q by the spectral width to obtain

Q =


λ2 − λd

λ1 − λ2

 
λ1 − λd

λ2 − λd


, (5)

where we can define the two terms in parentheses as two spectral
ratios

ω1(G) =
λ2 − λd

λ1 − λ2
, (6)

ω2(G) =
λ1 − λd

λ2 − λd
. (7)

We note in passing that the quantity R = 1/ω1 = (λ1 − λ2)
/(λ2 − λn) was proposed as a measure of the distance of the first
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Fig. 1. Spectral ratios as function of the density for all connected graphs with 7 and
8 nodes.

eigenvalue from the main part of the distribution of eigenvalues
normalized by the extension of the main part (Farkas et al., 2005).

A simple analysis of Eq. (5) reveals that changing the spectral
width as a way to decrease Q and increase synchronizability is not
trivial. For instance, decreasing w(G) decreases ω1(G), which also
decreases Q . However, it increases ω2(G) at the same time, which
has the contrary effect on the values of Q and synchronizability.

Another factor that should be taken into account in designing
highly synchronizable network is their density of links per
nodes. For instance, a complete network has the best possible
synchronizability with Q = 1. However, in practical terms it
represents a high cost to connect every pair of nodes to each other.
Consequently, we are interested in finding highly synchronizable
networks which are also sparse. We use a definition of density
previously studied by Barahona and Pecora (2002) as

ρ(G) =
2|E|

n(n − 1)
, (8)

which represents the fraction of links a network has (|E|) respect to
the number of links in a complete network with the same number
of nodes.

The problem of designing a highly synchronizable network
under the current scheme can now be stated as follows:

Problem. Find a network for which ω1(G) and ω2(G) are as small
as possible by keeping the density of the network low.

4. Basic principles for design

In order to gain some insights about the parameters we need
to use for our design of highly synchronizable sparse networks we
investigate the following. We selected all 853 connected networks
having 7 nodes and all 11,117 connected networks having 8 nodes.
For both groups of networks we obtain the average values of the
spectral ratios for networks with the same densities: ω1(ρ) and
ω2(ρ), and plot them versus density in Fig. 1.

It is straightforward to realize that Q ≡ ω1 + 1. Then, it can be
seen in Fig. 1 that the best synchronizability is obtained for dense
graphs, e.g.,ρ > 0.5 (left part of the figure). On the contrary, sparse
networks (ρ < 0.5) display very high values of Q , which means
poor synchronizability.

The best possible scenario, i.e., high synchronizability and
sparsity, is obtained when ω1(G) = ω2(G). It is easy to show that
this condition is fulfilled if, and only if:
ω1(G) = ω2(G) = ϕ,

where ϕ = (1 +
√
5)/2 ≈ 1.60803399 is the golden ratio.
Consequently, the networks with best synchronizability which
display density far from the complete graph are golden spectral
graphs (GSGs), which are those defined as follows:

Definition 1 (Estrada, 2007). A golden spectral network is a graph
for which both spectral ratios are identical, that is

ω1(G) = ω2(G) = ϕ.

Then, it is obvious that for a d-regular graph which is GSG:
Q (GSG) = ϕ2

= ϕ + 1 ≈ 2.6180 . . . . We recall that from the
networks found by Donetti et al. (2006) only one, the Petersen
graph, displays Q < ϕ2.

Now, the fundamental result we obtained here is a method that
allows us to build newGSGs from known ones. That is, thismethod
guaranties that oncewe have identified a GSGwe can build infinite
series of GSGs, all of them displaying good synchronizability and
sparsity. This result is stated below, in which we use some basic
algebraic operations that allow to extend a GSG to a family of
similar graphs. Then, first we define such operations as follows:

(1) The tensor product of two graphsG⊗G′ is defined as the tensor
(Kronecker) product of the adjacency matrices of both graphs,

(2) The graph G Jk denotes the graph with adjacency matrix
(A + I) ⊗ Jk − I, where Jk is the all-ones matrix of order k.

Theorem 1. Let G be a GSG. Then, for any r ≥ 1

(1) G ⊗ Jr is GSG,
(2) G Jr is GSG.

