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We describe how the couplings in an asynchronous kinetic Ising model can be inferred. We consider

two cases: one in which we know both the spin history and the update times and one in which we know

only the spin history. For the first case, we show that one can average over all possible choices of update

times to obtain a learning rule that depends only on spin correlations and can also be derived from the

equations of motion for the correlations. For the second case, the same rule can be derived within a further

decoupling approximation. We study all methods numerically for fully asymmetric Sherrington-

Kirkpatrick models, varying the data length, system size, temperature, and external field. Good con-

vergence is observed in accordance with the theoretical expectations.
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Introduction.—Inferring interactions between the ele-
ments of a network can be posed as an inverse problem
in statistical physics in terms of either equilibrium models
[1–3] or nonequilibrium ones. The latter has recently
gained a lot of attention because of the wider generality
and relevance to systems where one has data on the system
over time [4,5].

In this connection, the asynchronous kinetic Ising model
offers a powerful platform for theoretical insight and prac-
tical applications. Under detailed balance (symmetric cou-
plings), it converges to the celebrated maximum entropy
equilibrium Ising distribution [6]; that is, the asynchronous
model includes as a subclass the Gibbs equilibrium Ising
model. In many recent works, this equilibrium model is
used for inferring functional connectivity and building
statistical descriptions, e.g., for neuronal spike trains [2].
However, spike trains and many other real life data come in
the form of time series. Since it is only under strict detailed
balance that the asynchronous Ising model converges to the
equilibrium Ising distribution, it is important to find the
relation between the couplings found from the asynchro-
nous model and those from the equilibrium Gibbs distri-
bution. This becomes particularly important for analyzing
data using fine time bins at which temporal correlations
become important.

The asynchronous Ising model is also important from
another perspective. Most of the work on the subject so far
has focused on models with only one type of stochastic
variables. The asynchronous Ising model, however, can be
viewed as a doubly stochastic model where, in addition
to spin configurations, the update times of the spins are
themselves stochastic variables. This differs from the

synchronously updated model where all spins are updated
at all times, making the spin configurations the only sto-
chastic variables [4]. Doubly stochastic processes are in
fact abundant in real life. An example is a securities market
[7] where traders place limit orders: conditional offers to
buy securities if their market price falls below a threshold
or to sell if the market price rises above it. If offers are
made, other traders may respond or not; if they do,
transactions take place. Whether or not limit offers are
placed defines a first set of stochastic variables depending
on which transactions may or may not occur, defining a
second set.
The presence of two stochastic degrees of freedom raises

a number of questions. How can we infer interactions if the
data contain only the history of one of them, e.g., the
transaction times? How does this compare with the case
where everything is known? When do the two scenarios
converge? Here, starting from two likelihood functions for
the data, one in which update times are known, the other
not, we derive two different learning rules. We show that
these learning rules have different precisions for inferring
the couplings, and that they have a nontrivial relation to
each other: averaging over possible update times, they both
lead to a third one, but with different learning rates.
Surprisingly, this third learning rule can also be derived
from the forward equations of motion for the correlations
of the asynchronous Ising model [6] and without appealing
to a likelihood function. This relates two previously unre-
lated approaches of learning the couplings. Applying the
averaged rule to data from retinal ganglion cells, we find
that the connections of the effective asynchronous model
are nearly identical to those of the equilibrium Ising model.

PRL 110, 210601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

0031-9007=13=110(21)=210601(5) 210601-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.210601


Since the learning rules we derive, as opposed to those for
the equilibrium Ising model, do not require calculating a
partition function and Monte Carlo sampling, the asyn-
chronous model offers a much faster way of inferring
functional connectivity.

Kinetic Ising model with asynchronous updates.—
Consider N binary spins, si ¼ �1, i ¼ 1; . . . ; N, coupled
to each other through a matrix Jij and each subject to an

external field �i. The coupling matrix need not be sym-
metric and, consequently, the system may not possess a
Gibbs equilibrium state [8]. One can describe this stochas-
tic dynamical system in either of two ways.