Proof. Recall that sp(Jr) = {0r−1, r1} and sp(G⊗ Jr) is the product
of the eigenvalues of both graphs (Cvetković, Doob, & Sach, 1982).
Also observe that 0 > λd. Then, the non-zero eigenvalues verify

rλm1
1 > · · · > rλmd

d ,

and therefore it is easy to check that

ω1(G ⊗ Jr) = ϕ.

On the other hand, the non-zero eigenvalues of G Jr satisfy
(rλ1 + r − 1)m1 > · · · > (rλd + r − 1)md (Van Dam, 1995).
Consequently, ω1(G Jr) = ϕ.

For the sake of completeness it is necessary to remark that for
any graph it holds that

ω1(G) = ϕ ⇔ ω2(G) = ϕ.

To prove it we only need to suppose that ω1(G) = ϕ, then λn =

−ϕλ1 + ϕ2λ2. Consequently,

ω2(G) =
λ1 + ϕλ1 − ϕ2λ2

λ2 + ϕλ1 − ϕ2λ2
=

(1 + ϕ)

ϕ

S(A)

S(A)
= ϕ. �

The use of tensor product for generating new from old graphs
is justified by the fact that the spectra of the new and old graphs
are related in such a way that does not affect the properties of
being GSG as shown in the proof of this theorem. In addition,
this procedure has been proposed recently as a standard way of
generating growing networks with desired properties (Leskovec,
Chakrabarti, Kleinberg, Faloutsos, & Ghahramani, 2009).



1838 E. Estrada et al. / Automatica 46 (2010) 1835–1842
Fig. 2. Two examples of GSGs: C5 ⊗ J3 and the icosahedral graph.

Table 1
The different types of networks built using Theorem 1 together with their sizes n
and densities ρ.

Network n ρ = d/(n−1)

(C5 ⊗ Jk) Jr 5kr 2rk+r+1
5kr−1

(C5 Jk) ⊗ Jr 5kr 3kr−r
5kr−1

(C3 Jk) Jr 3k2r 3kr−1
3k2r−1

(C3 Jk) ⊗ Jr 3k2r 3kr−r
3k2r−1

(C5 Jk) Jr 5k2r 3kr−1
5k2r−1

(C5 Jk) ⊗ Jr 5k2r 3kr−r
5k2r−1

5. New GSGs from old ones

It is clear from Theorem 1 that once we find a GSG we can build
infinite series of such networks simply by applying some algebraic
operations to their adjacency matrices. The smallest possible GSG
was previously found by Estrada (2007), which is the 2-regular
graph with 5 nodes, i.e., a pentagon. We have also previously
shown (Estrada, 2007) that the graphs C5 ⊗ Jk are GSG for any
k ≥ 1, and that the k-covers of C3 Jk and C5 Jk are GSG. Here
we represent the k-covers of C3 Jk and C5 Jk as C3 Jk and
C5 Jk, respectively. These graphs have the following adjacency
matrices (Van Dam, 1995)

A3 =

D P PT

PT D P
P PT D

 ,

A5 =


D P 0 0 PT

PT D P 0 0
0 PT D P 0
0 0 PT D P
P 0 0 PT D

 ,

where P be the k2 × k2 matrix defined as follow (Van Dam, 1995)

P =


I I · · · I
C C · · · C
...

...
...

Ck−1 Ck−1
· · · Ck−1

 ,

and C is the k × k circulant matrix whose elements are Cij = 1
if j = i + 1 (mod k), and Cij = 0 otherwise. On the other hand,
D = (Jk−Ik)⊗Ik. A particular case of these covers is the icosahedral
graph, which is C3 J2. Two examples of golden spectral graphs
constructed by the previous methods are illustrated in Fig. 2.

A generalization of these results comes now from Theorem 1,
which proves that the graphs C5 Jk are GSGs because we have
previously proved that the pentagon C5 is GSG (Estrada, 2007).
Now using Theorem 1, the previous finding, and the construction
methods developed here we can build several new families of
GSGs. Excluding the trivial case (C5 ⊗ Jk) ⊗ Jr = C5 ⊗ Jkr , we have
six new series of networks. They are the d-regular graphs of size n
illustrated in Table 1.