(1) Consider a time discretization with steps of size �t.
At each step, update spin i with probability �i�t, where �i

are constants with dimension of inverse time. We assume
�i to be known a priori, not a parameter of the model to be
determined. For simplicity, we also assume �i ¼ � for all
i, but all our derivations follow in the general case as
well. By ‘‘update’’ we mean assigning a new value
siðtþ �tÞ with probability ½1þ siðtþ �tÞ tanhHiðtÞ�=2 ¼
exp½siðtþ �tÞHiðtÞ�=2 coshHiðtÞ, where HiðtÞ ¼ �iþP

jJjisjðtÞ is the total field acting on spin i at time t. Of

course, the new value siðtþ �tÞ may be equal to the old
one; updating does not necessarily mean flipping. Multiple
spins can be updated in one time step, but for �t � 1 (the
limit we consider) in most steps at most one spin is
updated. The synchronously updated model is recovered
when ��t ¼ 1. Thus, one can interpolate between the
synchronous and asynchronous models by varying �.
In this formulation, the model is doubly stochastic: the
dynamics of one set of stochastic variables (the spins) are
conditional on the dynamics of the other (the updates).
Here we set the temperature that conventionally appears in
this model equal to 1, because it can be absorbed into the
definitions of the fields and couplings. Equivalently, our
fields and couplings are in units of temperature.

(2) Start from the Glauber master equation [6]. Then at
every step every spin is flipped with a probability ��t½1�
siðtÞ tanhHiðtÞ�=2. As in scheme (1), multiple spins can flip
in a single time step, but this happens with probability of
order ð�tÞ2. Thus, if �t � 1, in most time intervals at most
one spin is flipped.

The difference between the schemes is that in scheme
(1) we have two sets of random variables, the update times
(which we denote by f�ig) and the spin histories fsiðtÞg,
while scheme (2) contains only the fsiðtÞg. One can easily
show that marginalizing out the f�ig in scheme (1) leads
exactly to scheme (2), even if ��t is not small. Thus, all
averages over histories involving spins only (i.e., not
involving the update times) will be the same in the two
schemes. Nevertheless, knowing ‘‘the history of the sys-
tem’’ (i.e., a realization of its stochastic evolution) means
something different in the two schemes. In the first we
know all the update times, while in the second we know
only those at which the updated spins flipped. We will see

below that knowing these extra data influences the per-
formance in reconstructing the couplings. Which scheme is
relevant for inferring the couplings from data depends on
the specific nature of the system being modeled and the
data available. The ‘‘update times’’ may be meaningful
and, if so, available in some cases and not in others.
Two likelihoods to maximize.—Consider scheme

(1) above. Suppose we are given a history of the system,
i.e., the data s � fsiðtÞg and � � f�ig, of length L ¼ T=�t
steps, and we are asked to reconstruct the couplings and
fields. We do this by maximizing the likelihood Pðs; �Þ ¼
Pðsj�Þpð�Þ over these parameters. For each spin i, the �i
are a (discretized) Poisson process; i.e., every t has proba-
bility ��t of being a member of the set �. Thus the
probability of the update history pð�Þ is independent of
the model parameters, and we can take as the objective
function logPðsj�Þ, i.e.,

L1 ¼
X
i

X
�i

½sið�i þ �tÞHið�iÞ � log2 coshHið�iÞ�:

This is just like the synchronous-update case except that
the sum over times is only over the update times. It leads to
a learning rule:

�Jij / @L1

@Jij
¼ X

�i

½sið�i þ �tÞ � tanhðHið�iÞÞ�sjð�iÞ: (1)

Defining Ji0 ¼ �i, s0ðtÞ ¼ 1, this equation also includes
the learning rule for �i. We call this algorithm ‘‘spin- and
update-history-based.’’ or ‘‘SUH’’.
In scheme (2), we know only the spin history, not the

update times. Since this scheme is equivalent to the first
one with the �i marginalized out, we treat it by maximizing
PðsÞ ¼ P