Obviously, all the graphs displayed in Table 1 are among the best
synchronizable networks that have been reported in the literature
so far. For instance, the best synchronizers obtained by Donetti
et al. (2006) are cage graphs known as Petersen, Heawood and
McGee graphs. These graphs have Q ratios equal to 2.500, 2.784,
and 5.562, respectively. This means that only the Petersen graph
displays better synchronizability than the GSGs. On the other hand,
the densities of these networks tend to very low values as the
number of nodes tends to infinite. For instance, the graphs given
in the first two entries of Table 1 have densities that tends to 0.4
and 0.6, respectively when n → ∞. However, the rest of GSGs
in this table have densities that tends to zero as n → ∞, which
means that they are very sparse indeed. In closing, networks given
in Table 1 are very sparse and among the highest synchronizable
reported in the literature so far.

6. Properties of GSGs

An important property that networks should display for
practical purposes is the one of robustness. Robustness to random
failures and intentional attacks can be related to the property
of good expansion, which is connected to the spectral gap by
the Alon–Milman theorem given in Section 2. The best possible
expansion is obtained for the so-called Ramanujan graphs (see
Section 2). It is known that the Petersen graph, which displays an
excellent synchronizability, is Ramanujan. However, other graphs
found as good synchronizers likeHeawood orMcGee graphs are not
Ramanujan. In the followingwe are going to analyze the properties
related to the expansibility or isoperimetric parameter for the
GSGs.

Here we improve the bounds for the expansion constant given
by the Alon–Milman theorem (Alon&Milman, 1985) for the case of
GSGs. This result can be obtained from the bound found by Mohar
(1989) for the isoperimetric number in terms of the algebraic
connectivity. Mohar (1989) found that φ(G) > µn−1/2. Then, by
combining this result with the one showing that µ1 is bounded by
themaximumdegree∆ of the nodes in the graph as∆ < µ1 < 2∆
(Fiedler, 1973), we can obtain a lower bound for the isoperimetric
number of d-regular GSGs. On the other hand, from the Cheeger
inequality, which relates the isoperimetric number of a graphwith
its algebraic connectivity and its maximum degree (see Mohar,
1989) we have that

µ2
n−1 − 2∆µn−1 + φ(G)2 ≤ 0,

which leads us to
1

∆ +


∆2 − φ(G)2
≤

1
µn−1

≤
1

∆ −


∆2 − φ(G)2
.

Combining the upper bound with ∆ < µ1 < 2∆ we obtain an
upper bound for the isoperimetric number of a d-regular GSG. Both,
the lower and upper bounds previously referred are given in the
following result.

Theorem 2. Let G be a d-regular GSG. The expansion or isoperimetric
constant is bounded as follows

d
2ϕ2

≤ φ(G) ≤
2d

√
ϕ

ϕ2
.

This result shows that the d-regular GSG have large expansion.
This means that such networks are quite robust to random failures
as well as to the intentional removal of nodes and links. To put
this in context we have to say that a network with good expansion
lacks topological bottlenecks, which are sets of nodes/links whose
removal separate the network into isolated parts. The higher
the expansion coefficient, the larger the robustness of the graph
against node/link removals. Among the graphs found there are
several Ramanujan graphs, i.e., λ2 ≤ 2

√
d − 1, which are the
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graphs having the largest possible expansion. Concerning the
intentional removal of nodes and links we have to add that
GSGs are super-homogeneous, i.e., all nodes look similar in their
topological properties, which makes difficult if not impossible to
select some of them as possible targets for an intentional attack.
For the sake of illustration we consider the graph (C3 J2) ⊗

J5, which is regular of degree 25. In this graph all nodes have
the same betweenness (19.5), closeness centrality (60.204) and
clustering coefficient (0.417). In addition, all links have the same
betweenness centrality (3.92). For the definition of the centrality
measures the reader is referred to Wasserman and Faust (1994).