�Pðsj�Þpð�Þ [9], leading to

L2 ¼
X
i;t

log

�
ð1� ��tÞ�siðtþ�tÞ;siðtÞ þ ��t

esiðtþ�tÞHiðtÞ

2 coshHiðtÞ
�
;

as the objective function. Separating terms with and with-
out spin flips, the resulting learning rules will be

�Jij / @L2

@Jij
¼ X

flips

½siðtþ �tÞ � tanhðHiðtÞÞ�sjðtÞ

þ ��t

2

X
no flips

qiðtÞsiðtþ �tÞsjðtÞ; (2)

where qiðtÞ � 1� tanh2ðHiðtÞÞ, and it includes the rule for
the �i with the convention Ji0 ¼ �i, s0ðtÞ ¼ 1. We call this
the ‘‘spin-history-only’’ (SHO) algorithm.
Reconstruction errors for both algorithms can be calcu-

lated by analyzing the Fisher information matrices. For
SHO the Fisher matrix elements read
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� @2L2

@Jij@Jkl
¼ �ik

X
flips

qiðtÞsjðtÞslðtÞ þ 2�ik��t

� X
no flips

qiðtÞsiðtþ �tÞ tanhðHiðtÞÞsjðtÞslðtÞ:

(3)

In the weak coupling limit, this matrix has nonzero ele-
ments only for j ¼ l, and the mean value of these nonzero
elements yields the inverse of the mean square reconstruc-
tion error (MSE). Without external fields, the second term
in Eq. (3) vanishes; thus, the MSE in this case is 2=ðT�Þ,
noting that the probability that a time step is a flip is ��t=2.
For SUH the calculation is analogous, and for �i ¼ 0 and
weak couplings, the MSE will be ðT�Þ�1, i.e., a factor of 2
smaller than for SHO.

History-averaged learning.—SUH and SHO utilize
explicitly their respective full model histories, both fsiðtÞg
and �i for SUH and fsiðtÞg for SHO. Below we derive a
third rule by averaging the one for SUH, Eq. (1), over
all update histories. Defining CijðtÞ � hsiðt0 þ tÞsjðt0Þi,
we have

_CijðtÞ ¼ lim
�t!0

hsiðtþ �tÞsjðt0Þi � hsiðtÞsjðt0Þi
�t

;

where h� � �i means an average over all realizations of the
stochastic dynamics. Separating time steps into those at
which an update occurred and those at which no update
occurred yields

_CijðtÞ ¼ lim
�t!0

�
��t

hsið�i þ �tÞsjðt0Þi�i � hsið�iÞsjðt0Þi�i
�t

�
:

There is no contribution from steps with no flip because
then siðtþ �tÞ ¼ siðtÞ and the numerator would be zero.
Thus we have expressed the average over all realizations of
the first term in Eq. (1) in terms of spin correlation func-
tions and their time derivatives:

hsið�i þ �tÞsjð�iÞi�i ¼
1

�
_Cijð0Þ þ Cijð0Þ: (4)

In averaging the second term in Eq. (1), the average over
f�ig can be replaced by an average over all times, since the
quantity tanhHiðtÞsjðtÞ is insensitive to whether an update

is being made. Thus, averaging Eq. (1) over all possible
histories yields

�Jij / ��1 _Cijð0Þ þ Cijð0Þ � htanhðHiðtÞÞsjðtÞi: (5)

We will refer to the update rule given by Eq. (5) as the
averaged-SUH rule, or AVE. This rule has the same struc-
ture as the one for the synchronous-update model [4], with
hsiðtþ 1ÞsjðtÞi replaced by Cð0Þ þ ��1 _Cð0Þ.