The third group of the topological properties characterized
here for GSGs is related to distance-based parameters. The most
important distance-based parameters that we study here are the
average shortest path length l̄ and the diameter D, which is the
maximum distance separating any pair of nodes in the network.
These results are obtained by using some bounds previously
obtained by Mohar (1991). If we consider two subsets of nodes, B
and C , separated at distance r + 1, Mohar (1991) has shown that

Q > 4(r − 1)2
|B||C |

(n − |B| − |C |)(|B| + |C |)
,

where, as before,Q = µ1/µn−1 and | · · · | stands for the cardinality
of the subsets. If we consider that both subsets contain only one
node each, which are separated at the maximum distance D, the
previous bound turns out into

Q >
2(D − 2)2

(n − 2)
.

Then, by considering a d-regular GSG we can obtain the
following bound for the distance separating the two subsets of
nodes,

(r − 1)2 <
ϕ2

4
(n − |B| − |C |)(|B| + |C |)

|B||C |
,

from which we obtain the following result for the diameter of a
d-regular GSG.

Theorem 3. Let G be a d-regular GSG. Then, the diameter D is
bounded as

D < 2 +

√
2
2

ϕ
√
n − 2.

We further adapt the bounds found by Mohar (1991) relating
Q with the diameter and the average shortest path distance to
GSGs. The reader is referred to the work of Mohar (1991) to see
the derivation of these bounds.

Theorem 4. Let G be a d-regular GSGwith n nodes. Then, the average
shortest path length l̄ and the diameter D are bounded as follows

l̄ <
n

n − 1


1 + ϕ


α2 − 1
4α

 
1
2

+


logα

n
2


,

D < 2


ϕ


α2 − 1
4α

+ 1

 
logα

n
2


,

where α > 1 is a parameter.

These two results show that d-regular GSGs are ‘‘small-world’’
graphs. In such graphs, the average path length scales as l̄ ∼ log(n),
which means that there is a relatively small separation between
any pair of nodes in the network in comparisonwith the size of the
graph. For instance, the average shortest path length of the graph
(C3 J2)⊗ J5 is only l̄ = 1.661, which is lower than log(n) for this
network of 60 nodes.
Finally, we show a lower bound for the chromatic number
of a GSG following a well-known result of Hoffman (1970). The
chromatic number of a graph G is the smallest number of colors
χ(G) needed to color the vertices of G so that no two adjacent
vertices share the same color. Graph coloring have been applied to
many different problems. For instance, the problems of scheduling
and timetabling, computer register allocation, municipal waste
collection, mobile radio frequency assignment, and computation
of sparse Jacobian elements (For a review see Butenko, Festa, &
Pardalos, 2001).

Theorem 5. Let G be a GSG with n nodes and let χ(G) be the
chromatic number. Then,

χ(G) ≥ ϕ


1 −

λ2

λn


.

Proof. If G is a GSG then

λ2 − λn = ϕ(λ1 − λ2) ⇒ ϕλ2 + λ2 − λn = ϕλ1

⇒ −
ϕ2λ2

ϕλn
+

λn

ϕλn
= −

ϕλ1

ϕλn

⇒ ϕ


−

λ2

λn
+ 1


= 1 −

λ1

λn
≤ χ(G). �

7. Computational search of bipartite GSGs

After having found several classes of GSGs by using analytical
techniques in the previous section we embarked now in a
computational search of this type of graphs. In general, a graph can
be recognized as a GSG due to the following property of its spectral
gap and spread.

Lemma 6. A graph G is GSG if, and only if, the spectral spread is
related to the spectral gap as follow

s(A) = ϕ2g(A).

Proof. Let us take s(A) = α and g(A) = β . Then,ω1(G) = (α−β)/
β and ω2(G) = α/(α − β). If G is a GSG then ω1(G) = ω2(G) = ϕ.
We take α/(α − β) = ϕ, which can be expressed as 1− α/β = ϕ.
Consequently, α/β = ϕ + 1 = ϕ2, which means s(A) = ϕ2g(A). If
s(A) = ϕ2g(A) thenα = ϕ2β , whichmeans thatω1(G) = (α−β)/
β = (ϕ2β − β)/β = ϕ and ω2(G) = α/(α − β) = ϕ2β/(ϕ2β −

β) = ϕ. �

In particular we are interested here in the search of regular
bipartite graphswithGSproperties. Themain reason for this search
is that we have previously proved that every bipartite d-regular
GSG is Ramanujan for d ≤ 70 (Estrada, 2007). In addition, up to
now no one bipartite GSG has been reported whatsoever and no
analytical tool exist for building them ad hoc.