AVE requires knowing the equal-time correlations, their
derivatives at t ¼ 0, and htanhðHiðtÞÞsjðtÞi. This latter

quantity depends on the model parameters (through

HiðtÞ), so, in practice, estimating it at each learning step
requires knowing the entire spin history, the same data as
SHO learning needs.
Can we derive an algorithm like Eq. (5) from SHO

learning by averaging over spin flip times in the same
way we did by averaging SUH learning over update times?
Denote the local fields at time t generated by the true model
(the one that generated the data) by ~HiðtÞ, and, as before,
the local field calculated using the inferred parameters as
HiðtÞ. At each time step t, then, the probability of flipping
spin i is ��t½1� sðtÞ tanh ~HiðtÞ�=2. We thus have to allot
the first term in Eq. (2) a weight ��t½1� sðtÞ tanh ~HiðtÞ�=2
and the second a weight 1���t½1�sðtÞtanh ~HiðtÞ�=2�1,
getting

�Jij /
�
@L1

@Jij

�
0
¼ �

2T

Z
dt½tanh ~HiðtÞ � tanhHiðtÞ�

� ½1þ siðtÞ tanhHiðtÞ�sjðtÞ: (6)

The learning thus converges when the discrepancy
tanhðHðtÞÞ� tanhð ~HðtÞÞ is zero. Noting also that the argu-
ments above leading to Eq. (4) yield htanh ~HðtÞsjðtÞit ¼
��1 _Cð0Þ þ Cð0Þ, we write Eq. (6) as
�Jij / ��1 _Cijð0Þ þ Cijð0Þ � htanhHiðtÞsjðtÞit

þ h½tanh ~HiðtÞ � tanhHiðtÞ�siðtÞ tanhHiðtÞsjðtÞit:
(7)

The first line is identical to Eq. (5). We can obtain a learning
rule heuristically by an ad hoc factorization of the average in
the second line as h½tanh ~HiðtÞ � tanhHiðtÞ�siðtÞ tanhHiðtÞ�
sj ðtÞit � htanh ~HiðtÞ � tanhHiðtÞsjðtÞit hsiðtÞ tanhHiðtÞit,
yielding

�Jij / ½��1 _Cijð0Þ þ Cijð0Þ � htanhHiðtÞsjðtÞit�
� h½1þ siðtÞ tanhHiðtÞ�it: (8)

This just amounts to varying the learning rate in Eq. (5)
proportional to the time-averaged probability of not flipping
according to the model. Thus we arrive by a different route at
the AVE rule, Eq. (5).
We compared the performance of the algorithms SUH,

SHO, and AVE to each other and to the naive mean-field
(nMF) and Thouless-Anderson-Palmer (TAP) approxima-
tions to AVE investigated in [5] for fully asymmetric
Sherrington-Kirkpatrick models [10]. The couplings are
zero-mean independent and identically distributed normal
variables with variance g2=N (Jij is independent of Jji).

We study these for different values of g and �, the system
size N, and the data length L. As a performance measure,
we use the MSE on the Jij.

Figure 1 shows the performance of the algorithms.
As anticipated above, the error for SUH is half of that for
SHO learning; see Fig. 1(a). The same panel also shows
that AVE and SHO appear to perform equally well for large
enough L. In retrospect, this is not surprising, since both
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algorithms effectively use the same data (the spin history).
For small L, the averaging that yields AVE from SHO may
be prone to fluctuations yielding the two learning rules
behaving differently. Figure 1(b) shows that the MSE for
the exact algorithms is insensitive to N, while the approxi-
mate algorithms improve as N becomes larger [note, how-
ever, the opposite trend in Fig. 1(a)]; in these calculations,
the average numbers of updates and flips per spin were kept
constant, taking L ¼ 5� 105N. Figure 1(c) shows that the
performance of the three exact algorithms is also not
sensitive at all to �, while nMF and TAP work noticeably
less well with a nonzero �. Finally, the effects of (inverse)
g are depicted in Fig. 1(d). For fixed L, all the algorithms
do worse at strong couplings (large g). The nMF and TAP
do so in a much clearer fashion at smaller g, growing
approximately exponentially with g for g greater than
� 0:2. In the weak coupling limit, all algorithms perform
roughly similarly, except that SUH enjoys its factor-2
advantage (conferred by knowledge of the update times),
as already seen in Fig. 1(a).