We have developed a computer program that search for d-
regular bipartite GSGs based on the following theoretical principle.

Lemma 7. A bipartite graph is GSG if g(A) = 2ϕ−2λ1.

Proof. In a bipartite graph λ1 = −λn. Then ω2(G) =
2λ1

λ2+λ1
,

which for the GSG means 2λ1
λ2+λ1

= ϕ. This can be rewritten as

λ2 =
2−ϕ

ϕ
λ1, from which the result follows straightforwardly.

From this search we automatically remove the complete
bipartite graphs, for which w1(Ka,b) = 1 and w2(Ka,b) = 2.

The overall principle underlying the program developed here
is the one developed for the system AutoGraphiX (for a review
see Aouchiche et al., 2006). However, instead of searching for
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Fig. 3. Illustration of a two-opt transformation that preserves degrees and
bipartiteness.

graphs and checking their properties afterward, we decided to
take advantage of the highly constrained structure of the regular
bipartite GSGs to reduce the search space and allows the program
to properly work with more than 30 or 40 vertices. This size of
graphs is traditionally difficult to handle with the regular version
of AutoGraphiX.

Technically, the search for regular bipartite graphs with the
appropriate spectral property specified by Lemma 7 (for a given
number of vertices and degree) is carried out in two phases, which
are explained below:

1. Find a regular bipartite graph with given degree. White and
black vertices are fixed a priori and no edge joins two vertices of
the same color. Somebasic transformations such as add an edge,
remove an edge, rotate an edge or a special combination of these
are then considered to find a first bipartite regular graph with
given degree.

2. Find a graph with the correct spectral property which is among
bipartite regular graphs with given degree by minimizing the
error function

err(G) = λ1 − λ2 − λ1/ϕ
2.

To improve the efficiency of the search, the only transformation
that is used at this step is a two-opt that preserves bipartiteness as
illustrated in Fig. 3.

Using this transformation, if G is a bipartite regular graph, then
any graph G′ obtained from G will also be bipartite and regular
(of the same degree). The connectivity is ensured by penalizing
graphs that are not connected (adding a large value to the function
f (G)). During the search, a graph is transformed if and only if
err(G) is reduced. The search is stopped either when a graph
cannot be improved or when err(G) = 0 (in which case we
found the correct graph). This search is heuristic and does not
guarantee that a proper graph would systematically be found,
even if it does exists. However, to improve the performance of the
program, it is embedded within a Variable Neighborhood Search
(VNS) metaheuristic (Hansen & Mladenovic, 2001; Mladenovic &
Hansen, 1997) that applies increasing magnitude perturbations
to the current best graph (preserving its structural properties)
followed by local searches. The principle of the VNS used here is
the same as in AutoGraphiX and a detailed description could be
found in Caporossi and Hansen (2000).

Using this computer program we have found several d-regular
bipartite GSGs. One example is a graph having two disjoint sets
of 17 nodes all having degree 12, with eigenvalues λ1 = 12,
λ2 = 2.8329 and λn = −12, diameter D = 3 and average shortest
path length l̄ = 1.788. Another example is a regular bipartite graph
having 34 nodes and degree 13 which was found in a similar way.
This graphhasλ1 = 13,λ2 = 3.0689 andλn = −13. The adjacency
matrices of these graphs are given in the Appendix.

The advantage of finding bipartite GSGs by using a computa-
tional search is that we can build other bipartite GSGs from them
by analytical results which use graph operations. In the following
we give a pair of such results. The first is a corollary of the Theo-
rem 1.

Corollary 8. Let G be a bipartite GSG with adjacency matrix B. Then,
the graph obtained as G ⊗ Jk is also a bipartite GSG.

We have built the graphs G ⊗ Jk where G is the graph with
34 nodes and degree 12 given in the Appendix. In this case all
graphs constructed are Ramanujan for k ≤ 5. All graphs have
diameter D = 3 and average shortest path length l̄ < log(n).
Consequently, they can be considered as ‘‘small-world’’ bipartite
Ramanujan graphs with high synchronizability, recall that Q ≈

2.618 for any regular GSG. The same properties are reproduced for
the graphs G ⊗ Jk where G is the regular bipartite GSG having 34
nodes and degree 13 mentioned before, which is also given in the
Appendix.

The second result allows the generation of new regular bipartite
GSGs by finding the product of two bipartite graphs.

Lemma 9. Let G1 be a regular bipartite GSG with spectra sp(A1) =

{λ
m1
1 > λ

m2
2 > · · · > λ

md
d }, n1 =

∑d
i=1 mi, and let G2 be a regular

bipartite graph with spectra sp(A2) = {η
m′

1
1 > η

m′
2

2 > · · · > η
m′

d′
d },

n2 =
∑d′

i=1 m
′

i . If λ2η1 < λ1η2, then the graph G1 × G2 is a graph
with two bipartite GSGs components.

Proof. Recall that the adjacency matrix of the product G1 × G2
of two graphs is the Kronecker product of the adjacency matrices
of G1 and G2. On the one hand, the product of two bipartite
graphs gives a disconnected graph with two bipartite components
(Theorem 9 in Leskovec et al. (2009)). On the other hand, the
spectrum of the product of two graphs is the product of all their
eigenvalues (Cvetković et al., 1982). BecauseG1 andG2 are bipartite
graphs, λ1 = −λn and η1 = −ηn. Then, assuming that λ2η1 <
λ1η2, the spectrum of the product is −λ1η1 ≤ · · · ≤ λ1η2 ≤ λ1η1,
and

ω1(G1 × G2) =
λ1η2 + λ1η1

λ1η1 − λ1η2
=

η2 − ηn

η1 − η2
= ϕ. �

For instance the product of the two regular bipartite GSGs given
in the Appendix is formed by two identical regular bipartite graphs
having 578 nodes, degree 156, diameter D = 3 and average
shortest path length l̄ = 1.9601, with λ1 = 156, λ2 = 36.8274
and λn = −156. This graph is a ‘‘small-world’’ regular bipartite
GSG but is not Ramanujan.

Another possibility of building new bipartite GSGs is by
combining Corollary 8 and Lemma 9. In this case we can obtain
regular bipartite GSGs by using (G1 ⊗ Jk) ⊗ (G2 ⊗ Jr). �

8. Conclusions

In this paper, we have proposed several methods to building
golden spectral graphs (GSGs). These graphs display high synchro-
nizability of dynamical processes occurring at their nodes. In ad-
dition, GSGs are highly sparse networks displaying an excellent
robustness against random failures as well as against intentional
attacks of both nodes and links. The methods developed here in-
cluded several analytical tools that allow for building a new GSG
from a known one. Such theoretic methods are basically based on
tensor (Kronecker) product of the adjacency matrices of the corre-
sponding graphs. Consequently, they are easily implementable in
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computer systems. On the other hand, we have designed a com-
puter programwhich is able to find automatically regular bipartite
GSGs. These graphs have the advantage that they are Ramanujan
for a wide range of degrees in addition to their high synchroniz-
ability. We have also devised some analytic methods that allow
to building new regular bipartite GSGs from known ones. In sum-
mary, we have foundmethods and algorithms for designing highly
homogeneous networks, which are highly synchronizable and ro-
bust to random failures and intentional attacks. We also hope that
the current work add an extra value to the approach to model-
ing networks based on tensor products of their adjacency matrices
(Leskovec et al., 2009).
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Appendix. Adjacency matrices of bipartite regular GSGs

The adjacency matrices of the two regular bipartite graphs
mentioned in the text are given as

0 B
BT 0


where we only shown the non-zero part B of the matrices.

1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1
0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1
1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0
1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 0
0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1
1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0
1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1
1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1
1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1
0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1

0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0
1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0
1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0
1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1
1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1
1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1

Regular bipartite GSG with
degree 12

Regular bipartite GSG with
degree 13

References

Abdallah, C. T., & Tanner, H. G. (2007). Complex networked control systems. IEEE
Control Systems Magazine, 27(4), 30–32.