We applied the learning rule Eq. (5) to spike trains from
20 retinal ganglion cells and compared the inferred cou-
plings with those of the Gibbs equilibrium model (see
Supplemental Material for details [11]). Figure 2(a) shows
that the Gibbs equilibrium and kinetic Ising couplings are
very similar. Furthermore, the asynchronous model allows
the inference of self-couplings (diagonal elements of the
coupling matrix) which are not present in the equilibrium

model. This result provides a rationale for the use of the
maximum entropy equilibrium Ising model: if the asyn-
chronous couplings were very different form the equilib-
rium ones, it would have meant that the real dynamical
process did not satisfy the Gibbs equilibrium conditions
and that the final distribution of states is not the Gibbs
equilibrium Ising model. In fact, we also tested what
happens to the couplings of the asynchronous model if
during learning we symmetrized the couplings matrix at
each iteration by adding its transpose to itself and dividing
by two and also putting the self-couplings to zero. Figure 2(b)
shows that the resulting couplings now get even closer to
the equilibrium ones. Since inferring the equilibrium
model is an exponentially difficult problem, requiring
time-consuming Monte Carlo sampling, these results
have an important pragmatic consequence for inferring
retinal functional connectivity. This is because the asyn-
chronous approach does not require Monte Carlo sam-
pling: the averages on the right-hand side of Eq. (5) are
all over the data. The asynchronous learning rules thus
allow the inference of functional connections that for the
retinal data largely agree with the maximum entropy equi-
librium model, but the inference is much faster.
Discussion.—A surprising observation is that Eq. (5),

that we derived by maximizing the likelihood, can also be
derived from a totally different route. For a kinetic Ising
model, the equation of motion for the correlations given �
and J is ��1 _Cijð0Þ þ Cijð0Þ ¼ htanhHiðtÞsjðtÞit [6]. This
equation holds for correct couplings, and thus a heuristic
learning is given by just adjusting the couplings propor-
tional to the difference of the two sides. This again yields
Eq. (5), and the linearized version of it would, in fact, be
the mean-field inference algorithm for the asynchronous
model used in [5]. Our results show that this rule is not
merely heuristic: it can be derived starting from the like-
lihood of the data, whether assuming that update times are
known or not, and averaging over the update times.
Here we addressed the problem of inferring the cou-

plings in a nonequilibrium system: the asynchronous,
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FIG. 2 (color online). Asynchronous versus equilibrium cou-
plings for retinal data. (a) The full asynchronous model. Green
stars show the self-couplings which by convention are equal to
zero for the equilibrium model. (b) The results when at every
iteration the self-couplings were put to zero and the matrix was
symmetrized.

(a) (b)

(c) (d)

FIG. 1 (color online). Mean square error (MSE) versus (a) data
length L, (b) system size N, (c) external field �, and
(d) temperature 1=g. Black squares show nMF, red circles
TAP, blue up triangles SHO, pink down triangles AVE, and
green diamonds SUH, respectively. The parameters are g ¼
0:3, N ¼ 20, � ¼ 0, L ¼ 107 except when varied in a panel.

PRL 110, 210601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

210601-4



asymmetrically coupled kinetic Ising model. We showed
how to derive three different learning algorithms, utilizing
three different levels of detail of the history of the system:
the full spin and update history, the spin history only, and
spin correlations at and near t ¼ 0 only. The methods show
performance that is promising in practical terms, agrees
with theoretical expectations, and, in particular, is superior
to approximate methods found earlier. We expect that the
reasoning behind our results on deriving and relating dif-
ferent learning rules can be extended to a variety of inverse
statistical mechanics problems beyond the particular case
of the kinetic Ising model.
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