Alon, N., & Milman, V. D. (1985). λ1 , Isoperimetric inequalities for graphs and
superconcentrators. Journal of Combinatorial Theory, Series B, 38, 73–88.

Aouchiche, M., Bonnefoy, J.-M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L.,
et al. (2006). In L. Liberti, & N. Maculan (Eds.), Global optimization from theory
to implementation: vol. 84. Variable neighborhood search for extremal graphs, 14.
The AutoGraphiX 2 system (pp. 281–310). Springer.

Barabási, A. L., &Albert, R. (1999). Emergence of scaling in randomnetworks. Science,
286(5439), 509–512.

Barahona, M., & Pecora, L. M. (2002). Synchronization in small-world systems.
Physical Review Letters, 89, 054101.

Butenko, S., Festa, P., & Pardalos, P. M. (2001). On the chromatic number of graphs.
Journal of Optimization Theory and Applications, 109, 51–67.

Caporossi, G., & Hansen, P. (2000). Variable neighborhood search for extremal
graphs. 1. The AutoGraphiX system. Discrete Mathematics, 212, 29–44.
Chen, F., Chen, Z., Xiang, L., Liu, X., & Yuan, Z. (2009). Reaching consensus via pinning
control. Automatica, 45(5), 1215–1220.

Chen, M. Y., & Zhou, D. H. (2006). Synchronization in uncertain complex networks.
Chaos, 16(1), 013101.

Cvetković, D. M., Doob, M., & Sach, H. (1982). Spectra of graphs. Theory and
applications. Berlin: Deutscher-Verlag.

Comellas, F., & Gago, S. (2007). Synchronizability of complex networks. Journal of
Physics A: Mathematical Theory, 40, 4483–4492.

Donetti, L., Hurtado, P. I., & Muñoz, M. A. (2006). Optimal network topologies:
expanders, cages, Ramanujan graphs, entangled networks and all that. Journal
of Statistical Mechanics, P08007.

Estrada, E. (2007). Graphs (networks) with golden spectral ratio. Chaos, Solitons and
Fractals, 33, 1168–1182.

Farkas, I. J., Derényi, I., Barabási, A.-L., & Vicsek, T. (2005). Spectra of real-world
graphs: beyond the semicircle law. Physical Review E, 64, 026704.

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23, 298–305.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: Principles and
applications. European Journal of Operations Research, 130, 449–467.

Hoffman, A. J. (1970). Combinatorial mathematics and its applications. Chapel Hill:
University of North Carolina Press.

Hoory, S., Linial, N., &Wigderson, A. (2006). Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43, 439–561.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani,
Z. (2009) Kronecker graphs: an approach to modeling networks.
http://arxiv.org/abs/0812.4905.

Lü, J., Yu, X., Chen, G., & Cheng, D. (2004). Characterizing the synchronizability of
small-world dynamical networks. IEEE Transactions on Circuits and Systems I ,
51(4), 787–796.

Lubotzky, A., Phillips, R., & Sarnak, P. (1988). Ramanujan graphs. Combinatorica, 8,
261–277.

Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 1097–1100.

Mohar, B. (1989). Isoperimetric number of graphs. Journal of Combinatorial Theory
Series B, 47, 274–291.

Mohar, B. (1991). Eigenvalues, diameter and mean distance in graphs. Graphs and
Combinatorics, 7, 53–64.

Motter, A. E., Zhou, C., & Kurths, J. (2005). Enhancing complex-network synchro-
nization. Europhysics Letters, 69, 334–340.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM
Review, 45, 167–256.

Nishikawa, T., Motter, M. A., Lai, Y.-C., & Hoppensteadt, F. C. (2003). Heterogeneity
in oscillator networks: are small world easier to synchronize? Physical Review
Letters, 91, 014101.

Pavel, L. (2004). Dynamics and stability in optical communication networks: a
system theory framework. Automatica, 40(8), 1361–1370.

Porfiri, M., & di Bernardo, M. (2008). Criteria for global pinning-controllability of
complex networks. Automatica, 44(12), 3100–3106.

Ren, W. (2008). Synchronization of coupled harmonic oscillators with local
interactions. Automatica, 44, 3195–3200.

Su, H., Wang, X., & Lin, Z. (2009). Synchronization of couple harmonic oscillators in
a dynamic proximity network. Automatica, 45, 2286–2291.

Van Dam, E. R. (1995). Regular graphs with four eigenvalues. Linear Algebra and its
Applications, 266–228, 139–162.

Wang, X. F., & Chen, G. (2002). Synchronization in scale-free dynamical networks:
robustness and fragility. IEEE Transactions on Circuits and Systems I , 49(1), 54–62.

Wang, X. F., & Chen, G. (2003). Complex networks: small-world, scale-free and
beyond. IEEE Circuits and Systems Magazine, 3(1), 6–20.

Wu, C. W., & Chua, L. O. (1995). Synchronization in an array of linearly coupled
dynamical systems. IEEE Transactions on Circuits and Systems I , 42(8), 430–447.

Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge University
Press.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world.Nature, 393,
440–442.

Yu, W., Chen, G., & Lü, J. (2009). On pinning synchronization of complex dynamical
networks. Automatica, 45(2), 435–439.

Zhou, J., Lu, J. A., & Lü, J. (2006). Adaptive synchronization of an uncertain complex
dynamical network. IEEE Transactions on Automatic Control, 51(4), 652–656.

Zhou, J., Lu, J. A., & Lü, J. (2008). Pinning adaptive synchronization of a general
complex dynamical network. Automatica, 44(4), 996–1003.

Ernesto Estrada is Professor and Chair in Complexity
Sciences at the Department of Mathematics & Statistics
and the Department of Physics, University of Strathclyde,
Glasgow, UK. He received his M.Sc. and Ph.D. in chemistry
in 1990 and 1997, respectively from UCLV, Cuba, where
he also held several positions until 1999. He was a
research scientist at SEAC, Unilever, UK in 2002–2003 and
‘‘Ramón y Cajal’’ researcher at the University of Santiago
de Compostela, 2003–2008. His research interests are
within the broad areas of complex networks: theory and
applications, algebraic graph theory, bioinformatics and

mathematical chemistry. He authored and co-authored 140 papers including 10
book chapters. He has co-edited an interdisciplinary book on complex networks
and his first single author book on this topic will appear in 2011. He is well known
for developing and applying graph spectral measures to characterize complex
networks and graphs, such as subgraph centrality, Estrada index, communicability,
spectral scaling, and generalized topological indices.

http://arxiv.org/0812.4905


1842 E. Estrada et al. / Automatica 46 (2010) 1835–1842
Silvia Gago was born in Zamora (Spain). She received
a degree in Mathematics in 1992 from Universidad
de Valladolid, Spain and a Bachelor of Engineering
in Telecommunications from Universitat Politècnica de
Catalunya, Spain in 2001. In 2006, she received her
Ph.D. at the Applied Mathematics Department IV at the
Universitat Politècnica de Catalunya, Spain. Currently she
is a postdoctoral researcher at the same department. Her
research interests are in the field of spectral graph theory
(SGT) and its applications.
Gilles Caporossi is associate professor at HEC Montreal
where he is teaching data mining and optimization since
2003. He obtained his M.Sc. at HEC Montréal in 1995 and
his Ph.D. at the École Polytechnique de Montréal in 2001.
During his Ph.D., he developed the AutoGraphiX system, a
system for computer aided graph theory which is used by
researchers in graph theory and mathematical chemistry
in various countries. He is a member of GERAD, (Group
for Research in Decision Analysis) and associated with the
data mining chair of HEC Montreal. His research interests
are optimization, graph theory, data mining, artificial

intelligence, scientific discovery and their applications.


	Design of highly synchronizable and robust networks
	Introduction
	Preliminary definitions
	Motivations
	Basic principles for design
	New GSGs from old ones
	Properties of GSGs
	Computational search of bipartite GSGs
	Conclusions
	Acknowledgements
	Adjacency matrices of bipartite regular GSGs
	References


